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Abstract. Parametric vibrations can be observed in cable-stayed bridges due to periodic excitations caused by a deck or a 

pylon. The vibrations are described by an ordinary differential equation with periodic coefficients. The paper focuses on 

random excitations, i.e. on the excitation amplitude and the excitation frequency which are two random variables. The ex-

citation frequency 
L
ω  is discretized to a finite sequence of representative points, 

i,Lω . Therefore, the problem is (condi-

tionally) formulated and solved as a one-dimensional polynomial chaos expansion generated by the random excitation 

amplitude. The presented numerical analysis is focused on a real situation for which the problem of parametric resonance 

was observed (a cable of the Ben-Ahin bridge). The results obtained by the use of the conditional polynomial chaos ap-

proximations are compared with the ones based on the Monte Carlo simulation (truly two-dimensional, not conditional 

one). The convergence of both methods is discussed. It is found that the conditional polynomial chaos can yield a better 

convergence then the Monte Carlo simulation, especially if resonant vibrations are probable. 

Keywords: stochastic dynamics, parametric vibrations, Hermite’s polynomial chaos, Monte Carlo simulation. 

 
Introduction 

A dangerous phenomenon of parametric resonances can 

be observed among others in bridge cables during a 

strong wind gusts and sometimes due to a traffic load. It 

happens due to periodic movements of a cable support, 

which are usually caused by deck or rarely by pylon vi-

brations. There are several well-documented case studies 

in which parametric vibrations were observed in bridge 

cables, like Guazu Bridge in Argentina, Belgian bridges – 

Ben-Ahin and Wandre, Annacis Bridge in Canada, Faro 

Bridge in Denmark, Helgoland Bridge in Norway, Eras-

mus Bridge (Netherlands), Burlington (USA) or Second 

Severn Crossing (GB) Bridges. In each of the reported 

cases, the amplitude of vibrations increased exponential-

ly; that is a very specific feature of parametric resonant 

vibrations which allows to distinguish this phenomenon 

from typical resonant vibrations with the amplitude in-

creasing linearly (in absence of damping). Therefore, 

parametric resonant vibrations are much more dangerous 

than standard load-excited resonances. Moreover, para-

metric vibrations appear usually when an excitation fre-

quency is near to doubled eigenfrequency – the instability 

zone is the largest in that case (Nayfeh, Mook 1995).  

Relevant case studies of structures and the observed 

parametric vibrations are presented in Caetano (2007), 

Lilien and Pinto Da Costa (1994), Royer-Carafangi 

(2003). The presented paper focuses on a linear differen-

tial equation with random periodic coefficients. The 

Hermite-type polynomial chaos expansion is supported 

by the stochastic projection method (the Galerkin appro-

ach) and is implemented to a case of two input random 

variables. The convergence of results is presented in a 

context of the Monte Carlo simulation. 

 

1. Polynomial chaos approximation – theoretical 

background, literature review 

Generally, probabilistic analyses can be classified into 

two categories: methods using a statistical approach and 

methods based on a non-statistical approach. The statisti-

cal approach includes first of all the widely used Monte 

Carlo simulation (MC). Statistical methods are easy to 

implement but sometimes – in cases of complicated 

mathematical models – not efficient. Therefore, research 

effort has been made in developing non-statistical meth-

ods, like for instance perturbation techniques, usually 

addressed to “small uncertainties”. Ghanem and Spanos 

proposed an innovative approach called polynomial chaos 

method (PC) and applied it successfully to various prob-

lems of mechanics (Ghamen, Spanos 1991); it is a situa-

tion where a stochastic process with finite variance can be 

presented in form of infinite convergent series, based on 

polynomials of standard Gaussian variable ξ (with zero 

mean value and standard deviation equal to 1).  

The PC method separates stochastic components 

from deterministic ones for both – input data and random 

solutions. Random components of solutions can be calcu-

lated independently from the deterministic ones. If a ran-

dom variable is a parameter taken into consideration, it 
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can be expressed as a series of polynomials of the stan-

dard Gaussian variable (or variables) with series coeffi-

cients which are real numbers. For stochastic processes, 

the series of polynomials of the standard Gaussian variab-

le are similar as for random variables, but the coefficients 

are time-dependent functions. The same is true for ran-

dom fields but the coefficients are position- and/or time-

dependent. Clearly, some regularity conditions are requi-

red for both data and solutions, usually not restrictive in 

engineering applications. 

