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Abstract. Permeation grouting is a widely used technique for soil improvement in construction engineering. Thus, pre-

dicting the results of the grouting activity is a particularly interesting topic that has drawn the attention of researchers both 

from the academic field and industry. Recent literature has indicated that artificial intelligence (AI) approaches for grouta-

bility prediction are capable of delivering better performance than traditional formula-based ones. In this study, a novel AI 

method, evolutionary Least Squares Support Vector Machine Inference Model for groutability prediction (ELSIM-GP), is 

proposed to forecast the result of grouting activity that utilizes microfine cement grout. In the model, Least Squares Sup-

port Vector Machine (LS-SVM) is a supervised machine learning technique that is employed to learn the decision bounda-

ry for classifying high dimensional data. Differential Evolution (DE) is integrated into ELSIM-GP for automatically opti-

mizing its tuning parameters. 240 historical cases of grouting process for sandy silt soil have been collected to train, 

validate, and test the inference model. Experimental results demonstrated that ELSIM-GP can overcome other benchmark 

approaches in terms of forecasting accuracy. Therefore, the proposed approach is a promising alternative for predicting 

groutability. 

Keywords: groutability prediction, least squares support vector machine, differential evolution, machine learning,  

artificial intelligence. 

 

Introduction 

In construction industry, soil improvement by means of 

permeation grouting is a process that is often carried out to 

reduce the water movement through soils (Zebovitz et al. 

1989). Particularly for underground construction, inflow of 

groundwater has always been a critical issue for engineers 

(Butron et al. 2009). Incidents of inflow can bring about 

construction delay, and even cause serious damages for the 

quality of structures. As a consequence, permeation grout-

ing is a crucial task that is needed to be accomplished in a 

majority of excavation and tunnel projects. 

Among the grouts used for permeation grouting, 

microfine cement has been increasingly applied in the 

industry. The reason is that it usually provides improved 

groutability of the target geomaterial and it does not cause 

groundwater pollution in surrounding environment (Perret 

et al. 2000; Zebovitz et al. 1989). Furthermore, the micro-

fine cement based grout is proven to have the capacity of 

filling cracks with small openings as well as penetrating 

fine soils with very low permeability (Perret et al. 2002).  

Noticeably, grouting activity is considered to be 

successful if the grout can be sufficiently injected into the 

soil. According to Liao et al. (2011), the grouting activity 

succeeds if the injected grout is at least two times the 

volume of the void space under the split pressure. In 

practice, an accurate prediction of this activity using 

microfine cement is by no means an easy task (Akbulut, 

Saglamer 2002). It is because the suitability of conven-

tional predictive formulas, which are mostly based on the 

grain-size of the soil and the grout, is unreliable for semi-

nanometer scale grout (Liao et al. 2011). Furthermore, 

the grain-size is not the sole factor that affects the con-

sequence of the grouting process. 

Various research works have investigated grouting 

predictability. Akbulut and Saglamer (2002) and Ozgurel 

and Cumaraswamy (2005) found that in addition to the 

size of the soil and the grout, the water-to-cement ratio of 

the grout (w/c), the void size in soil, and the fines content 

(FC) of the total soil should be taken into account (Akbu-

lut, Saglamer 2002). Liao et al. (2011) pointed out that 

inclusion of soil gradation information, namely the co-

efficient of uniformity (Cu), which measures the particle 

size range, and the coefficient of gradation (Cz), which 

characterizes the particle size curve, can boost the overall 

predictive performance. Needless to say, it is beneficial to 

take into account these factors for estimation of the grou-

ting process (Tekin, Akbas 2011). 

Because construction projects are highly uncertain 

and inherently context-dependent, artificial intelligence 

(AI) methods may provide viable alternatives for grouta-

bility prediction problem. The inference model, which 
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composes of various AI techniques, can be utilized to 

derive new facts from historical data (Cheng, Wu 2009). 

The inference process changes adaptively in response to 

alteration in historical data. Used nomenclature is presen-

ted in Figure 1. 

 
w/c Water-to-cement 

ratio of the grout 

γ  The regularization 

constant 

FC The fines content 

(FC) of the total soil 
k

α
 The Lagrange multi-

pliers 

Cu Coefficient of 

uniformity 
)(
k
xφ  A kernel function 

Cz Coefficient of 

gradation 

σ  RBF kernel function 

parameter 

N Number of training 

data 

D Number of decision 

variables  

xk Input data point NP Population size 

yk Class label g Current generation of 

DE 

ek LS-SVM prediction 

error 
0,i

X  Decision variable at 

the first generation 

w The normal vector 

of the hyperplane 
gr

X
,

 A randomly chosen 

vector 

b The bias of the 

hyperplane 
gi
V

,

 A mutant vector 

Uj,i,g+1 The trial vector F Mutation scale factor 

Cr Crossover probabil-

ity 

Gmax Maximum number of 

generations 

Xo Original data value Xmax
 

Maximum value of a 

data field 

Xmin
 

Minimum value of 

a data field 

Xn Normalized data 

value 

RTR The accuracy rate 

for training set 

RVA The accuracy rate for 

validating set 

Fig. 1. Nomenclature 

 

