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Abstract. In order to overcome the premature convergence defect of the basic particle swarm optimization (PSO)
algorithm and provide an effective method for shape and sizing optimization of truss structure, an improved PSO
was proposed. The random direction method was employed to produce high-quality initial population, the fuzzy
system was applied in the dynamic adaptive adjustment of parameters of the PSO, and the Metropolis criteria were
used to improve the performance of PSO. Then, the improved PSO was introduced to the truss structure shape and
sizing optimization design. Engineering practice and comparison with the other optimization algorithms show that
the algorithm has good convergence and global searching capability. The study provides a promising algorithm for
the structural optimization.
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Introduction

The engineering structure optimization can improve the

design quality, shorten the design cycle, and cut down

the engineering cast (Cai et al. 2011; Gandomi, Yang

2011). The traditional structure optimization algo-

rithms are mainly classified into the mathematical

programming (MP) algorithms and the mechanics

criterion (MC) algorithms. The former requires the

complex analysis, and for multi-variable optimization

problems, it needs large amount of computation, which

limits its use in large complex engineering structure

design optimization. Though the MC has clear concepts,

it is not stable because it easily falls into premature

convergence with the increase of iterations (Huang,

Meng 2009; Šešok, Belevičius 2008; Wang et al. 2002b).

How to solve the problem and provide novel

methods for the structures optimization are urgent

questions for researchers and engineers. Up to date,

lots of works have been done on this, by the attention

and efforts of researchers in corresponding fields,

many algorithms and models were proposed (Hadidi

et al. 2011; Hagishita, Ohsaki 2009; Kaveh, Talatahari

2010, 2011, 2012; Kaveh et al. 2008; Sonmez 2011;

Takada 2012; Talatahari et al. 2012; Wang, Ohmori

2012; Xia et al. 2013; Zhou, Gao 2012). In some

degree, all these studies give rise to the structural

optimization, but we still have a long way to go. This

has signified the need for the related study.

According to this, a new method � the improved

PSO algorithm � was introduced to solve the problem.

As a population-based stochastic approach for solving

continuous and discrete optimization problems, espe-

cially the complicated combinational optimization

problems, the particle swarm optimization (PSO)

algorithm, proposed by Reeves (1983), is a new swarm

intelligence technique, inspired by the social behavior

of bird flocking or fish schooling. In PSO, simple

software agents, called particles, move in the search

space of an optimization problem. The position of a

particle represents a candidate solution to the optimi-

zation problem at hand. Each particle searches for

better positions in the search space by changing its

velocity according to rules originally inspired by

behavioral models of bird flocking.
Within the field of computer graphics, the first

antecedents of PSO can be traced back to the work of

Reeves (1983), who proposed particle systems to

model objects that are dynamic and cannot be easily
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represented by polygons or surfaces. Examples of such

objects are fire, smoke, water, and clouds. In these

systems, particles are independent of each other and

their movements are governed by a set of rules. Then,

Reynolds (1987) used a particle system to simulate the

collective behavior of a flock of birds. In a similar kind

of simulation, Heppner and Grenander (1990) in-

cluded a roost that was attractive to the simulated

birds. Both models inspired the set of rules that were

later used in the original PSO algorithm. Then, PSO

was introduced by Kennedy and Eberhart (1995).

They pointed out that the rules which govern the

movement of the particles in a problem’s search space

can also be seen as a model of human social behavior

in which individuals adjust their beliefs and attitudes

to conform with those of their peers. It has roots in the

simulation of social behaviors, in particular the

dynamic theory of social impact (Kennedy 2006;

Nowak et al. 1990), using tools and ideas taken

from computer graphics and social psychology re-

search.