The year 1991 – when Ghanem and Spanos applied 

the PC in conjunction with the finite element method 

(Ghamen, Spanos 1991) – was the turning point in the 

method development. In recent years, the PC method has 

been applied to a wide spectrum of stochastic problems, 

for instance to the theory of elasticity and plasticity 

(Ghamen, Spanos 1991; Anders, Hori 1999), stochastic 

dynamics (Ghanem, Spanos 1993; Sarkar, Ghanem 

2002), wave propagation in random media (Manolis, 

Karakostas 2003), stochastic Stokes equations (Qu, Xu 

2013) or sensitivity analysis (Sudret 2008; Crestaux et al. 

2009; Blatman, Sudret 2010). In the mentioned examples, 

the application of the PC expansion presents the evidence 

of a good calculation efficiency. It refers also to relatively 

large random fluctuations, far beyond the scope of the 

simplest perturbation techniques. The success of this 

approach yields also from a conjunction with the Galer-

kin approximation, i.e. the best (least square) approxima-

tion in abstract Hilbert spaces. 

Traditionally (Ghamen, Spanos 1991), the PC repre-

sentations are based on the Hermite polynomials of the 

standard Gaussian variable ξ. However, in the case of 

complex nonlinear problems and non-Gaussian distribu-

tions of the input data or the system response, it is better 

to replace the Hermite polynomials by a more suitable 

function base. If the input data is very close to the Gaus-

sian random variable then the linear approximation (with 

only two terms) can be accepted but the response expan-

sion is usually much longer; and opposite, a change of the 

function base can simplify the response approximation 

though the simple Gaussian input will have a less accura-

te polynomial approximation. In other words, the “opti-

mal” selection of the function base is problem-dependent. 

The so called generalized polynomial chaos expansions 

are addressed by Xiu and Karniadakis (2002a, 2002b, 

2003), Le Maitre et al. (2004) and others. In recent years, 

the generalized polynomial chaos was successfully ap-

plied to solve the problems of diffusion and heat flow 

(Xiu, Karniadakis 2002a, 2003), or problems connected 

with interaction between structure and fluid (Xiu, Kar-

niadakis 2002b; Lucor, Karniadakis 2004), etc.  

Recently, a new insight into the background of the 

PC method was presented by Wan and Karniadakis 

(2005, 2006). The authors formulate a so called multi-

element generalized polynomial chaos method to deal 

with long-term integration and discontinuities in stochas-

tic differential equations. On the other hand, Blatman and 

Sudret proposed the so called sparse polynomial chaos 

approach (Blatman, Sudret 2010, 2011). To decrease the 

computational cost of classical PC schemes in the case of 

large size of the input random vector, the authors presen-

ted a method that builds a sparse PC expansion.  

 

2. Fundamentals of the polynomial chaos 

approximation 

2.1. A stochastic scalar product 

Consider a sequence of uncorrelated random variables 

)(γ
k

B , which have zero expected values and finite vari-

ances: 0)](E[ =γ
k

B , +∞<)]([Var γkB , for 

+∞≤= nk ...,,2,1 , and assume that 1const
0

==B . It is 

a well-established fact that the expected value operator 

E[.]  defines a scalar product .,.  as follows: 

[ ]jiji BBBB ⋅= E,
def

. The lack of correlation yields the 

orthogonality condition of the random variables )(γ
k

B , 

i.e. 0, =ji BB , if and only if ji ≠ . 