Notably, the problem of groutability prediction, in 

essence, can be modeled as a classification task that con-

tains two class labels (“success” and “failure”). Therefo-

re, AI based classifiers, such as Classification and Regre-

ssion Trees (CART), Artificial Neural Network (ANN), 

and Least Squares Support Vector Machine (LS-SVM) 

can be feasible in coping with the aforementioned prob-

lem. The main motivation of selecting CART, BPNN, 

RBFNN, and LS-SVM is that they are popular and e-

ffective approaches for classifying data in high dimensio-

nal space (Brown et al. 1993; Olson et al. 2011). 

Furthermore, these techniques represent different learning 

mechanisms that can be worth investigating in the case of 

groutability prediction. 

CART (Breiman et al. 1984) is a popular machine 

learning technique which utilizes historical data to const-

ruct decision trees. One major advantage of the decision 

tree based model is its ability to mitigate the negative 

effect of outliers because the model is capable of isolating 

the outliers in a separate node. However, one disadvanta-

ge of CART is that it may produce unstable decision trees 

(Timofeev 2004). The reason is that insignificant modifi-

cation of learning sample could result in radical changes 

in the model. Moreover, as a replacement of stopping 

rules, CART generates a sequence of sub-trees by 

growing a large tree and pruning the tree back until only 

the root node is left (Loh 2011). 

Artificial Neural Network (ANN) has been applied to 

deal with groutability prediction as well as with other prob-

lems in construction industry (Chen et al. 2009; Kalinli 

et al. 2011; Liao et al. 2011; Tekin, Akbas 2011). This 

approach eliminates the requirement to find a mapping 

relationship that mathematically describes the problem of 

interest. Studies have shown that ANN is a viable substitu-

tion for traditional deterministic methods in coping with 

sophisticated problems (Cheng et al. 2010; Wong et al. 

1997). When the influence factors and the structure of 

ANN are all specified, the task boils down to collecting a 

reasonable number of data to train the ANN. There are two 

types of ANN that are commonly utilized for classification: 

Back-propagation Neural Network (BPNN) and Radial 

Basis Function Neural Network (RBFNN).  

The implementation of BPNN for solving machine 

learning tasks is exposed to several drawbacks. This 

method suffers difficulties in selecting a large number of 

controlling parameters such as number of hidden layers, 

number of neurons in a hidden layer and learning rate 

(Bao et al. 2005). Notably, the training process of BPNN 

is notoriously time-consuming. Furthermore, one major 

disadvantage of this approach is that its training process 

is achieved through a gradient descent algorithm on the 

error space, which can be very complex and may contain 

many local minima (Kiranyaz et al. 2009). Thus, training 

process is likely to be trapped into a local minimum and 

this definitely hinders the forecasting performance. 

RBFNN is also an efficient learning algorithm for 

carrying out pattern classification. In this learning mecha-

nism, radial basis functions (RBF) are embedded into the 

network structure (Pendharkar 2011). The training process 

of RBFNN comprises of two stages which can be accomp-

lished with low computational expenses (Bishop 1995). In 

the first stage, an unsupervised learning algorithm, such as 

the orthogonal least squares (OLS) method, is used to de-

termine a suitable set of RBF centers from a large set of 

training data points (Chen et al. 1991). The second stage 

requires the determination of the network’s weights which 

is achieved by solving a linear system. Notably, for this 

approach, back-propagation computation is not required in 

specifying the parameters of the hidden layer (Liao et al. 

2011). Therefore, RBFNN can be trained much faster than 

BPNN (Bishop 1995; Wu, Liu 2012). 

Proposed by Suykens et al. (De Brabanter et al. 

2010; Suykens et al. 2002), LS-SVM is an advanced 

machine learning technique which possesses many ad-

vanced features reflected in its good generalization and 

fast computation. In LS-SVM’s training process, a least 

squares cost function is proposed to obtain a linear set of 

equations in the dual space. Consequently, to derive the 

solution, it is required to solve a set of linear equations 

that can be efficiently solved by iterative methods such as 

conjugate gradient (Wang, Hu 2005). Despite of its supe-

riority, the application of this approach in construction 

engineering is still very limited. Surprisingly, no studies 

have investigated the capability of LS-SVM on predicting 

the groutability. 