The PSO algorithm is simple and easy to under-

stand, and it has the higher search efficiency with

occupying fewer programming resources. With these

advantages, PSO finds a number of applications in the

areas of optimization, including the unconstrained,

single-objective optimization problems and con-

strained problems, multi-objective optimization pro-

blems, and problems with dynamically changing

landscapes. To date, there have been hundreds of

publications reporting applications of PSO algorithms

(Poli 2008; Zhang, Zhan 2009). But, like other popula-

tion-based stochastic approaches, the biggest bottle-

neck of limiting its application is the premature

convergence. By the attention and efforts of researchers

in corresponding fields, PSO algorithm is improved and

expanded based on the initial model (Bu et al. 2010; Li

et al. 2009; Reng, Li 2008; Tang et al. 2009; Zhou et al.

2011). Although the improved PSO algorithm’s perfor-

mance is improved comparing with the basic algorithm,

there still exists the drawback of easily to premature

convergence (Shi, Eberhart 2001; Wang et al. 2002a; Xie

et al. 2011). Here, we proposed an improved PSO based

on chaos theory and metropolis criteria, and introduced

it to the optimization of the shape of space truss.

Engineering practice and comparison with the other

algorithms showed its efficiency.

The rest of the paper is organized as follows.

First, the attention was paid to the modification of the

algorithm after the brief introduction of the basic

knowledge of PSO. In the following part, application

study and performance comparison with other algo-

rithms on the structural optimization were introduced

and the advantage of the improved algorithm was

analyzed.

1. Improvement of basic PSO algorithm

1.1. Basic knowledge of PSO algorithm

The PSO algorithm is a global stochastic search

algorithm by simulating the nature of birds’ activ-

ities and swarm intelligence. Particles, with no size

and quality, always maintain two performances

expressed by vectors in the search process, one is

the speed expressed by ~vj
i ¼ ½v1

i ; v
2
i ; . . . ; vn

i �, the other
is the position expressed by ~xj

i ¼ x1
i ; x

2
i ; . . . ; xn

i½ �.
The speed vector represents the search direction of

the flight, and position vector is the location of the

solution in the search process. Each particle can

maintain its own history optimal position Hbest and

global optimal position vector Gbest in flight process.

The velocity and location updating rules are as

follows:

~vj
i ¼ w�~vj

i þ c1 � rand
j
1 � ðHbesti

j �~xj
iÞ þ c2 � rand

j
2�

ðGj
best �~x

j
iÞ; ð1Þ

x
j
i ¼ x

j
i þ v

j
i; (2)

where i is the number of a particle, n is the dimension

of the problem solved, j is the number of routine

generation, w is the inertia weight, c1 and c2 are

acceleration coefficients, rand
j
1 and rand

j
2 are the

random numbers in the range of [0, 1].

1.2. Improvement of initial population

The basic PSO has the shortcoming of premature

convergence, which is related to the quality of the

initial population. Here, the idea of random direction

was employed to produce high-quality initial popula-
tion to ensure that the algorithm can find the optimal

solution and avoid stagnating while the normal

particles are in the search midway. The procedure

producing high-quality initial population is as follows:

Step 1: Determining the initial search space according

to the problem to be solved:

S ¼
Yn

i¼1

xi min; xi max½ �: (3)

Step 2: Initializing of the number of an individual

in the population j�1 and selecting a random

position xj in the search space as base position.
Step 3: Initializing array X (k) for storing

population individuals and k is the total number of

individuals in the population.

Step 4: Producing a random vector~vj in the given

search space.
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Step 5: Producing individual xjþ1 ¼ xj þ~vj in

sequence.

Step 6: Comparing xj�1 with xj to judge whether

they are beyond the search space, if xj�1 is better than

xj, xj�1 is reserved, j�j�1 and return to Step 5.

Otherwise, return to Step 4 until the particle is

generated which meets the terminate conditions.

