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Abstract. The problem of handling equipment selection plays a significant role in the total cost of a mining project; so 
that it can affect the activity and continuity of the project and is a strategic problem. In this study, an integrated model 
based on two fuzzy multi-criteria decision making techniques for handling equipment selection is proposed. The proposed 
evaluation model is derived from group decision making, fuzzy set theory, analytical hierarchy process (AHP), and Tech-
nique to Order Preference by Similarity to Ideal Solution (TOPSIS) methods. The fuzzy AHP (FAHP) method is utilized 
to calculate the relative importance of the evaluation criteria, then, fuzzy TOPSIS (FTOPSIS) is applied for evaluating the 
feasible handling equipment in order to select the best handling system among a pool of the possible alternatives. The 
model is applied for a real world case study to demonstrate the capability and effectiveness of the proposed model. To in-
vestigate the result sensitiveness to the changes of the criteria weights, a sensitivity analysis is finally conducted. 
Keywords: handling equipment selection, group decision making, FAHP, FTOPSIS. 
 

Introduction 
Equipment selection plays a key role in mining design 
due to the fact that an inappropriate selection can nega-
tively affect the overall cost and continuity of a mine. 
Loading and handling equipment are among the most 
crucial operation impacting production in surface and 
underground mines and have a substantial share of a total 
mine costs (Sayadi et al. 2012). Material handling can 
account for 30–75% of the total cost, and efficient mate-
rial handling can be primarily responsible for reducing 
the operating cost by 15–30% (Sule 1994; Kulak 2005). 
Therefore, the outputs of the project depend on the type 
of selected equipment for handling. Since a wider range 
of equipment are available today, determination of the 
best equipment for a given production environment is not 
an easy task (Paramasivam et al. 2011).  

The problem of handling equipment selection is a 
multi criteria decision making (MCDM) issue because it 
comprises a set of effective criteria that are often in con-
flict with each other. There are many ways to classify the 
existing MCDM methods (Zavadskas, Turskis 2011). 
Belton and Stewart (2002) grouped the MCDM methods 
into three main categories: (1) value measurement model 
such as analytical hierarchy process (AHP); (2) outrank-
ing models such as Preference Ranking Organization 
Method for Enrichment Evaluation (PROMETHEE); and 
(3) goal aspiration and reference level models such as 
Technique to Order Preference by Similarity to Ideal 
Solution (TOPSIS).  

TOPSIS is one of the most popular methods for 
solving the MCDM problems (Liu 2009; Tupenaite et al. 
2010; Han, Liu 2011; Kalibatas et al. 2011). This method 
takes into account the ideal and the anti-ideal solutions 
simultaneously to select the best alternative among a pool 
of feasible alternatives. However, TOPSIS is often criti-
cized for its inability to deal with vague and uncertain 
problems (Yu et al. 2011); so that, without considering 
the inherent uncertainty and/or imprecision of the ele-
ments could result in unreliable and unrealistic assess-
ment. On the other hand, fuzzy logic is capable of han-
dling the existing uncertainty. This technique uses 
linguistic variable instead of traditional quantitative ex-
pression, which is a very helpful concept for dealing with 
situations which are too complex or insufficiently defined 
(Zadeh 1965). According to Fouladgar et al. (2011), 
fuzzy TOPSIS (FTOPSIS) has different advantages, in-
cluding logical concepts, simple and fast computations, 
and tolerating the uncertainty. Hence, FTOPSIS is recent-
ly employed in order to solve different aspects of priority 
problems, such as strategy management (Wu et al. 2010; 
Fouladgar et al. 2011), equipment selection (Lashgari 
et al. 2011; Yazdani-Chamzini, Yakhchali 2012), risk 
management (Wang, Elhag 2006; Kutlu, Ekmekçioğlu 
2012; Fouladgar et al. 2012b), service quality (Awasthi 
et al. 2011b; Büyüközkan, Çifçi 2012), supply chain 
management (Boran et al. 2009; Liao, Kao 2011; Jolai 
et al. 2011), and sustainability evaluation (Awasthi et al. 
2011a; Awasthi, Chauhan 2012). 
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Moreover, Fuzzy AHP (FAHP) is widely used for 
solving MCDM problems in real situations (Fouladgar 
et al. 2011). In this paper, FAHP is integrated with 
FTOPSIS under group decision making to select the op-
timum handling system among a set of the feasible alter-
natives. First FAHP is employed to determine the relative 
importance of the evaluation criteria. Then by applying 
the weight vector of the evaluation criteria obtained in 
previous stage, FTOPSIS is used to acquire the final 
ranking order of handling methods. 

