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Abstract. The application of mathematical programming for scheduling preventive maintenance in railways is relatively 
new. This paper presents a stochastic mathematical model designed to optimize and to predict tamping operations in bal-
lasted tracks as preventive condition-based maintenance. The model is formulated as a mixed 0–1 nonlinear program that 
considers real technical aspects as constraints: the reduction of the geometrical track quality over time is characterized by 
the deterioration rate of the standard deviation of the longitudinal level; the track layout; the dependency of the track re-
covery on its quality at the moment of the maintenance operation; the limits for preventive maintenance that depend on the 
maximum permissible train speed. In the model application, a railway stretch with 51.2 km of length is analysed for a time 
period of five years. The deterioration model is stochastic and represents the reduction of the standard deviation of the 
longitudinal level over time. The deterioration rate of the standard deviation of the longitudinal level is simulated by Mon-
te Carlo techniques, considering the three parameters Dagum probabilistic distribution fitted with real data (Vale, Simões 
2012). Two simulations are performed and compared: stochastic simulation in space; stochastic simulation in space and 
time. The proposed condition-based maintenance model is able to produce optimal schedules within appropriate computa-
tional times. 
Keywords: condition-based maintenance model, stochastic deterioration, mixed 0–1 nonlinear programming, Monte Car-
lo technique. 
 

Introduction 
The track quality is guaranteed by performing condition-
based maintenance and renewal actions during the life of 
the track. These actions are of fundamental importance 
not only for the safe and efficient operation of trains on a 
railway track but also for passenger comfort. Preventive 
maintenance increases not only the system reliability but 
also its availability. However to minimize the resulting 
costs, scheduling maintenance operations, such as tamp-
ing, should be defined through  optimization programs, 
because the correct cost estimation and the minimization 
of these operations contribute for the success of the rail-
way project (Baalouska, Çelik 2011). The optimization 
problems may be solved by several types of algorithms. 
Some of them have already been applied for optimizing 
railway timetables, assigning locomotive at a minimal 
operational costs, optimizing networks, assigning extra 
trains on a railway network, etc. (Higgins et al. 1996; 
Rackwitz 2001; Lingaya et al. 2002; Kallen, Noortwijk 
2005; Guan et al. 2006; Rouillon et al. 2006; Noortwijk 
2009; Cacchiani et al. 2010).  

The use of mathematical programming for schedu-
ling preventive maintenance in railway is relatively new; 
however, some contributions on this theme considering 
different types of optimization models (Higgins et al. 
1999; Budai et al. 2006; Oyama, Miwa 2006; Zhao et al. 

2007; Vale et al. 2010) are emerging. Dekker (1996) 
presents an interesting review on applications of mainte-
nance models. Optimization problems can be determinis-
tic or probabilistic depending on the nature of the pro-
blem variables. In the first ones, no randomness or uncer-
uncertainty is considered; in the others the uncertainties 
are taken into account by probabilistic distribution func-
tions. The geometrical rail track deterioration is random 
by nature and it is usual to characterize that deterioration 
by the evolution over time (or tonnage) of several geo-
metrical parameters such as the longitudinal level, the 
alignment, the gauge, the twist and the cross level.  

The use of accurate methodologies for predicting 
the railway deterioration process increases maintenance 
effectiveness (Sadeghi, Askarinejad 2010). Therefore in 
this paper a stochastic mathematical model is designed to 
optimize and to predict tamping operations in ballasted 
tracks as preventive condition-based maintenance. The 
condition-based maintenance model is formulated as a 
mixed 0–1 nonlinear program with a stochastic deteriora-
tion model. An incomplete stochastic deterioration model 
for the longitudinal level (the geometrical parameters that 
most rapidly evolutes over time) is used. This model is 
considered to be incomplete because the data used for 
fitting consists of sparse observations of the deterioration 
process made over short time intervals. 
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1. Model formulation 
The proposed condition-based maintenance model for 
scheduling tamping on ballasted tracks takes into account 
the evolution over time of the track geometrical quality, 
the track layout influence of maintenance scheduling, the 
deterioration process over time, the dependency of the 
track geometrical quality recovery on its initial quality at 
the moment of maintenance operations and also the track 
quality limits that depend on maximum permissible vehi-
cle speed. The track deterioration corresponds to the re-
duction of the standard deviation of the longitudinal level 
over time. The deterioration process is random by nature 
and it can be characterized by the Dagum probabilistic 
distribution as Vale and Simões (2012) illustrate. 