1.3. Parameters improvement of PSO algorithm

Improvement of inertia parameter w

The process of birds searching for food in the nature is

a continuous learning procedure. With the increase of

searching time, their experience and the ability of

acclimatization increases rapidly. It can be controlled

by adjusting w. In Shi and Eberhart (2001), w was set

to a constant and the abilities of the population study

and environment sensitivity were ignored. Although

then some scholars proposed linear w, they still ignore

other constrains. Here, the accelerations of explora-

tion experience and environmental suitability were

considered to adjust parameters dynamically. w was

defined as a nonlinear variable. In the early search

phase, particles should fly with the lower speed around

the initial position to avoid destroying the optimal

value found. In the later search period, the particles

should fly with rapid speed away from the initial

position to explore the solution space as much as

possible. We define w as follows:

w ¼ ðwini � wendÞ �
gmax � g

gmax

 !2

þwend ; (4)

where wini and wend represent initial and final inertia

weight value, respectively, g is the value of current

iteration times and gmax is the maximum iterating

times.

Improvement of acceleration factors c1 and c2

The velocity direction of individual is incessantly
changing with the surrounding environment changing.

Here, the fuzzy reasoning was employed to adjust the

acceleration coefficients adaptively. In the early search

process, the flight direction should be adjusted con-

stantly for obtaining a high acceleration factor. In the

middle search process, the acceleration factors should

be moderate. In the later process, acceleration factor

should be small because of the larger flight rate. The
acceleration factors adjusted by the fuzzy reasoning

can make proper adjustment according to the experi-

ence and environment which can help the algorithm to

find the better solution. The acceleration factors

improved by fuzzy reason membership functions are

shown in the (5) equation:

where c is a constant between [2, 3], wmin is the

minimum inertia weight according to experts’ experi-

ence and wmax is the maximum inertia weight accord-

ing to experts’ experience.

1.4. Improvement based on metropolis criteria

As a conversion function in the simulated annealing

algorithm, the metropolis criteria can ensure the

algorithm to jump out of local optimal solutions

and possibly find the global optimal solution. PSO

algorithm only accepts better solution position but

ignores the bad solution positions having potential to

find the global optimal solution, which makes the

algorithm easily fall into premature convergence. By

employing the metropolis criteria, PSO algorithm can

accept some bad solutions, which improves its perfor-

mance. The steps of the improved PSO algorithm are

as follows.

Step 1: Initialization. According to the given

problem, determine the value of space dimension n,

inertia weight wini, wend, wmin and wmax, acceleration

factor c, the number of a routine population k and

other parameters. Then, produce initial population

according to the former section of ‘‘Improvement of

initial population’’.

Step 2: Judge whether the algorithm should stop

searching according to the fitness value fit(i). If the

terminate condition is met, stop searching, otherwise,

go to Step 3.

Step 3: Remember the history optimal position

Hbest of every individual and global optimal position

vector Gbest of all particles.

Step 4: Producing next new generation popula-

tion.

Step 5: Calculating the fitness value fit(j)k�1 of

the new population and comparing with their parent’s

fit(j), if fit(j)k�1�fit(j)k, the new generation will

c1 ¼ c2 ¼ c
wmin � w

wmin � wend
wend � w � wmin

c1 ¼ c2 ¼ c
wmin � w

wmin � wend
þ 2� w� wmaxð Þ

wmax � wmin
þ w� wmin

wini � wmin

� �
wminBw � wmin þ wmax

2

c1 ¼ c2 ¼ c
wmax � w

wmax � wend
þ 2� ðwmax � wÞ

wmax � wmin
þ w� wmin

wini � wmin

� �
wmin þ wmax

2
Bw � wmax

c1 ¼ c2 ¼ c
w� wmax

wini � wmax
wmaxBw � wini

;

8>>>>>>>><
>>>>>>>>:

(5)
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replace their parents, or else calculate the acceptable

probability of the new population according to the

following metropolis criterion:

pðgÞ ¼ exp� fitðjÞ � fitðiÞ
g

� �
: (6)

Step 6: Producing a random number rand (0,1), if

P (g)Frand (0,1), replace their parents with the new

generation, or else return to Step 2.

In order to validate the efficiency of the improved

PSO we proposed, we employed it to optimize two

typical functions with multiple extreme values and

compared the results with the original PSO algorithm.