The rest of the paper is organized as follows: past 
researches effort to prioritize and select the handling 
equipment is summarized in Section 1. Section 2 presents 
the basic descriptions of fuzzy set theory, FAHP method, 
and FTOPSIS technique. Stages of the proposed evalua-
tion model are explained in Section 3. Section 4 illus-
trates a real world case study of handling equipment se-
lection in an open pit mine. Finally, conclusions and 
findings are discussed in the last section. 

 
1. Literature review  
According to the importance of handling, a large number 
of researchers have applied different approaches for solv-
ing the problem of the handling equipment selection. Chan 
et al. (2001) developed an intelligent material handling 
equipment selection system called Material Handling 
Equipment Selection Advisor (MHESA). The MHESA 
contains three parts: (1) a database to store equipment 
types with their specifications; (2) a knowledge-based 
expert system for assisting material handling equipment 
selection; and (3) an AHP (analytical hierarchy process) 
model to select the most favourable equipment type.  

Park (1996) proposed an intelligent knowledge-
based expert system called ICMESE for the selection and 
evaluation of material handling equipment suitable for 
movement and storage of materials in a manufacturing 
facility. Chakraborty and Banik (2006) developed an 
AHP for designing a material handling equipment selec-
tion model. They used pairwise comparison matrices to 
measure the relative importance of each criteria, subcrite-
ria and sub-subcriteria and then determined the overall 
ranking of each alternative equipment. 

Chu et al. (1995) developed a computer-assisted 
methodology for the selection of the suitable material 
handling equipment. Onut et al. (2009) proposed a com-
bined MCDM methodology for evaluation and selection 
of material handling equipment (MHE) types for a com-
pany in the steel construction industry in Istanbul, Tur-
key. Mirhosseyni and Webb (2009) proposed a hybrid 
fuzzy knowledge-based expert system and genetic algo-
rithm for efficient selection and assignment of material 
handling equipment. 

Poon et al. (2011) proposed a RFID-GA-based 
warehouse resource allocation system (RGWRAS) for 
handling stochastic production material demand problems 
and for allocating warehouse resources on the shop floor 
and in warehouse environments. Fisher et al. (1988) pro-
posed a rule-based expert system called MATHES for 
material handling equipment selection. A systematic pro-

cedure for the selection of bulk material handling equip-
ment is proposed by Velury and Kennedy (1992). This 
paper concentrates on the selection of relevant factors 
that need to be taken into account in the design of a bulk 
material handling system and on the selection of equip-
ment once these factors have been considered. Fonseca 
et al. (2004) applied a knowledge-based system for con-
veyor equipment selection. 

Bazzazi et al. (2011b) proposed a new method of 
MCDM that is applied to select the suitable loading-
haulage equipment for the open pits mines. Bazzazi et al. 
(2011a) presented an evaluation model based on determin-
istic data, fuzzy numbers, interval numbers and linguistic 
terms to select loading–hauling system for an iron ore open 
pit mine. In this model, a combination of AHP and entropy 
method was applied for attribute weighting and VIKOR 
was employed to rank the feasible alternatives.  