 
1.1. General description 
The main objective of the proposed model is to provide a 
methodology for optimal scheduling of preventive 
maintenance activities in a finite time horizon based on 
the track quality and on technical aspects related to tamp-
ing operations. 

The model seeks an optimal solution corresponding 
to the minimum of the total number of tamping actions M 
on a track for a predefined time horizon. If mij is the bina-
ry variable associated to a preventive maintenance action 
on track segment i and time period j, then the objective 
function takes the form expressed in Eqn (1): 

 
1 1

min
npnt

ij
i j

M m
= =

= ∑∑ , (1) 

where: nt  is the total number of track segments and np, 
the total number of time periods. 

For the mathematical model formulation, some as-
sumptions are taken into account:  

a) the maintenance actions mij correspond to tamping 
operations; 

b) the deterioration rate of the standard deviation of the 
longitudinal level (dij) is represented by a probabilis-
tic distribution fitted with real data; 

c) the irregularities of alignment, cross level, gauge 
and twist are disregarded; 

d) the evolution of the standard deviation of the longi-
tudinal level over time (σij) is defined by Eqn (2): 

 1ij ij ij ij ijd m r
−

σ = σ + − ; (2) 
e) the recovery of the track quality (rij) is linearly de-

pendent on the value of the standard deviation of the 
longitudinal level of the track segment at the time of 
maintenance as shown in Eqn (3): 

 1( )ij ij ijr a d b
−

= σ + + , (3) 
where: a and b are real parameters; dij is a real pa-
rameter which represents the deterioration rate of 
the standard deviation of the longitudinal level on 
segment i at time period j; rij is the recovery after 
maintenance of the  standard deviation of the track 
longitudinal level on segment i and time period j; 

σij-1 is the standard deviation of longitudinal level on 
track segment i, at the period of time immediately 
previous to the maintenance operation; σij-1 + dij  is 
the standard deviation of longitudinal level at the 
time when maintenance is performed. 

f) tamping operations begin and end on a straight 
alignment, according to UIC (2008) recommenda-
tions (Eqn 4): 

 
( )

( )
nt

lj kj
l I k

m I k m
∈

≥∑ , (4) 

with k ∈{1,...nt}, j ∈  {1,...np} and I(k) ⊆  {1,...nt } 
is the set of consecutive indexes of track segments 
that includes segment k in curve and an initial and 
final segments in straight alignment. 
According to Eqn (4), if a tamping operation is pre-

dicted for a curve segment, then the set of track segments 
that includes the curve segment (C) and it is bounded by 
straight segments (R) is also subjected to maintenance. 
Figure 1 represents this aspect. 

 

Fig. 1. Track layout influence on maintenance scheduling 
 

1.2. Problem formulation 
The mathematical formulation leads to the following 
mixed 0–1 nonlinear program: 
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∑
, (5) 

with i∈{1,...nt}, k ∈{1,...nt}, j ∈  {1,...np}. 
The existence of the bilinear function limits the use 

of commercial software in solving mixed integer pro-
blems, therefore a linearization of this program has be 
taken into account. This procedure is described in Vale 
et al. (2012) and consists of exploiting the so-called re-
formulation–linearization technique, proposed by Sherali 
and Adams (1999).  