A special selection of random variables )(γ
k

B , 

which introduce the stochastic basis, makes it possible to 

expand every finite-variance random variable )(γX  in a 

series (Ghamen, Spanos 1991): 

 ( ) ( )γγ  
0

∑ ⋅=
∞≤

=

n

k
kk

BaX , (1) 

where: ,][E
0

aX =  

( )

2

0

1 1

2

1 1 1

Var[ ] E [( ) ] E

, , .

n n

i i j j
i j

n n n

i j i j k k k
i j k

X X a a B a B

a a B B a B B

= =

= = =

   
  = − = ⋅ ⋅ ⋅ = 
        

⋅ ⋅ = ⋅ < +∞

∑ ∑

∑∑ ∑

 

2.2. The stochastic projection method 

The stochastic projection method is the best mean-square 

approximation based on the distance defined by the scalar 

product. Usually, explicit form of the random variable X 

is unknown thus it is recommended to use its approxima-

tion )(m
X  in the form of the finite expansion (1), so for 

.∞≤< nm  

It is a general fact that the best mean-square  

m-dimensional approximation of X coincides with  

m-truncation of the orthogonal expansion (1). Indeed, for:  

 ∑ ⋅=
=

m

k
kk

m
BX

0

)(
α , (2) 

the mean-square distance:  

( ) ( ) ( )XXXXXX
mmm

−−=
)()(

def
)(

,,d  

can be calculated from the following expression: 
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( ) ( )

( )

2 2( )

0

2

1

d , ,

, min,

m
m

k k k k

k

n

k k k

k m

X X a B B

a B B

=

= +

= α − ⋅ +

⋅ →

∑

∑

  (3) 

which becomes minimal just for 
kk
a=α , 

+∞≤<= nmk ...,,2,1,0 . 

 

2.3. The Hermite polynomials of the Gaussian random 

variable 

The traditional Hermite polynomials Hek(x) of the real 

variable x are orthogonal with the standard Gaussian 

density )(xϕ  taken as the weight function: 

( )2

He ( ) He ( ) ( )d

1/ 2 He ( ) He ( ) exp / 2 d ! ,

i j

i j ij

x x x x

x x x x i

+∞

−∞

+∞

−∞

⋅ ⋅ =

⋅ ⋅ − = ⋅

∫

∫

φ

π δ

  (4) 

where ijδ  is the Kronecker delta for 0, ≥ji . 

The formula (4) is a simple prototype for the sto-

chastic orthogonality condition, if the stochastic basis is 

introduced as ( )( )γξγ
kk

B He)(
def

=  where )1;0(N∈ξ , i.e. 

ξ is a standard Gaussian random variable, 0][E =ξ , 

1][Var =ξ . This happens because – by definition – for 

such stochastic basis: 

def

( ), ( ) E ( ) ( )

E He ( ) He ( ) He ( ) He ( ) ( )d .

i j i j

i j i j

B B B B

x x x x

+∞

−∞

 = ⋅ = 

 ⋅ = ⋅ ⋅  ∫

γ γ ξ ξ

ξ ξ φ

 (5) 

Estimation of the approximation error (and the con-

vergence rate) is strongly influenced by the weight 

function )(xϕ . The stochastic Hermite approximation is 

reliable for “small” values of ξ  and is less reliable for 

“large” fluctuations – which are, however, less probable 

in case of the random variable N(0; 1)ξ ∈ . 

 

3. Application of the polynomial chaos approximation 

A PC-implementation is presented for a differential equa-

tion with periodic coefficients which yields from the 

equation of motion.  

 

3.1. Equation of motion of a bridge cable with 

stochastic excitation 

Transversal vibrations w(x,t) of a cable, i.e. in the  

y-direction in Figure 1, due to a vertical kinematic excita-

tion ∆(t), are the physical prototype of the mathematical 

model. In the considered example the excitation is ap-

plied only in form of kinematic  excitation  with  in-plane 

 

Fig. 1. Bridge cable displacement due to deck movements )(t∆  

 

components. For that case, only in-plane cable vibrations 

occur. That is why only a two-dimensional dynamic prob-

lem is considered in the paper. The equation of motion 

(6) is derived in Brzakala (2013): 

2 2 2

st 2 2 2
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d
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d
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d
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c m

t t
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 ∂ ∂ 

 ∂ ∂ 
 ⋅ + ⋅ + ⋅  ∂ ∂  

 ∂
∆ ⋅ ⋅ + − 

 ∂ 

∂ ∂
⋅ − ⋅ =

∂ ∂

∫

θ

 (6) 

where: E – the Young modulus of the cable; P – cross-

sectional area of the cable; m – cable mass per unit 

length; wc  – damping coefficient for the transversal vi-

brations ξω ⋅⋅⋅=
1

2 mc
w

; 
1
ω – natural eigenfrequency for 

the first symmetric mode of the cable in the transverse 

direction, for small values of the Irvine parameter it can 

be assumed as ,

1
mSl ⋅= πω  like for the taut string 

(Irvine 1981; Caetano 2007); ξ  –  fraction of the critical 

damping; z(x) – assumed function of a sag for the in-

clined cable in case of the static load (dead weight of the 

cable as well as an initial tension force) 