Lashgari et al. (2012) proposed a new integrated 
model based on ANP, fuzzy AHP, and TOPSIS to choose 
the best alternative among possible loading and hauling 
systems. Mahdavi et al. (2011) developed a bi-objective 
operation allocation and material handling equipment se-
lection problem in flexible manufacturing system (FMS) 
with the aim of minimizing the machine operation, materi-
al handling and machine setup costs and maximizing the 
machine utilization. Anand et al. (2011) developed an 
AHP for the selection of material handling systems in the 
design of FMS. Tuzkaya et al. (2010) proposed an inte-
grated fuzzy multi-criteria decision making methodology 
for material handling equipment selection problem 
(MHESP). In this paper, evaluation criteria for the MHESP 
is weighted by fuzzy-ANP (F-ANP) approach, then, alter-
native material handling equipments are evaluated by 
fuzzy-PROMETHEE (F-PROMETHEE) approach. 

The selection of a loading-hauling system using an 
AHP-based model was evaluated by Bascetin (2004) for 
coal production in an open pit coal mine located Orha-
neli, in western Turkey. Yaman (2001) proposed a 
knowledge-based approach for selection of material han-
dling equipment and material handling system pre-design. 
Denby and Schofield (1990) developed the MINDER 
system (MINe Design using Expert Reasoning) for sur-
face mining method selection and excavation and haulage 
equipment selection.  

According to incomplete data, less or even lack of 
information, and inherent complexity, most of the above-
mentioned studies have neglected this problem. Fuzzy set 
theory is a powerful tool to handle the inherent uncertain-
ty. Moreover, knowledge-based expert systems have 
some disadvantages, such as the doubts left due to the 
difficulties in defining many rules. 

On the one hand, based on the past researches, it is 
clear that FTOPSIS has demonstrated its capabilities and 
efficiencies as a practical engineering and problem-
solving tool. On the other hand, FAHP is the most popu-
lar technique for solving the MCDM problems. Likewise, 
by using group decision making (social choice), different 
rating viewpoints and the tradeoffs among different crite-
ria are taken into consideration in the aggregation proce-
dure to ensure more accurate decision making (Karsak 
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2002). This makes that the group decision making is at-
tracting more and more attention in management, and has 
received a great deal of attention from researchers (Yue 
2011). In this paper, an integrated model based on 
FTOPSIS and FAHP methods under group decision mak-
ing is proposed to select the most appropriate handling 
equipment. First, FAHP is utilized to obtain the weights 
of the evaluation criteria, then, by using the weight vector 
obtained in the first step, FTOPSIS is used to select the 
best handling system. 

 
2. Mathematical background 
2.1. Fuzzy set theory  
Complexity is an important part of most real world deci-
sion problems that is due to the existing uncertainty, im-
precise knowledge, and less of information. The use of 
the techniques and tools that allow the available infor-
mation to be used with the adequate guaranty is desired 
for dealing with such complexity. Fuzzy set, introduced 
by Zadeh (1965), is a powerful tool for capturing the 
uncertainty and vagueness under the conditions of impre-
cise and incomplete information. Fuzzy theory reflects 
human reasoning in its use of approximate information 
and uncertainty to generate decisions (Wong, Lai 2011).  

 

 
Fig. 1. Triangular fuzzy number 

 
A triangular fuzzy number (TFN) is defined as 
( , , )A a b c=� ; which a, b, and c are crisp numbers and 

a b c≤ ≤ . A fuzzy number is defined by its membership 
function whose values can be any number in the interval 
[0, 1], which 0 expresses do not belong to the set under 
consideration and 1 addresses full belong to the set. As-
sume that TFNs start rising from zero at x = a; reach a 
maximum of 1 at x = b; and decline to zero at x = c as 

shown in Figure 1. Then the membership function )A x(�µ  
of a TFN is given by: 

 
0,                                
( ) / ( ),          ) ( ) / ( ),           
0,                                

x a
x a b a a x b

xA x c b c b x c
x c

< − − ≤ <( =  − − ≤ < >
�
µ . (1) 

Let 1 1 1( , , )a a b c=�  and 2 2 2( , , )b a b c=�  be two TFNs 
then the vertex method is defined to compute the distance 
between them by Eqn (2): 

2 2 2
1 2 1 2 1 2

1( , ) ( ) ( ) ( )3d a b a a b b c c = − + − + − �� . (2) 

The fuzzy linguistic term is a fuzzy number or a var-
iable whose values are words or sentences in language 
terms (Fouladgar et al. 2012c). These terms can be divid-
ed into different linguistic criteria. A 9-point scale for 
defining the weights of criteria as presented in Table 1 
has been deliberately selected. As well as, a 5-point scale 
for defining the preference ratings of alternatives is delib-
erately adopted as given in Table 2 and Figure 2. 