Furthermore, the mechanism for setting models’ 

control parameters is an important problem in the field of 



Journal of Civil Engineering and Management, 2014, 20(6):  839–848 

 

841 

AI. This crucial issue has been widely recognized by 

many scholars in a variety of disciplines (Cheng et al. 

2011; Lean et al. 2009; Zhou et al. 2011). In practice, 

identifying the most suitable set of model’s parameters, in 

essence, represents an optimization problem. Therefore, 

hybridizing the AI based techniques with an evolutionary 

optimization algorithm is a prevalent research direction 

(Cheng, Roy 2011; Cheng, Wu 2009; Yu 2011).  

Evolutionary computation is characterized by itera-

tive progresses used to guide the randomly initialized 

population to the final optimal solution. Among evolutio-

nary optimization techniques, DE, proposed by Storn and 

Price (Price et al. 2005), is a population-based stochastic 

search engine which is efficient and effective for global 

optimization in the continuous domain. It uses mutation, 

crossover, and selection operators at each generation to 

move its population toward the global optimum. Superior 

performance of DE, in terms of accuracy and fast opera-

tion, has been verified in many reported research works 

(Price et al. 2005; Storn, Price 1997). 

Thus, this article proposes to fuse LS-SVM and DE 

to construct an inference model for groutability prediction 

using microfine cement. The remaining part of this paper 

is organized as follows. The second and the third sections 

of this paper review related literature on LS-SVM and 

DE. The framework of the proposed model ELSIM-GP is 

depicted in the fourth section. The fifth section demonst-

rates the experimental results. Conclusion on our study is 

mentioned in the final section. 

 

2. Least Squares Support Vector Machine for 

classification 

Given a training dataset 
1

{ , }Nk k k
x y

=
 with input data 

n
k
x R∈  where N is the number of training data points, n 

is the data dimension, and the corresponding class labels 

is denoted as { 1, 1},
k
y ∈ − + the LS-SVM formulation for 

classification is presented as follows (Suykens et al. 

2002; Suykens, Vandewalle 1999): 

Minimize 2

1

1 1
( , )

2 2

N
T

p k
k

J w e w w e

=

= + γ ∑ , (1) 

Subjected to ( ( ) ) 1T
k k k
y w x b eϕ + = − , 1,...,k N= , (2) 

where nw R∈ is the normal vector to the classification 

hyperplane and Rb∈  is the bias; ke R∈  are error varia-

bles; 0γ >  denotes a regularization constant. 

The Lagrangian is given by: 

1

( , , ; ) ( , )

{ ( ( ) ) 1 },

p

N
T

k k k k

k

L w b e J w e

y w x b e
=

α = −

α ϕ + − +∑
 (3) 

where: kα  are Lagrange multipliers; ( )kxϕ  represents a 

kernel function. The conditions for optimality are given 

by: 

1

1

0 ( )

0 0

0 , 1,...,

0 ( ( ) ) 1 0, 1,... .

N

k k k

k

N

k k

k

k k

k

T
k k k

k

L
w y x

w

L
y

b

L
e k N

e

L
y w x b e k N

=

=

 ∂
= → = α ϕ

∂

∂ = → α =

∂

∂

= → α = γ =∂
 ∂

= → ϕ + − + = =∂α

∑

∑

 

(4) 

After elimination of e and w, the following linear 

system is obtained: 

 
0

y



 1

Ty

I−




ω + γ 

b 
 
α 

=
0

1v

 
 
 

, (5) 

where 
1
,...,

N
y y y= ,1 [1;...;1]

v
= , and 

1
[ ;...; ]

N
α = α α . 

And the kernel function is applied as follows: 

 ( ) ( ) ( , )T
i j k l i j k ly y x x y y K x xω = ϕ ϕ = . (6) 

The resulting LS-SVM model for function estima-

tion is expressed as: 

 
1

( ) ( ( , ) )
N

k i k l

k

y x sign y K x x b
=

= α +∑ ,  (7) 

where kα  and b are the solution to the linear system (5). 

The kernel function that is often utilized is Radial Basis 

Function (RBF) kernel. Description of RBF kernel is 

given as follows: 

 

2

2
( , ) exp( )

2

k l

k l

x x
K x x

−

=

σ

, (8) 

where σ  is the kernel function parameter.  