( ))/(1)/()2/(cos)( 2 lxlxSlgmxz −⋅⋅⋅⋅⋅⋅= θ  (Zhou 

et al. 2006); S – is an initial tension force in the cable; 

st
H  – static component of an axial force in the cable (in 

x-direction), const.
st

== SH ; g – is the gravity constant 

2
/81.9 smg = . 

The kinematic excitation )cos()(
L
tt ω⋅∆=∆  is the 

reason of periodic changes of coefficients. Position-

dependent function z(x) and Hst are known (pre-defined). 

The solution w(x,t) is assumed in the separated variables, 

see Georgakis and Taylor (2005), as the following ap-

proximation: 

 ( ) ( ) ( ) ./cos)()/(sin,
2

lxtlxtwtxw ⋅⋅∆+⋅⋅= θπ  (7) 

The second component in the formula (7) can be also 

assumed as a linear function, not the parabolic one 
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(El Ouni, Ben Kahla 2012). However, Georgakis and Tay-

lor propose the parabolic approximation which involves 

the sag changes due to a deck movement (Georgakis, Tay-

lor 2005). Note that both concepts are approximate. 

The single degree of freedom model is considered 

because for cables with a small sag, excited only para-

metrically, it is impossible to get complex vibrations, i.e. 

the ones consisting of several forms; so called combina-

tion resonance does not appear (Takahashi 1991). Se-

lection of the excitation frequencies should be such that 

the parametric vibrations with the first form appear. They 

are close to the doubled first eigenfrequency (Nayfeh, 

Mook 1995). To get other forms of vibrations, higher 

excitation frequencies are necessary. 

Probabilistic analyses of the random response of the 

system due to random fluctuations of the kinematic exci-

tation (two random variables ∆  and 
L

ω ) are the objecti-

ve of the paper. The PC expansion and the MC simula-

tion are applied to solve this problem. 

Practically justified cases of small displacements are 

considered, so nonlinear terms in equation of motion are 

neglected. Due to the approximation (7) the equation of 

motion (6) for the point located in the middle of the cable 

span, 2/lx = , can be written in form of the following 

ordinary differential equation: 

( )

2

1 22

2 3

3 4 5 6

2
2

7 8 9 102

d d
( ) ( )

dd

( ) ( ) ( ) ( )

d d
( ) ( ) ( ) ( ) 0,

dd

S w t S w t
tt

S S t S t w t S t

S t S t S t S t
tt

⋅ + ⋅ +

+ ⋅∆ + ⋅∆ ⋅ + ⋅∆ +

⋅∆ + ⋅ ∆ + ⋅ ∆ + ⋅∆ =

 (8) 

where: )cos()(
L
tt ω⋅∆=∆  is a kinematic excitation due 

to the deck movement; Si – ten deterministic constants 

depending on geometrical or material parameters of the 

cable: 

,

1
mS =  ,

2 w
cS =  

,/cos637.0/
222222

3
SmgPElSS θπ ⋅⋅⋅⋅⋅+⋅=  

),/(cos191.4/sin
2232

4
SlmgPElPES ⋅⋅⋅⋅⋅⋅−⋅⋅⋅= θπθ

,/cos126.9
42

5
lPES θ⋅⋅⋅=  

,/cos333.1
43

6
lPES θ⋅⋅⋅−=

,/sincos2)/(cos
323

7
lPESlmgPES θθθ ⋅⋅⋅⋅−⋅⋅⋅⋅⋅=

,cos250.0
8

θ⋅⋅−= mS ,cos250.0
9

θ⋅⋅−=
w
cS

10

2 2 3 2 2

cos sin / ( )

0.167 cos / 2 cos / .