 
Table 2. Linguistic terms for the preference rating of alterna-

tives 
Linguistic term Corresponding triangular fuzzy number 
Very poor (VP) (0,1,3) 

Poor (P) (1,3,5) 
Fair (F)  (3,5,7) 

Good (G)  (5,7,9) 
Very good (VG) (7,9,10) 

 
 

 
Fig. 2. Membership functions of linguistic values for preference 
rating 

 
Table 1. Linguistic terms for the importance weights of the criteria 

Linguistic term Fuzzy number Triangular fuzzy scale Triangular fuzzy reciprocal scale 
Equal importance (EI) 1�  (1,1,1) (1,1,1) 
Intermediate (IMI) 2�  (1,2,3) (1/3,1/2,1) 
Moderate importance (MI) 3�  (2,3,4) (1/4,1/3,1/2) 
Intermediate (ISI) 4�  (3,4,5) (1/5,1/4,1/3) 
Strong importance (SI) 5�  (4,5,6) (1/6,1/5,1/4) 
Intermediate (IVSI) 6�  (5,6,7) (1/7,1/6,1/5) 
Very strong importance (VSI) 7�  (6,7,8) (1/8,1/7,1/6) 
Intermediate (IEXI) 8�  (7,8,9) (1/9,1/8,1/7) 
Extreme importance (EXI) 9�  (8,9,10) (1/10,1/9,1/8) 
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2.2. FAHP method  
Analytical hierarchy process (AHP), developed by Saaty 
(1980), is a decision analysis method that takes into ac-
count both qualitative and quantitative information. AHP 
can decompose any complex problem into several sub-
problems in terms of hierarchical levels where each level 
represents a set of criteria or attributes relative to each 
sub-problem. This method utilizes three principles to 
solve problems (Aydogan 2011): (1) structure of the hier-
archy; (2) the matrix of pairwise comparison ratios; and 
(3) the method for calculating weights. 

Despite the popularity of the AHP technique, it is 
not capable of handling the existing uncertainty and com-
plexity in real world problems. The merit of using a fuzzy 
approach is to determine the relative importance of at-
tributes using fuzzy numbers instead of precise numbers 
(Sun 2010; Kara 2011; Yazdani-Chamzini, Yakhchali 
2012). There are many fuzzy AHP methods proposed on 
the basis of the concepts of the fuzzy set theory and  
hierarchical structure by various researchers to solve the 
selection problems in different fields of application 
(Van Laarhoven, Pedrycz 1983; Buckley 1985; Boender 
et al. 1989; Chang 1996; Cheng 1996). 

In this paper, despite the fact Chang’s method is rel-
atively easier to implement, Buckley’s method is applied 
for calculating the weights of the evaluation criteria be-
cause of some drawbacks of Chang’s method (Wang 
et al. 2008). The FAHP procedure can be defined as fol-
lows: 

Step 1. Construct pairwise comparison matrices 
among all the criteria in the dimensions of the hierarchy 
system. Determine linguistic terms to the pairwise com-
parisons by asking which is the more important of each 
two dimensions based on Table 1, as following matrix A� : 

12 1 12 1
21 2 12 2

1 2 1 2

1 1
1 1 1

1 1 1 1

n n

n n

n n n n

a a a a
a a a a

A

a a a a

= =

                  

� � � �� �

� � � �� �
�

� � � � � � � �

� � �� �

, (3) 

where:  

 
1 19 , , 2 ,1, 2, ,9,     

1                                         ij
i ja
i j

− − ≠
=

=


� � � � �� �

� . (4) 

Step 2. Calculate the aggregated fuzzy weights of 
each criterion by geometric mean technique (Buckley 
1985) that is:  
 1