In the case of the RBF kernel, there are two tuning 

parameters ( , )γ σ  that are needed to be determined in  

LS-SVM. The regularization parameter )(γ  is used to 

weight the importance of classification errors. Meanwhi-

le, the kernel parameter ( )σ  affects the kernel width. It is 

worth noticing that proper setting of these tuning parame-

ters is required to ensure desirable performance of the 

prediction model (Suykens et al. 2002).  

 

3. Differential evolution 

This section describes the algorithm of Differential Evo-

lution (DE) proposed by Storn and Price (Price et al. 

2005; Storn, Price 1997). The algorithm (Fig. 2) consists 

of five main stages: initialization, mutation, crossover, 

selection, and stopping condition verification. Given that 

the problem at hand is to minimize a cost function f(X), 

where the number of decision variables is D, we can de-

scribe each stages of DE in details. 
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Fig. 2. Differential Evolution optimization algorithm 

 

3.1. Initialization 

DE begins the search process by randomly generating NP 

number of D-dimensional parameter vectors ,i gX , where 

i = 1, 2, …, NP and g represents the current generation. In 

DE algorithm, NP does not change during the optimiza-

tion process (Storn, Price 1997). Moreover, the initial 

population (at g = 0) ought to cover the entire search 

space in a uniform manner. Thus, we can simply generate 

these individuals as follows: 

 ,0 [0,1] ( )
i

X LB rand UB LB= + × − , (8) 

where: ,0iX  is the decision variable i at the first genera-

tion; rand[0,1] denotes a uniformly distributed random 

number between 0 and 1. LB and UB are two vectors of 

lower bound and upper bound for any decision variable. 

 

3.2. Mutation 

A vector in the current population (or parent) is called a 

target vector. Hereafter, the terms parent and target vector 

are used interchangeably. For each target vector, a mutant 

vector is produced via the following equation (Storn, 

Price 1997): 

 , 1 1, 2, 3,( )i g r g r g r gV X F X X
+
= + − ,  (9) 

where: r1, r2, and r3 are three random indexes lying be-

tween 1 and NP. 1,r gX , 2,r g
X  , and 3,r g

X  are three ran-

dom vectors in the current generation g. These three ran-

domly chosen integers are also selected to be different 

from the index i of the target vector. F denotes the muta-

tion scale factor, which controls the amplification of the 

differential variation between 2,r g
X  and 3,r g

X . , 1i gV
+

 

represents the newly created mutant vector. 

 

3.3. Crossover 

The purpose of the crossover stage is to diversify the 

current population by exchanging components of target 

vector and mutant vector.  In this stage, a new vector, 

named as trial vector, is created. The trial vector is also 

called the offspring. The trial vector can be formed as 

follows: 

, , 1

, , 1

, ,

, ( )

, ( )

j i g j

j i g

j i g j

V if rand Cr or j rnb i
U

X if rand Cr and j rnb i

+

+

 ≤ =
= 

> ≠
, (10) 

where: Uj,i,g+1 is the trial vector; j denotes the index of 

element for any vector; randj is a uniform random num-

ber lying between 0 and 1; Cr is the crossover probabil-

ity, which is needed to be determined by the user. rnb(i) 

is a randomly chosen index of {1,2,..., }NP  which guar-

antees that at least one parameter from the mutant vector 

(Vj,i,g+1) is copied to the trial vector (Uj,i,g+1). 

 

3.4. Selection 

In this stage, the trial vector is compared to the target 

vector. If the trial vector can yield a lower objective func-

tion value than its parent, then the trial vector replaces the 

position of the target vector. The selection operator is 

expressed as follows: 

, , ,

, 1

, , ,

( ) ( )

( ) ( )

i g i g i g

i g

i g i g i g

U if f U f X
X

X if f U f X
+

 ≤
= 

>

,  (11) 

where: Xi,g denotes the target vector in generation g; Xi,g+1 

represents the target vector in the next generation g+1;   

Ui,g is the trial vector. 

 

3.5. Stopping criterion verification 

The optimization process terminates when the stopping 

criterion is met. The type of this condition can be speci-

fied by users. Commonly, maximum generation (Gmax) or 

maximum number of function evaluations (NFE) can be 

used as the stopping condition. When the optimization 

process terminates, the final optimal solution is readily 

presented. 
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4. Evolutionary Least Squares Support Vector 

Machine Inference Model for Groutability Prediction 

(ELSIM-GP) 

This section describes the proposed model, named as 

ELSIM-GP, in detail. The model (Fig. 3) is established by 

a fusion of LS-SVM and DE. ELSIM-GP employs  

LS-SVM as the supervised learning algorithm for learning 

the decision boundary for carrying out classification task. 

Furthermore, the model incorporates the DE for automati-

cally identifying the optimal values of tuning parameters. 