S E P g m S l

E P g m S S l

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

θ θ

θ θ

 

 

3.2. Example – deterministic and random variables 

The deterministic input parameters are presented in Ta-

ble 1.  

Only positive values of the excitation amplitude and 

positive frequencies are possible, that is why the two-

dimensional log-normal probability distribution is assu-

med. It is assumed that the dimensionless random variab-

les lY /
1

∆= , 
1L2

/ωω=Y  are not correlated. The Y2  

domain taken into consideration is truncated to finite 

values – from zero to the tripled expected value of the 

variable instead of the whole positive part of the Y2-axis. 

Having in mind this truncation, the value of the total pro-

bability equals 0.9999 which can be assumed as 1. The 

values of Y1 are not truncated. Note that the coefficients 

of variation µσ /  equal 0.3 thus they are not small. 

 
Table 1. Deterministic characteristics of the considered  

Ben-Ahin bridge cable (Caetano 2007) 

Length l [m] 110.5 

Cross-sectional area P [cm2] 82.6 

Initial tension force S [kN] 4900 

Maximal sag zo [m] 0.099 

Mass per unit length m [kg/m] 64.8 

The Young modulus E [GPa] 210 

First eigenfrequency 
1
ω  [rad/s] 7.818 

Angle between cable chord and deck θ [ o ] 60 

The Irvine parameter λ  0.0727 

 

Assumed characteristics of the random log-normal 

variables lY /
1

∆=  [%] and 
1L2

/ωω=Y [-] are as 

follows: 

− mean values
1y

µ , 
2y

µ : respectively 2.280 and 

0.051, 

− standard deviations
1y
σ , 

2y
σ : 30% of each mean 

value. 

Due to (8), the solution )(tw  depends on the sto-

chastic process ),()( γtt ∆∆ = . Therefore, the maximal 

in-plane displacement of the cable (in the middle of the 

cable span) becomes also a stochastic process, 

),()( γtwtw = . Deterministic Eqn (8) is linear but it is 

nonlinear from the stochastic point of view. Random 

parameters are present in the function of the kinematic 

excitation as well as in the solution w(t), but not in any 

explicit form. 

The analysis uses conditional probability distribu-

tions and conditional moments assuming a sequence of 

deterministic values of kinematic excitation frequencies 

iL,ω . For each fixed 
iL,ω , the amplitude of kinematic 

excitation ∆  is the only one random variable which is 

considered. It means that Eqn (8) is solved repeatedly for 

discretized values of the excitation frequencies 
iL,ω . 

Making use of the one-dimensional solutions and their 

(conditional) probability distributions, random solution of 

the bi-variate stochastic problem can be found using the 

formula of total probability (or total moments), like 

][P][P][P L,L, ii
AA ωω ⋅∑= . Excitation frequencies 

iL,ω  

for each step are calculated as the probability mass center 

for each selected sub-domain (zone). There are 10 se-

lected zones with the same probability 1.0=p . The idea 

of this partition is presented in Figure 2, in a simplified 

case of three zones.  
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Fig. 2. Example: Y2-partition of the density function region into 

three vertical zones of equal probabilities lY /1 ∆= , 3/1=p ; 

mass centers are shown for each region (dashed lines) 

 

Ten coordinates of the right end of the selected zo-

nes (as in Fig. 2 for three zones – black lines) equal: 1.50, 

1.71, 1.87, 2.03, 2.18, 2.35, 2.55, 2.80, 3.19, 6.84. Ten 

coordinates of the mass-center for each selected zone 

(
iL,ω , as in Fig. 2 – dashed lines) equal: 1.31, 1.61, 1.79, 

1.95, 2.11, 2.27, 2.45, 2.67, 2.97, 3.69.  