1( ) ni i ij inr a a a= ⊗ ⊗ ⊗� � � �� � ; (5) 

 1
1 1[ ]i i nw r r r r −= ⊗ ⊕ ⊕ ⊕ ⊕� � � � �� � , (6) 

where: ija�  is fuzzy comparison value of dimension i to 
criterion j, thus, ir�  is a geometric mean of fuzzy compari-
son value of criterion i to each criterion, iw�  is the fuzzy 
weight of the ith criterion, can be indicated by a TFN, 

( , , )i i i iw lw mw uw=� . The ilw , imw  and iuw are the lower, 

middle, and upper values of the fuzzy weight of the ith 
dimension. 

 
2.3. FTOPSIS technique  
The Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS), introduced by Hwang and Yoon 
(1981), is based on the concept that the most appropriate 
alternative should have the shortest distance from the 
positive ideal solution (PIS) and the farthest distance 
from the negative ideal solution (NIS). The PIS is a solu-
tion that maximizes the benefit criteria and minimizes the 
cost criteria simultaneously, whereas the NIS maximizes 
the cost criteria and minimizes the benefit criteria simul-
taneously (Yazdani-Chamzini, Yakhchali 2012). This 
technique was developed as fuzzy TOPSIS (FTOPSIS) to 
solve ranking and evaluating problems, because fuzzy 
allows the decision-makers to incomplete information, 
non-obtainable information into decision model (Kulak 
et al. 2005). The main steps of the FTOPSIS can be de-
fined as follows: 

Step 1. Choose the linguistic variables for the alter-
natives with respect to the evaluation criteria. The lin-
guistic variables are linguistic terms that express the val-
ues by words or sentences. Each linguistic value can be 
represented by a TFN which can be assigned to a mem-
bership function. In this study, we employed TFNs be 
associated to the linguistic values and scales of five 
points for the ratings of alternatives (Table 2 and Fig. 2) 
and nine points for importance weights of the evaluation 
criteria (Table 1).  

Step 2. Construct the fuzzy decision matrix. 
To calculate the performance of a set of alternatives 

on a given set of criteria, the decision matrix of m×n di-
mension is formed, which m and n are the number of 
alternatives and criteria respectively.  
   C1      C2     …   Cn 

 
11 12 1 1

21 22 2 2

1 2

          

          

                   

             

k k nk

k k nk

mm k m k mnk

x x x A
x x x A

Ax x x

       

� � ��

� � ��

�� � � �

� � �

, (7) 

where: ijkx� , i = 1, 2, … , m; j= 1, 2, … , n; k is the number 
of decision makers, are linguistic triangular Fuzzy num-
bers, 1 2 3( , , )ijk ijk ijk ijkx x x x=� .  

Step 3. Aggregate the ratings of alternatives respect 
to each criterion ( )ijx� . In order to aggregate the ratings of 
alternatives versus each criterion, the arithmetic mean is 
applied. 

Let the fuzzy ratings of all decision makers be 
TFNs 1 2 3( , , )ijk ijk ijk ijkx x x x=� , k = 1, 2, . . ., K, which ijkx�  
represents the value of the ith alternative respect to the jth 
criterion by kth decision maker. Then the aggregated 
fuzzy rating can be defined as: 
 1 2 3( , , ),        1,2,...,ij ij ij ijx x x x k K= =� , (8) 
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where:  
 

1
1 1
1 k

k
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1

2 2
1 k

k
ij ijkx x

K =

= ∑ ; (9) 

 
1

3 3
1 k

k
ij ijkx x

K =

= ∑ . 

Step 4. Calculate the normalized fuzzy decision ma-
trix. In order to transform the various criteria scales into a 
comparable scale, the linear scale transformation is em-
ployed that the ranges of normalized TFNs belong to 
closed interval zero and one. The normalized fuzzy deci-
sion matrix can be computed by R� : 
 [ ]ij m nR r ×=� �  (10) 
and 

 1 2 3
* * *
3 3 3
, ,

ij ij ij
ij

j j j

x x x
r

x x x

 =    
� ,  *

3 3maxj iji
x x= , 

  (11) 

 
* * *
1 1 1

3 2 1
, , ,

j j j
ij

ij ij ij

x x x
r

x x x

 =    
�   *

1 1min
ij jx x= ,

 
where rij is the normalized value of xij. 