The construction of the prediction model is dependent on 

two tuning parameters: the regularization parameter (γ) and 

the RBF kernel parameter (σ).  

 

 

Fig. 3. Evolutionary Least Squares Support Vector Machine 

Inference Model for Groutability Prediction (ELSIM-GP) 

 

(1) Input Data: The historical database used in this 

article contains 240 on-site permeation grouting data 

samples collected by Liao et al. (2011). 192 data cases 

are used for training (80%) and validating (20%). 

Meanwhile, 48 data cases are used for testing. All of the 

grouting activities were executed in the cities of Taipei 

and Kaohsiung, Taiwan. A mixture of microfine cement 

and micro-slag in equal proportions was utilized as the 

injected grout. The diameters through which 95%, 90%, 

and 85% of the total grout passes are 7.4 µm, 6.4 µm, and 

4.5 µm, respectively. Moreover, the diameter through 

which 70% of the total grout passes is less than 1 µm. 

Thus, the grout is considered to be semi-nanometer mate-

rial. 

According to the previous research (Liao et al. 

2011; Tekin, Akbas 2011), utilizing only the grain-size 

ratio of the soil to predict the groutability is not able of 

completely describing the behavior of the grouting me-

chanism. Furthermore, experimental results have indica-

ted that using other parameters, including the w/c, the e, 

the FC, the Cz and the Cu can deliver superior prediction 

performance in both training and testing cases (Liao et al. 

2011). Hence, in the current study, seven influencing 

factors (Table 1) are considered to determine the outcome 

of the grouting activity. 

 

 

Table 1. Influencing factors (IF) of historical data 

Factors Description Notation 

IF1 The diameter through which 10% of 

the total soil mass passes 

D10  

(µm) 

IF2 The diameter through which 15% of 

the total soil mass passes 

D15 

(µm) 

IF3 Void ratio e 

IF4 The fines content of the total soil mass FC (%) 

IF5 The coefficient of gradation Cz 

IF6 The coefficient of uniformity  Cu 

IF7 Water-to-cement ratio of grout w/c 

 
Table 2. Descriptive statistics of historical data 

Factors Notation Max. Min. Mean Std. Dev. 

IF1 D10 (µm) 85 0.1 20.07 20.83 

IF2 D15 (µm) 125 0.2 32.01 27.54 

IF3 e 1.04 0.35 0.71 0.13 

IF4 FC (%) 99.6 6.9 41.67 29.94 

IF5 Cz 27.84 0.02 2.44 2.42 

IF6 Cu 581.82 2.11 26.38 63.12 

IF7 w/c 4.65 3.34 4* 0.53 

* Median. 

 

Moreover, in this research, the grout size is not ta-

ken into account as an influencing factor. It is because 

previous researches have demonstrated that the perfor-

mance of AI based approaches is not affected by the size 

of the grouts (Liao et al. 2011; Tekin, Akbas 2011). 

Furthermore, for each data case, the corresponding output 

is either +1, which means that the grouting is successful, 

or –1, which indicates unsuccessful grouting. Table 2 

provides descriptive statistics of the influencing factors of 

the historical data.  

Before the training the model, the data set has been 

normalized into a (0, 1) range which helps prevent the 

situation in which inputs with greater magnitudes domi-

nate those with smaller magnitudes. The historical data is 

illustrated in Table 3. The function used for normalizing 

data is shown as follows: 

 min

max min

o

n

X X
X

X X

−

=

−

,  (12) 

where: Xn is the normalized data; Xo is the original data; 

Xmax and Xmin denote the maximum and minimum values 

of the data, respectively. 

 
Table 3. Historical data for groutability prediction 

Case IF1 IF2 IF3 IF4 IF5 IF6 IF7 Y* 

1 0.03 0.03 0.03 0.04 0.61 0.78 1.00 –1 

2 0.02 0.02 0.04 0.02 0.74 0.97 1.00 –1 

3 0.07 0.09 0.03 0.09 0.49 0.35 0.50 –1 

… … … … … … … … … 

238 0.11 0.14 0.01 0.18 0.61 0.39 0.50 –1 

239 0.25 0.25 0.01 0.08 0.42 0.22 0.50 +1 

240 0.14 0.22 0.01 0.14 0.51 0.25 0.50 +1 

* Desired outputs. 



 M.-Y. Cheng, N.-D. Hoang.  Groutability prediction of microfine cement based soil improvement... 

 

844 

(2) Tuning Parameter Initialization: The aforemen-

tioned tuning parameters of the model are randomly ge-

nerated within the range of lower and upper boundaries 

(Table 4). 