The application of the linearization to the problem 
(Eqn 5) leads one to the following mixed 0–1 linear pro-
gramming problem. 



C. Vale, I. M. Ribeiro.  Railway condition-based maintenance model with stochastic deterioration 

 

688 

{ }

1 1
1
1
max

max max

( )
lim

:
( )

0
(1 ) (1 )

( )

0
0,1

npnt
ij

i j
ij ij ij ij

ij ij ij
ij ij
ij ij ij ij

nt
lj kj

l I k
ij

ij

Minimize m

subject to d w
r a d b

w m r
m r r w m r

m I k m

m

= =

−

−

∈

σ = σ + −

= σ + +

≤ ≤

− − ≤ − ≤ −

≥

≤ σ ≤ σ

∈

∑∑

∑

. (6) 

The model parameters presented above are: 
− nt, total number of track segments;  
− np, total number of discrete time periods (time hori-

zon); 
− dij, deterioration rate of the longitudinal level on the 

segment track i at time period j – (mm/90 days) that 
follow the three parameters Dagum function, whose 
distribution function, F(x), is defined by Eqn (7): 

 ( ) 1 , 0
k

xF x x
−−α   = + > β   

; (7) 

− σi0, standard deviation of the longitudinal profile of 
the segment track i at an initial time j = 0 – (mm);  

− σlim, limit for the standard deviation of the longitu-
dinal profile depending on the vehicle maximum 
permissible speed – (mm); 

− a and b, real parameters; 
− I(k), set of consecutive indexes of track segments 

that include the segment k in curve and an initial and 
final segments in straight alignment; 

−  rmax, maximum recovery of the standard deviation 
of the longitudinal level (mm); 

− | I(k) |, number of elements of  I(k). 
In this problem the decision variables are: 

− σij, standard deviation of the longitudinal level of 
the track segment i at time period j (mm); 

− rij, recovery of the standard deviation of the track 
longitudinal level on the segment i at time period 
j (mm);  

− mij, binary variable that denotes whether mainte-
nance activity is assigned to the track segment i at 
time period j (mij = 1) or not (mij = 0); 

− wij, recovery after maintenance: wij = rij, if mij = 1 or 
wij = 0,  if mij = 0. 
This mixed 0–1 linear program (6) leads to the same 

optimal solution as the mixed 0–1 nonlinear program (5) 
as presented. 
Theorem: ( , , )m rσ  is an optimal solution of the nonline-
ar problem (5) if and only if ( , , , )m r wσ is an optimal 
solution of the linear program (6), being w  a vector 
whose components are ij ij ijw m r= . 

Proof: As the objective functions of the two problems are 
equal, it is sufficient to prove that there is a one-to-one 
correspondence between the feasible solutions. 
By defining vector w , whose components are 
ij ij ijw m r= , then, since ijm  is a binary variable (which 

takes values 0 or 1), it follows that ( , , )m rσ  is an optimal 
solution of problem (6) if and only if ( , , , )m r wσ  is an 
optimal solution of the mixed 0–1 linear problem. 

The proposed model (6) is a stochastic one being an 
extension of the deterministic model proposed by (Vale 
et al. 2012). 

One of the features of this model is that it allows 
analysing the distribution of maintenance actions over 
time which is an advantage for evaluating maintenance 
costs over time. Therefore a mathematical programming 
approach for optimizing and scheduling maintenance may 
be a very useful tool for National Railway Administra-
tions for the maintenance operations management. 

 
2. Computational experiments  
The proposed model is applied to a railway stretch of 
51.2 km of length, defined by 256 track segments of 
200 m. The commercial program Cplex of the GAMS 
collection (Brooke et al. 1998) has been used to process 
the mixed-integer linear program defined in Eqn (6). 

 
2.1. Data 
The data used for testing the proposed model are de-
scribed below and they were obtained based on real rec-
ords measured in a railway line at regular time intervals. 