 

3.3. The polynomial chaos approximation  

of the log-normal random variable 

The input log-normal variable Y1 = ∆/l can be expressed 

in the form of the exponential function: 

 )(exp
111
ξσµ ⋅+=

xx
Y , (9) 

where: ξ  is a standard Gaussian random variable and 

1x
µ ; 

1x
σ  are the mean value and the standard deviation 

of the normal distribution. The parameters 
1x

µ , 
1x

σ  

depend on 
1y

µ , 
1y

σ , so the characteristics of the normal 

distribution ξ  generating the variable Y1 can be ex-

pressed as:  

 ( )( ) .2/)(,/1 2

111

2

11

2

1
lnln

xyxyyx
σµµµσσ −=+=  (10) 

For all fixed values of Y2 (ten zones with the same pro-

bability 1.0=p ), the expansion based on the Hermite poly-

nomials is used to approximate the random variable Y1: 

),(He...)(He)(He
1101

ξβξβξβ
mm

Y ⋅++⋅+⋅≈
∆∆∆

 (11) 

where ,1)(He
0
=ξ  ,)(He

1
ξξ =  ,1)(He 2

2
−= ξξ  etc. 

(Ghamen, Spanos 1991). The coefficients 
i∆

β  are calcu-

lated using the scalar product and the orthogonality of the 

Hermite polynomials: 

1

0

0

1

,He ( ) He ( ), He ( )

! !,

1
,He ( ) ,  = 0, 1,…,                     

!

m

j i i j

i

m

i ij j

i

j j

Y

i j

Y j m
j

∆

=

∆ ∆

=

∆

= ⋅ =

⋅ ⋅ = ⋅

= ⋅

∑

∑

ξ β ξ ξ

β δ β

β ξ

 (12) 

or in the explicit form: 

2

1 1

/2

1 1

1
exp( ),He ( )

!

1 1
exp( ) He ( ) d .

! 2

j x x j

y
x x j

j

y y e y
j

∆

∞

−

−∞

= ⋅ + ⋅ =

⋅ ⋅ + ⋅ ⋅ ⋅∫

β µ σ ξ ξ

µ σ
π

 (13) 

The integration in (13) yields the results 
i∆

β  for the 

parameters 
1x

µ , 
1x

σ : 

4

0
10100.5

−

∆
⋅=β , 4

1
10497.1

−

∆
⋅=β , 5

2
10198.2

−

∆
⋅=β ,

6

3
10150.2

−

∆
⋅=β , 7

4
10578.1

−

∆
⋅=β , 9

5
10266.9

−

∆
⋅=β .  

 

3.4. Solution of the one-dimensional stochastic 

problem 

Since the random input parameter Y1 is in the form of 

(11), the solution is a stochastic process ),( ξtw  approx-

imated as follows: 

.,)(He)()(He)(),(
00

∞<∑ ⋅≈∑ ⋅=
=

∞

=

mtwtwtw

m

i

ii

i

ii
ξξξ  (14) 

Generally, in the m-dimensional subspace, the PC 

expansion leads to the approximate equation resulting 

from (8): 
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t

∆

∆

⋅ +β ⋅ +

+ ⋅ ⋅ = ≈

ξ ξ

β ξ ω ε

 

(15) 

where const
L
=ω . 

In the approximated approach, a random residuum 

m
ε  should be as small as possible. It is assumed that the 

residuum is perpendicular to each base vector of the m-

dimensional subspace, so each scalar product 

)(He, ξε
km

 should be zero for 0,1, ..., .k m=  Note that 

only zero element is perpendicular to all base vectors, so 
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the approximation becomes better if the subspace dimen-

sion m increases. The solution method justifies the term 

“projection” because the approximate solutions belong to 

subspaces spanned on the first m base vectors. 

The multiplication of both sides of Eqn (15) by the 

polynomials )(He ξ
k

 and next the application of the 

expected value operator to both sides of (15) leads to 

)1( +m -dimensional system of ordinary differential equa-

tions (Ghamen, Spanos 1991). In this system, some co-

efficients 
ikmn
e , ikm

e  appear, for example 

)](He)(He)(He[E ξξξ
mkiikm

e ⋅⋅= ; they are natural 

numbers, independent of the considered boundary prob-

lem, and they can be obtained by the use of the Gaussian 

integrals or the MC simulation. The search for the 1+m  

unknown functional coefficients )(tw
i

 can use the stan-

dard Runge-Kutta method of the numerical integration 

available in Mathematica software. Zero initial condi-

tions are assumed in this situation. Finally, the solution of 

the random problem can be assembled by multiplication 

of the obtained functions )(
0
tw , )(

1
tw , …, )(tw

m
 by the 

orthogonal Hermite polynomials, as in (14). 