 
Table 4. Ranges of ELSIM-GP’s tuning parameters 

Tuning parameter Notation LB* UB** 

Regularization parameter γ 0.001 10000 

Kernel function parameter σ 0.001 1000 

* Lower bound; ** Upper bound. 

 

(3) LSSVM Training: In this step, LS-SVM is dep-

loyed to learn the decision boundary to separate input 

data into two classes of groutability (–1 and +1).  

(4) DE searching: At each generation, the optimizer 

carries out the mutation, crossover, and selection pro-

cesses to guide the population to the optimal solution.  

(5) Fitness evaluation: In ELSIM-GP, in order to 

determine the optimal set of tuning parameters, the 

following objective function is used in the step of fitness 

function evaluation:  

 
1

fitness
TR VA

F
R R

=
+

, (13) 

where: RTR denotes the accuracy rate of classification for 

training set; RVA represents the accuracy rate of classifica-

tion for validating set. The accuracy rate of classification 

is calculated as the number of correct classification divid-

ed by the number of all data instances within a data set. 

(6) Stopping condition: The DE’s optimization pro-

cess terminates when the maximum number of generation 

is achieved. 

(7) Optimal prediction model: When the program 

terminates, the optimal set of tuning parameters has been 

successfully identified. The ELSIM-GP is ready to pre-

dict new input patterns. 

 

5. Experimental result 

As stated earlier, ELSIM-GP uses 192 data cases for 

training as well as validating and 48 data cases for test-

ing. This means that 20% of historical data is reserved for 

testing process. However, due to the randomness in se-

lecting testing cases, the evaluation of model error can be 

biased (Bishop 2006). To avoid such issue, the whole 

dataset is divided into five subsamples in which each 

subsample in turn serves as testing cases; and the model 

performance can be appraised via average predictive 

results of the five subsamples. 

The process depicted above is the k-fold cross vali-

dation which is commonly used for model selection. In 

this process, the value of k is an unfixed parameter and it 

depends on the size of the data set at hand (Geisser 1993). 

For a large data set, even a small value of k (e.g. 3) can 

bring about relatively accurate result. Reversely, for a 

very sparse data set, a leave-one-out validation should be 

utilized in order to have as many training data as possible. 

In general, with a large number of data folds, we can 

obtain a very good estimate of model performance. Ne-

vertheless, the computational expense can be very costly 

especially for hybrid intelligence model like ELSIM-GP. 

Thus, it is beneficial to choose a value of k that can both 

estimate the model performance fairly and necessitate an 

acceptable computing effort. Arlot (2010) suggested that 

the number of folds should be between 5 and 10 because 

the statistical performance does not improve much for a 

larger one. Additionally, previous studies showed that  

5-fold cross validation can bring about reliable estimates 

of prediction error (Breiman et al. 1984; Burman 1989). 

Thus, considering the efficiency and the effectivity 

in evaluating model prediction performance, 5-fold cross 

validation is utilized. The whole data set, which includes 

240 instances, is randomly separated into five folds. In 

each run, one data fold serves as testing set and the rest of 

the data folds are used for training the model (Fig. 4). 

Since all of the subsamples are mutually exclusive, this 

approach can diminish the bias in model assessment and 

can estimate the generalization property of each model. 

After the training process, the proposed model, 

ELSIM-GP, is utilized to predict new input patterns from 

the testing data set. Furthermore, in order to verify the 

capability of ELSIM-GP, its performance is compared to 

results obtained from other benchmark approaches: 

Classification and Regression Trees (CART), Back-

propagation Neural Network (BPNN), and Radial Basis 

Function Neural Network (RBFNN). 

In the learning process, CART (Breiman et al. 1984; 

Loh 2011) dissipates the data into two subsets so that the 

records within each subset are more homogeneous than in 

the previous subset. Therefore, the algorithm operates by 

choosing a split at each node such that each sub-node 

created by the split is more pure than its parent node (Be-

vilacqua et al. 2003). Herein, purity refers to similarity of 

values of the target field. CART measures the impurity of 

a split at a node by defining an impurity measure. Since 

groutability prediction is a classification problem, Gini’s 

diversity index is chosen in this study for measuring im-

purity. Another parameter that controls the tree structure 

is the tree depth. This parameter can be determined via 

the pruning algorithm (Timofeev 2004; Vega et al. 2009). 

When using BPNN, it is needed to specify the 

number of hidden layers, the number of neurons in the 

hidden layer, and the learning rate (Samarasinghe 2006). 
 

 
Fig. 4. Illustration of 5-fold cross validation 
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These parameters of BPNN are selected via repetitive 

trial-and-error processes. The network configuration is 

described as follows: the number of hidden layers is set to 

be 1; the number of neurons in the hidden layer is 14; and 

the learning rate is 1; and the number of training epochs 

is selected to be 2000. 