− The standard deviation of the longitudinal level is 
calculated for track segments with 200 m of length. 
The standard deviation of the longitudinal level of 
each track segment at an initial time instant is repre-
sented in Figure 2. In this figure, the red line corre-
sponds to the alert limit indicated in the European 
Standard EN 13848-5 (2008) for scheduling preven-
tive maintenance actions. The alert limit depends on 
the maximum permissible speed. In this case, it is 
considered that the maximum speed in the railway 
stretch varies from 160 to 220 km/h. 
 

 
Fig. 2. Standard deviation of the longitudinal level of each track 
segment at the initial time instant 
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−  The deterioration rate of the standard deviation of 
the longitudinal level at each track segment is a ran-
dom variable and it is characterized by the three pa-
rameters Dagum probabilistic distribution as de-
scribed by Vale and Simões (2012). From the fitting 
process, the Dagum distribution is selected, because 
a good fit is achieved for representing the degrada-
tion of the standard deviation of the longitudinal 
level since the attained p-value of the Kolmogorov-
Smirnov test is 0.66. For this computational experi-
ence the adopted Dagum parameters fitted with real 
data are: α = 2.3085; β = 0.0005582 and 
k = 0.50134.  
In this experiment, the deterioration rate of the stan-

dard deviation of the longitudinal level is simulated by 
Monte Carlo techniques, and two simulations are perfor-
med and compared:  

A – stochastic simulation in space;  
B – stochastic simulation in space and time.  
In total, thirty calculations are executed for each one 

of the two simulations. 
− The track layout is composed by straight and curve 

segments (Fig. 3). 
 

 
Fig. 3. Track layout (C – curve; R – straight alignment) 

 
The recovery of the standard deviation of the longi-

tudinal level depends on the track geometrical quality at 
the moment of maintenance (ORE 1988). Although the 
recovery of the standard deviation of the longitudinal 
level is random as the deterioration rate of the standard 
deviation of the longitudinal level, in this research, the 
track recovery attained after tamping has been defined as 
a deterministic variable, based on real data measured in a 
railways line in order to reduce the computational effort 
in this computational experience: 
 10.4257 0.153ij ijr

−
= σ − . 

− In this computational experience, a five year time 
horizon, defined by time instants of 90 days, is con-
sidered. This means that maintenance actions are 
scheduled quarterly. 
 

2.2. Results and discussion 
Figures 4 and 5 display, respectively, for simulations A 
and B, the total number of maintenance actions and the 
total recovery associated to the optimal solution for a 

time horizon of five years. As previously referred, thirty 
scenarios are defined for each simulation. 

 

 

Fig. 4. Simulation A 
 

 
Fig. 5. Simulation B 

 

From the figures, it is clear that the solutions in 
simulation B are more consistent than in simulation A, as 
also reckon by the standard deviation of the total number 
of maintenance actions (Σ Σ Mij) and the total track 
quality recovery (Σ Σ rij) indicated in Table 1. This table 
presents for a five years time horizon and the thirty sce-
narios: 1) a statistic description of the total number of 
maintenance actions; 2) the total track quality recovery 
and the ratio between the two parameters. 

 
Table 1. Total number of maintenance actions and total track 

quality recovery 
 Simulation A – di Simulation B – dij 
 Σ Σ 

Mij Σ Σ rij Σ Σ rij / 
Σ Σ Mij 

Σ Σ 
Mij Σ Σ rij Σ Σ rij / 

Σ Σ Mij 
Mean 431 132.343 0.313 164 64.910 0.397 
Maximum 565 155.447 0.387 199 75.839 0.425 
Minimum 277 105.035 0.214 135 54.818 0.351 
Standard  
Deviation 77 15.715 0.041 16 5.795 0.018 

 
The total number of maintenance actions is higher in 
simulation A than in B, which can be justified by the fact 
that the total deterioration of the standard deviation of the 
longitudinal level without considering any quality recove-
ry (