 

3.5. Solution of the two-dimensional stochastic 

problem 

Bearing in mind the solutions obtained for the one-

dimensional stochastic problem, it is possible to extend 

the analysis to the two-dimensional one where both ∆  

and 
L
ω  are random. From a mathematical point of view, 

such a generalization can use a product-base of the Her-

mite polynomials, like )(He)(He 21ij ξξ jiB ⋅=  where 

two generating Gaussian variables are used. Alternative-

ly, a combination of the expansion with a discretization 

can be also effective. For the estimation of first two mo-

ments, the following expression yield from the total 

probability formula: 

 

),(P])([Var)]([Var

),(P])([E)]([E

,L
1

,L

,L
1

,L

i

n

i

i

i

n

i

i

twtw

twtw

ωω

ωω

⋅∑=

⋅∑=

=

=

 (16) 

where: 
i,Lω is the ith fixed kinematic excitation frequen-

cy taken with a probability )(P ,L i
ω  – here, for ten dis-

cretization points, it is assumed that 

const1.0)P( ,L ==
i

ω ; ])([E ,L i
tw ω  and ])([Var ,L i

tw ω  

are conditional moments. 

 

4. Polynomial chaos expansions – results of the 

numerical calculations  

Eqn (15) is solved 10 times for the ten deterministic val-

ues of 
i L,ω , calculated in Section 3.2. Next, the solution 

for two-dimensional stochastic problem is assembled as 

in (16). The solutions based on the PC expansions are 

compared with the results yielding from the direct MC 

simulation. 

4.1. Results of the one-dimensional stochastic problem 

The amplitude ∆  of the kinematic excitation is assumed 

to be the log-normal random variable, frequencies of the 

kinematic excitation are considered as deterministic val-

ues. Solutions – in the form of the variance – are present-

ed in Figure 3 and Figure 4 for two selected excitation 

frequencies 
L
ω . The first value 

1L
2ωω ≈  corresponds to 

the resonant vibrations (Fig. 3), the second one presents 

stable solutions (Fig. 4). The value of 
1
ω  is constant, 

presented in Table 1. Note that the expected value equals 

)()(He),,(1),,()],([E
00
twtwtwtw === ξξξξ , due 

to (4) and (14) thus it is not sensitive to the length of the 

polynomial chaos expansion (parameter m).  

 

 

Fig. 3. Variance Var[w(t,ξ)] in [m2] of the solution for 

1L
95.1 ωω =  (inside the resonant zone); black line – solution 

for the PC expansion with 6 Hermite polynomials (i ≤ 5); 

dashed line – solution for the polynomial chaos expansion with 

2 Hermite polynomials (i ≤ 1) 

 

 

Fig. 4. Variance Var[w(t,ξ)] in [m2] of the solution for 

1L
61.1 ωω =  (outside the resonant zone); black line – solution 

for the PC expansion with 6 Hermite polynomials (i ≤ 5); 

dashed line – solution for the polynomial chaos expansion with 

2 Hermite polynomials (i ≤ 1) 

 

For some excitation frequencies, a strong amplifica-

tion of vibrations in the time domain appears, i.e. for the 

excitation frequencies close to the doubled natural eigenf-

requency of the cable 
1
ω  (the instability zone). For that 

case the solution based on the 2-term approximation 

strongly differ from the one based on the 6-term ap-

proximation (Fig. 3). 

However, a much better convergence is observed for 

a stable solution (Fig. 4), so the linear stochastic PC ap-

proximation (i ≤ 1) is sufficient but only far away from 

the resonant frequency (Fig. 4). For resonant vibrations, a 

more extended expansion is required, compared to the 

case of stable solutions.  
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4.2. Results of the two-dimensional stochastic problem 

The first two moments of the two-dimensional stochastic 

problem for the random variables 
L
ω  and ∆ are calculat-

ed with the use of (16) according to the pre-selected ten 

values of 
i,Lω .  

The evaluation of the expected value )],([E ξµ tw=  

does not depend on the expansion length m; again, the 

variance convergence rate does depend on m – Figure 5. 