 
Table 5. Comparison of classification accuracy (%) 

Model Fold 1 2 3 4 5 Avg. 

ELSIM- 

GP 

Train  95.3 97.9 97.9 93.2 94.3 95.7 

Test 97.9 93.8 93.8 93.8 95.8 95.0 

RBF- 

NN 

Train 96.4 94.3 93.2 94.8 94.8 94.7 

Test 91.7 85.4 85.4 95.8 95.8 90.8 

CART 

Train 98.4 96.4 97.9 96.4 96.9 97.2 

Test 91.7 89.6 87.5 91.7 91.7 90.4 

BPNN 

Train 93.8 92.7 93.8 93.2 91.2 92.9 

Test 89.6 91.7 87.5 93.8 85.4 89.6 

 

For RBFNN, there are several parameters needed to 

be specified: the number of center points, the center loca-

tions, and the standard deviation of the RBF. Herein, the 

utilized RBF is the Gaussian function. In our study, at the 

first stage, the orthogonal least squares (OLS) method is 

used to determine the number and the locations of centers 

(Chen et al. 1991). The second stage requires the deter-

mination of the network’s weights which is achieved by 

solving a linear system (Liao et al. 2011).  

 

Table 5 provides the prediction results for ELSIM-GP 

as well as other approaches. Average prediction outcomes 

of RBFNN (90.83%), BPNN (89.58%), and CART 

(90.42%) are less accurate than that of ELSIM-GP (95%). 

CART seems to suffer the problem of over-fitting since it 

fits the training set very well, but performs poorly on the 

new data set. Noticeably, all of the three benchmark mo-

dels have testing results in which classification rates are 

below 90%. This, to some degree, indicates unstable per-

formances of these models. 

Meanwhile, the average classification accuracy ac-

quired from ELSIM-GP for training and testing sets are 

95.73% and 95%, respectively. It can be observed that the 

proposed model has successfully overcome the issue of 

over-fitting since it yields relatively balanced performan-

ces between training and testing data sets. Notably, in the 

third fold, the accuracy rate for testing data can reach 

roughly 98%. Furthermore, predictive results obtained by 

ELSIM-GP of all data folds surpass 90%. These results 

demonstrate that the newly proposed approach is capable 

of delivering accurate predictive performance. The classi-

fication result of ELSIM-GP for one testing data fold is 

shown in the Table 6. 

 

Conclusions 

This paper has presented a new prediction model, named 

as ELSIM-GP, to assist construction engineers in assessing 

the possibility of a grouting process which utilizes micro-

fine cement. The proposed model was developed by a 

fusion of LS-SVM and DE. ELSIM-GP utilizes LS-SVM 

to classify high dimensional input data so that the model 

can make prediction whenever a new input pattern is avail-

able. Meanwhile, DE searching algorithm is implemented 

to identify the most appropriate tuning parameters.  
Table 6. Classification result of ELSIM-GP 