256 20

1 1
ij

i j
d

= =

∑∑ ) is higher in A than in B as indicated in 

Table 2. 
As Noortwijk and Frangopol (2004) refer, the dete-

rioration of the track longitudinal level is a random varia-
ble over time therefore simulation B represents a more 
realistic scenario. 
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Table 2. Total deterioration of the standard deviation of the 
longitudinal level without maintenance 

 256 20

1 1
ij

i j
d

= =

∑∑  (mm) 

 di dij 
1 243.9 50.4 
2 239.9 52.5 
3 218.1 51.0 
4 255.7 50.6 
5 236.2 53.2 
6 235.5 51.6 
7 243.0 53.1 
8 208.6 49.4 
9 197.9 48.8 
10 234.2 43.8 
11 234.7 48.8 
12 228.5 49.4 
13 205.9 50.0 
14 232.8 48.2 
15 228.2 49.4 
16 199.1 49.2 
17 234.6 48.2 
18 259.4 49.2 
19 244.0 51.1 
20 228.3 50.1 
21 231.1 53.5 
22 222.2 50.7 
23 251.9 49.1 
24 213.0 53.9 
25 250.5 53.0 
26 237.5 48.7 
27 251.7 46.9 
28 214.4 51.3 
29 251.3 52.7 
30 214.1 51.2 

Mean 231.5 50.3 
Maximum 259.4 53.9 
Minimum 197.9 43.8 
Standard 
deviation 16.8 2.2 

 
Table 3. Percentage of maintenance actions over the years 

 Simulation Year 
1 

Year 
2 

Year 
3 

Year 
4 

Year 
5 

Mean A 7.6 20.0 29.1 30.9 12.5 
B 20.6 20.3 28.8 20.8 9.6 

Maximum A 15.0 25.7 39.7 47.3 17.7 
B 38.3 39.7 57.3 35.2 28.2 

Minimum A 2.2 12.8 16.2 22.6 7.0 
B 8.8 5.9 12.3 5.9 1.3 

Standard 
deviation 

A 3.0 2.9 4.6 5.5 3.3 
B 7.0 8.8 9.5 8.1 5.8 

 
Regarding the distribution over time of the mainte-

nance actions, the percentage of those actions over the 
years is included in Table 3. The results show that the 
annual percentage of maintenance actions varies over the 
time horizon. In this case-study, a tamping cycle around 5 
years is reckon, which is the period expected for this type 
of railway line.  

For analysing the distribution of maintenance ac-
tions over time, several probabilistic distributions, such 
as the Exponential, the Gamma, the Weibull, the Logistic, 
the Lognormal, the Log-logistic, the Dagum, the Burr, 
etc. are tested. From the results, the distribution of main-
tenance actions over time (considering the 20 periods 
corresponding to 5 years time horizon) may be represen-
ted for both simulations by the Generalized Pareto Distri-
bution, which probability density function is characteri-
zed by Eqns (8) and (9): 

 

1 1/
1/ 1 if 0

( )
1/ exp otherwise

kxk k
f x

x

− − −µ  σ + ≠  σ =  −µ  σ −  σ 
, (8) 

within the domain: 

 if  0
/ otherwise

x k
x k

µ ≤ < +∞ ≥
µ ≤ ≤ µ −σ . (9) 

In Eqns (8) and (9), k is a continuous shape parame-
ter, σ is a positive continuous scale parameter and µ is a 
continuous location parameter. The generalized Pareto 
distribution allows a continuous range of possible shapes 
that includes both the exponential (k = 0 and µ = 0) and 
Pareto distributions (k > 0 and µ = σ/k, ) as special cases.   

The Generalized Pareto distribution provides a good 
fit for the attained optimal solution as proven by the high 
p-value of the Kolmogorov-Smirnov test, except for the 
last time period (Table 4). In general the distribution 
fitting is better in simulation B than in A. 