 

 

Fig. 5. Variance Var[w(t,ξ)] in [m2] of the two-dimensional 

stochastic problem; from the black line – solution for the PC 

expansion with 6 Hermite polynomials, to very fair gray line –  

solution for the PC expansion with 2 Hermite polynomials 

 

5. Monte Carlo simulation – validation of the results 

based on the polynomial chaos approximation  

The results of the numerical calculations yielding from 

the PC approximation are checked using the MC simula-

tion for both situations presented in the paragraph 4, i.e. 

for one and two log-normal input variables, respectively. 

The first six Hermite polynomials are used (m = 5).  

 

5.1. Validation of the one-dimensional stochastic 

problem 

For the first case, excitation frequency is far away from 

the resonant zone, so the stable vibrations are analyzed 

for 
1L

31.1 ωω =  (Fig. 6). The second case refers to the 

resonant vibrations, excitation frequency is close to the 

doubled natural frequency of the system, 
1L

11.2 ωω =  

(Fig. 7).  

 

 

Fig. 6. Variance Var [m2] of the solution of the one-dimensional 

problem for stable vibrations; black line – solution obtained 

using the PC expansion with 6 Hermite polynomials; from fair 

gray line – solution obtained using the MC simulation with 10 

simulations to dark gray line – solution obtained using MC 

simulation with 100 simulations 

 

Fig. 7. Variance Var [m2] of the solution of the one-dimensional 

problem for resonant vibrations; black line – solution obtained 

using the PC expansion with 6 Hermite polynomials; from fair 

gray line –  solution obtained using the MC simulation with 100 

simulations to dark gray line –  solution obtained using the MC 

simulation with 20000 simulations 

 

5.2. Validation of the two-dimensional stochastic 

problem 

The variance of the solutions obtained by the use of the 

PC approximation and the MC simulations is presented in 

Figure 8. 

 

 

Fig. 8. Variance Var [m2] of the solution for the two-

dimensional problem; black line – solution obtained using the 

PC expansion with 6 Hermite polynomials; gray line – solution 

obtained using the MC simulation with 20000 simulations 

 

From the qualitative point of view, both solutions 

)(VarVar t=  in Figure 8 reveal the same tendency. For 

both, the PC and the MC results, the variance strongly 

increases in time. Phase shifting between the solutions 

may be caused by the different approaches used for 

describing the random character of the variable 
L
ω , i.e. 

by a discretization technique (a continuous spectrum of 

the excitation frequencies is considered in the MC simu-

lation). 

In the presented example, the PC expansion is more 

efficient (faster) than the MC simulation. A good conver-

gence of the variance is reached for 20000 MC simula-

tions, compared to only 6 polynomials in the PC expan-

sion. For the solutions outside the resonant zone, a better 

convergence of the PC approximation is still more evi-

dent. 

 

Summary and general conclusions 

The parametric vibrations belong to one of the less rec-

ognized parts of the traditional structural dynamics. 

However, the parametric resonance is often reported as a 
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potentially significant danger, mostly in bridge cables. 

The projection method based on the finite dimensional 

polynomial subspace can be an effective alternative to 

popular perturbation methods, the method of moments or 

to the Monte Carlo simulation.  

The presented examples proved that the polynomial 

chaos expansion is more efficient (or simply faster) than 

the Monte Carlo simulation, especially if the resonant 

vibrations appear. Furthermore, the advantage of the po-

lynomial chaos expansion is obvious if the random va-

riables of interest (including the response variables) are 

Gaussian or close to the Gaussian distribution. Indeed, a 

very small number of expansion terms is required, say 

m ∼ 1÷2. On the other hand, the Monte Carlo simulation 

is less insensitive to probability distributions of the input 

variables as well as the increasing number of the input 

random variables. Furthermore, the numerical implemen-

tation of the Monte Carlo simulation is also much easier.  

The used conditional probabilities and conditional 

moments can reduce the dimension of the model (number 

of considered random variables) with no significant loose 

of accuracy. However, the expansion method is also e-

ffective for multidimensional spaces with polynomial 

product bases. Note also that it is much easier to obtain 

results in the form of the probability histograms, by ma-

king use of the pre-calculated deterministic wi(t) and the 

Monte Carlo simulations – applied this time only to 

)(He ξ
i

. 
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