The two chosen functions with different characteris-
tics are the Girewank function and Rastrigrin function

shown in Figures 1 and 2. The reason we chose the

two functions is that both they have multiple local

minima and their optimization quality is easier to

examine. The parameters are as follows: wini�0.9;

wend�0.2; wmax�0.7; wmin�0.4; c�2; gmax�30 and

n�20. Because the algorithms are stochastic, in order

to overcome the shortage that taking results of

different numerical experiments would show comple-

tely different results, the comparison was based on a

number of numerical experiments.

The comparison results based on 20 numerical

experiments were shown in Table 1 and the average

convergence curves were shown in Figures 3 and 4.

Through the results above, we know that the

improved PSO algorithm can find the optimal of both

functions. It performs better than the original PSO

algorithm. From the average convergence curves, we

see that the improved algorithm is obviously faster

than the basic algorithm in finding the optimal

solution. In Figure 3, the improved algorithm needs

10 iterations, yet the original PSO needs to circulate 18

iterations to find the solution. From Figure 4, we

observe that the original PSO algorithm is difficult to

jump out of the multiple local peaks. The improved

algorithm can easily jump out the local optimal

solution and find the global optimal solution.

Through the above comparison, we know that

the performance of the algorithm has been improved

and it can be employed to solve the structure shape

optimization problems.

2. Engineering practice

In order to verify the efficiency of the improved PSO

in truss structure optimization design, we employed it

to solve the problem of truss structure shape optimi-

zation shown in Wang et al. (2002a).

The initial shape of the selected 37-bar plane

truss structure is shown in Figure 5. Suppose that the

position of lower chord panel points keeps without

change, the upper panel points can move in the

vertical direction and the structure remains symme-

trical in the optimization. The load on the bottom

chord node is P �10 kN. The vertical direction

displacement of the 10th node is restricted to [0, 10]

mm. The minimum cross-sectional area is 50 mm2,

elastic modulus of the material is E �210 GPa,

material density is r�7800 kg/m3 and the allowable

stresses of all bars are restricted to [�240, 240] Pa.

Fig. 1. Griewank function

Fig. 2. Rastrigin function

Table 1. Comparison of original PSO algorithm and the improved PSO algorithm on Girewank function and Rastrigrin

function

Test outcome value

Function Function name Formulas Original PSO Improved PSO

f1 Girewank f ðxÞ ¼ 1
4000

Pn
i¼1

x2
i �

Qn
i¼1

cos
xiffi

i
p þ 1 0.3172 0.0000

f2 Rastrigrin
f ðxÞ ¼

Pn
i¼1

x2
i � 10cosð2pxiÞ þ 10½ � 9.1205 0.0001
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Before the application of the improved PSO, we

set up the following mathematical model:Objective

function:

min W ¼ q
Xn

i¼1

Aili þ kM: (7)

Stress constraint conditions:

rmin �
FNi

Ai

� rmax: (8)

Displacement constraint condition:

XFNi � FLi � li

E � Ai

� Dmax: (9)

The optimized node displacement constraint condi-
tions:

X min
j � Xj � X max

j

Y min
j � Yj � Y max

j ;
j ¼ 1; 2; . . . ;mð Þ

8<
: (10)

where W represents the structure quality; M is multi-

plied by a penalty; l is a punish factor, if the optimized

variables satisfy the restriction condition, its value

equals to zero, or else, it is 1. Ai and li i ¼ 1; 2; � � � ; nð Þ
represent the cross-sectional area and length of the

ith bar, respectively. FNi is the calculated axial force on

ith bar; smin and smax represent the minimum and
maximum of stress of bar, respectively; FLi is an axial

force in ith bar resulting from a positive unit load; E is

the value of material elastic modulus; Dmax is the

maximum displacement value; Y min
j and Y max

j repre-

sent the minimum and maximum displacement of the

jth optimized node in the Y direction, respectively.