IF1 IF2 IF3 IF4 IF5 IF6 IF7 YA YP 

1 0.22 0.24 0.01 0.08 0.55 0.26 0.00 +1 +1 

2 0.18 0.22 0.02 0.09 0.41 0.22 1.00 +1 +1 

3 0.21 0.28 0.02 0.07 0.42 0.18 0.50 +1 +1 

4 0.65 0.96 0.01 0.09 0.17 0.05 1.00 +1 +1 

5 0.35 0.47 0.01 0.06 0.39 0.14 0.50 +1 +1 

6 0.11 0.13 0.02 0.13 0.57 0.28 1.00 +1 +1 

7 0.03 0.03 0.03 0.04 0.61 0.78 1.00 –1 –1 

8 0.21 0.30 0.01 0.12 0.38 0.19 1.00 +1 +1 

9 0.92 0.70 0.00 0.02 0.45 0.01 1.00 +1 +1 

10 0.03 0.06 0.28 0.13 0.46 0.26 1.00 –1 –1 

11 0.33 0.33 0.01 0.06 0.48 0.17 1.00 +1 +1 

12 0.07 0.09 0.03 0.10 0.59 0.32 1.00 –1 –1 

13 0.01 0.01 0.06 0.02 0.72 0.95 0.50 –1 –1 

14 0.03 0.07 0.13 0.22 0.48 0.30 0.00 –1 –1 

15 0.01 0.04 0.19 0.47 0.36 0.38 0.00 –1 –1 

16 0.21 0.26 0.01 0.12 0.46 0.22 0.50 +1 +1 

17 0.27 0.33 0.01 0.09 0.42 0.19 0.50 +1 +1 

18 0.01 0.01 0.14 0.03 0.88 0.98 1.00 –1 –1 

19 0.94 0.86 0.01 0.04 0.32 0.02 1.00 +1 +1 

20 0.08 0.09 0.02 0.09 0.57 0.34 0.50 –1 –1 

21 0.12 0.15 0.01 0.24 0.51 0.44 1.00 –1 –1 

22 0.98 0.84 0.01 0.03 0.32 0.00 0.50 +1 +1 

23 0.06 0.06 0.02 0.11 0.43 0.63 1.00 –1 –1 

24 0.22 0.25 0.01 0.10 0.54 0.20 0.50 +1 +1 
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Continued Table 6 

IF1 IF2 IF3 IF4 IF5 IF6 IF7 YA YP 

25 0.02 0.02 0.02 0.01 0.90 0.99 1.00 –1 –1 

26 0.02 0.02 0.07 0.05 0.32 0.86 0.50 –1 –1 

27 0.01 0.01 0.08 0.01 0.86 0.99 1.00 –1 –1 

28 0.56 0.57 0.01 0.05 0.41 0.10 0.50 +1 +1 

29 0.15 0.23 0.01 0.11 0.55 0.26 0.50 +1 +1 

30 0.72 0.64 0.01 0.03 0.39 0.07 0.50 +1 +1 

31 0.28 0.39 0.00 0.09 0.39 0.19 0.50 +1 +1 

32 0.15 0.22 0.01 0.14 0.52 0.22 1.00 +1 +1 

33 0.59 0.61 0.00 0.04 0.33 0.09 0.50 +1 +1 

34 0.01 0.01 0.10 0.02 0.93 0.99 0.50 –1 –1 

35 0.86 0.66 0.00 0.02 0.33 0.04 0.50 +1 +1 

36 0.60 0.56 0.00 0.03 0.43 0.11 1.00 +1 +1 

37 0.11 0.14 0.01 0.18 0.61 0.39 0.50 –1 –1 

38 0.84 0.72 0.01 0.03 0.29 0.04 1.00 +1 +1 

39 0.56 0.58 0.01 0.04 0.36 0.09 0.50 +1 +1 

40 0.08 0.06 0.02 0.12 0.59 0.63 1.00 –1 –1 

41 0.16 0.25 0.01 0.14 0.49 0.21 0.50 +1 +1 

42 0.40 0.50 0.00 0.06 0.25 0.13 0.50 +1 +1 

43 0.03 0.02 0.02 0.01 0.87 0.98 1.00 –1 –1 

44 0.15 0.22 0.01 0.14 0.58 0.32 0.50 +1 +1 

45 0.19 0.24 0.01 0.08 0.54 0.23 0.50 +1 +1 

46 0.08 0.09 0.02 0.18 0.55 0.31 0.50 +1 –1 

47 0.22 0.27 0.01 0.11 0.48 0.20 1.00 +1 +1 

48 0.85 0.70 0.01 0.02 0.27 0.04 0.50 +1 +1 

Note: YA – actual output; YP – predicted output. 

 

Since ELSIM-GP is a hybrid intelligence model, the 

approach can be quite complex for practical engineers. 

However, considering that permeation grouting is a 

complicated process and predicting its outcome is by no 

means an easy task. Therefore, it is very challenging to 

construct a simple model that yields highly accurate fore-

casting performance.  

Although the proposed model is complicated to es-

tablish, ELSIM-GP has the advantage of operating auto-

nomously because the model does not require any exper-

tise in parameter setting. Model tuning parameters are all 

determined by DE. Hence, with more effort on software 

engineering, a user-friendly interface can be integrated 

into the model, and this enables ELSIM-GP to be a pro-

mising tool for practical engineers for dealing with grou-

tability prediction problem. 

In the current study, the soil type which is subjected 

to permeation grouting is sandy silt soil. Although simu-

lation results have demonstrated that ELSIM-GP can 

deliver superior forecasting accuracy for this type of soil, 

more historical cases in which the targeted objects of the 

grouting process involve different soil types should be 

incorporated to enhance the generalization of the pre-

diction model.   

Additionally, if another type of microfine grout is 

applied, the characteristics of the grouting process can be 

changed. Hence, the current inference model may en-

counter difficulty in groutability forecasting. The reason 

is that geotechnical engineering is inherently uncertain 

and highly complex. Thus, it is required to collect new 

observations and to construct new prediction models by 

training processes. Nevertheless, the procedure of col-

lecting new data cases are of great effort and time-

consuming. Hence, we would like to consider this to be a 

promising future research direction. 
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