 
Table 4. P-value of the Kolmogorov–Smirnov test 

Time period Simulation A Simulation B 
1 0,38335 0,38852 
2 0,57278 0,90445 
3 0,74915 0,88518 
4 0,49303 0,58197 
5 0,93664 0,95629 
6 0,81253 0,94015 
7 0,67287 0,67393 
8 0,4551 0,47944 
9 0,70271 0,79683 
10 0,71772 0,81192 
11 0,27263 0,50076 
12 0,43317 0,76877 
13 0,50514 0,49371 
14 0,71427 0,6911 
15 0,7149 0,69354 
16 0,29713 0,37983 
17 0,16404 0,27131 
18 0,41732 0,58294 
19 0,26348 0,30964 
20 0,01645 0,03177 
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Table 5. Statistic analysis of the generalized Pareto distribution parameters 
 k Σ µ 
 Sim. A Sim. B Sim. A Sim. B Sim. A Sim. B 

Maximum 0.397 0.394 27.242 24.266 2.029 1.667 
Mean –0.254 –0.253 10.841 11.844 –0.695 –0.765 
Minimum –0.874 –0.713 –0.545 1.629 –1.964 –1.841 
Amplitude 1.271 1.107 27.787 22.637 3.993 3.508 
Standard Deviation 0.309 0.298 6.338 5.859 0.998 0.867 

 
From the statistic analysis of the generalized Pareto dis-
tribution parameters for the twenty time periods presented 
in Table 5, the parameters are similar for both simula-
tions. However the values for simulation B are in general 
smaller than in A. 

In terms of computation times, the proposed condi-
tion-based maintenance model is able to produce optimal 
schedules in a very short computational time as indicated 
in Table 6 which means that this model may be a useful 
tool for the maintenance operations management. 

 
Table 6. Computation times  
Mean 32.369 s 
Maximum 276.351 s (4.6 min) 
Minimum 3.015 s 
Standard deviation 57.361 s 

 
Summary and conclusions 
For defining condition-based maintenance tools that op-
timize the infrastructure asset management, the geomet-
rical track deterioration has to be fully understood. The 
deterioration process is random by nature therefore it 
should be described by suitable probabilistic distribution 
functions fitted with real data. 

This paper presents a preventive condition-based 
maintenance model for scheduling tamping in ballasted 
tracks considering stochastic deterioration. The model is 
formulated as a mixed 0–1 nonlinear program taking into 
account real technical aspects as constraints: the reduc-
tion of the geometrical track quality over time characteri-
zed by the deterioration rate of the standard deviation of 
the longitudinal level; the track layout influence on main-
tenance scheduling; the dependency of the quality recove-
ry on the track quality at the moment of the maintenance 
operation; the limits for preventive maintenance that de-
pend on the maximum permissible train speed. The ran-
dom nature of the track deterioration process is characte-
rized by a stochastic deterioration model based on the 
three parameters Dagum distribution function (Vale, 
Simões 2012).  

In this research, two stochastic simulations and thir-
ty scenarios in each simulation are performed. From the 
results, the total number of maintenance actions is higher 
in simulation A than in B, because the total deterioration 
of the standard deviation of the longitudinal level without 
considering any quality recovery is higher in A than in B. 
Also the solutions in simulation B are more consistent 
than in simulation A. 

As far as the model is concerned, it is able to produ-
ce useful results in terms of optimal schedules. The re-
sults attained in this model application show that the nu-
mber of maintenance actions over time may be 
characterized by the Generalized Pareto distribution. 
From this analysis, one of the features of the proposed 
stochastic maintenance model is that it allows analysing 
the distribution of maintenance actions over time which is 
an advantage for evaluating maintenance costs during the 
life of the infrastructure. A mathematical programming 
approach for optimizing and scheduling maintenance 
such as the one presented in this paper may be therefore a 
very useful tool for National Railway Administrations for 
the maintenance operations management. 
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