The improved PSO was used to solve this

problem and the parameters selected are as follows:
the particles number PN �25, the maximum iteration

times INT �1000, the acceleration parameter c �2

the inertial weight coefficients: wini�1.0; wend�0.2;

wmin�0.4, and wmax�0.8. Numerical simulation

shows under these values of coefficients, the algorithm

performs best. To keeping symmetry in the process of

the truss structure optimization, the position optimi-

zation variables are

½A1;A3;A5;A7;A9;A11;A13;A15;A17;A19;A21;A23;A25;

A27;A29;A31;A33;A35;A37;Y3;Y5;Y7;Y9;Y11�
T

and the design variables are shown in Table 2.

Combined with finite element method (FEM), the

improved PSO was employed to the optimization and

the programs were written in Matlab7.1 language.

Fig. 3. Average convergence curve for Griewank function

Fig. 4. Average convergence curve for Rastrigin function

Table 2. Symmetric groups of bars and nodes

Symmetric bars 1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16 17, 18 19, 20

Optimized bars 1 3 5 7 9 11 13 15 17 19

Symmetric bars 21, 22 23, 24 25, 26 27 28, 29 30, 31 32, 33 34, 35 36, 37

Optimized bars 21 23 25 27 29 31 33 35 37

Symmetric nodes 1, 20 2, 18 3, 19 4, 16 5, 17 6, 14 7, 15 8, 12 9, 13 10, 11

Optimized nodes 3 5 7 9 11

3

3

2

28

P P P P P P

10×1m

P P P

30 32 34 36 37
10

35 33 31 29

4 6 8 12x
y

14 16 18 20

µm

5 11 17 23
27

24

22 16 10 4
2618 12

9 15 21
1

1

7 7 95 13 19 25 11 26 13 20 15 14 17 8 19

Fig. 5. Shape of the 37-bar plane truss before optimization
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The optimized results of structure quality are

shown in Table 2 and convergence curve is shown in

Figure 6. And the final optimization shape is shown in

Figure 7.

In Figure 6, the convergence curve shows that in

the early searching process, the objective function is

around 1000 kg which is approximately 15 times of the

optimal solution. And the iterations account for a little

over one percent of the total, which means the random

direction algorithm can obviously produce the high-

quality initial population. The curve has no stagnation

in the first 600 iterations, and this is made possible

because of the dynamic adjustment by fuzzy system. In

all search process, the curve shows concussion adjust-

ment phenomenon, which is due to the function of the

embedded metropolis criterion.
Then, the results were compared with the results

obtained from Tang et al. (2009) and Wang et al.

(2002a). The comparison was shown in Tables 3 and 4.
From Table 3, we know that the displacement of

the tenth node is 9.93 mm in the Y direction, which

meets the displacement constraint conditions. The

total quality of the optimized structure is 69.27 kg,

which is better than the outcome of Tang et al. (2009)

and Wang et al. (2002a). The improved PSO we

proposed has the better global search performance

with the stronger ability to jump out the local optimal

solution.

Figure 7 shows that the optimized truss shape is

an arch that can decompose the vertical load to

horizontal direction and reduce the stress concentra-

tion effect. This is more reasonable than the original

trapezoid shape according to the mechanical knowl-

edge. From Table 4, we see that both the mean and

Fig. 6. Convergence curve of the algorithm we proposed for

the 37-bar structure optimization

Fig. 7. Optimized shape of the 37-bar plane truss
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standard deviation of the stress obtained by our

algorithm are smaller than the results of Tang et al.

(2009). Although the mean stress we obtained is bigger

than results of Wang et al. (2002a), the displacement

of the latter is 2.23 mm and quality is 105.2 kg which

are too conservative. The above analysis shows that

improved PSO we proposed performs better than the

other two algorithms. Engineering practice also veri-

fies the applicability of the results we obtained.

Conclusions

It is theoretically and practically significant to study

the algorithms for the structure optimization. In order

to overcome the shortcoming of the premature con-

vergence in the common algorithms, we proposed a

novel PSO and introduced it to the shape optimization

of a truss structure. The application and comparison

with other algorithms show that the new approach

using combination of stochastic direction algorithm,

fuzzy system, and metropolis criterion has significant

implementation advantages over the earlier techni-

ques. This study provides a promising method for the

structure optimization.
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