Step 5. Calculate the weighted normalized fuzzy de-
cision matrix. We can compute the weighted normalized 
fuzzy decision matrix by considering the relative im-
portance of evaluation criteria as:  
 [ ]ij m nV v ×=� �  (12) 
and  
 ij ij jv r w= ×� � � , (13) 
where jw�  is the weights of the criteria that are obtained 
by FAHP in this paper. 

Step 6. Identify positive ideal (A*) and negative ide-
al (A-) solutions. The fuzzy positive – ideal solution and 
the fuzzy negative-ideal solution are shown in Eqns (14), 
(15): 

{ }1 2 3( , , ,..., ) max  ( 1,2,..., )n iji
A v v v v v i n∗ + + + += = =� � � � │ ; (14) 

{ }1 2 3( , , ,..., ) min  ( 1,2,..., )
in ijA v v v v v i n− − − − −= = =� � � � │ . (15) 

Step 7. Calculate separation measures. The distance 
of each alternative from A* and A- can be currently calcu-
lated using Eqns (16), (17): 

 
1

( , )  , 1,2,...,n

ji jjd d v v i mi
=

+ += =∑ � � ; (16) 

 
1

( , )  , 1,2,...,
n

j
i ij jd d v v i m

=

− −= =∑ � � . (17)  

Step 8. Calculate the similarities to ideal solution. 
This step solves the similarities to an ideal solution by 
Eqn (18): 
 i

i
i i

dCC
d d

−
∗

− ∗
=
+

. (18) 

Step 9. Rank preference order. Choose an alterna-
tive with maximum iCC∗  or rank alternatives according 
to iCC∗  in descending order. 

 
3. The proposed model  
The proposed model for selecting the best handling 
equipment, integrated of FAHP and FTOPSIS techniques 
under group decision making, includes three main steps: 
(1) determine the evaluation criteria in the decision mak-
ing process; (2) calculate the importance weights of the 
evaluation criteria by Buckley’s FAHP; (3) measure the 
preference ratings of alternatives with FTOPSIS method 
and select the alternative with the highest score as the 
first choice. In the first step, alternatives and evaluation 
criteria are determined and the structure of hierarchy is 
constructed. In the second step, the importance weights of 
evaluation criteria are obtained by decision maker team in 
the template of FAHP questionnaire. The decision maker 
team contains of ten experts with high degree of 
knowledge in the field of mine design. In this step, the 
weights of criteria are calculated by pairwise comparison 
matrixes formed by decision maker team based on the 
scale given in Table 1. As shown in Table 1, linguistic 
values and the membership functions of these linguistic 
values are listed for evaluation of criteria. The values 
obtained from individual evaluations are converted into 
final pairwise comparison matrix by the arithmetic mean 
to find a consensus on weight of criteria. 

In the last step, alternatives are ranked in descending 
order using FTOPSIS method. In the first phase of this 
step, experts with the help of scale given in Table 2 and 
Figure 2 determine the rating of alternatives with respect to 
each criterion. After forming decision making matrix, the 
computations of the FTOPSIS method for evaluating the 
existing alternatives with respect to the evaluation criteria 
under consideration is implemented. In the last phase of 
this step, final ranking of alternatives in descending order 
is obtained and the optimal handling equipment is chosen. 
Schematic diagram of the proposed model for handling 
equipment selection is depicted in Figure 3. 

 
4. An illustrative example 
The proposed model is applied to select the most appro-
priate handling equipment in an open pit mine. The San-
gan mine is one of the largest iron deposits of Iran which 
is situated 308 km southeast of Mashhad city in the north-
east of the country (Fig. 4). This mine is designed to have 
an initial annual production of 3.4 Mt iron ore concen-
trate (Monjezi et al. 2011). The deposit of this mine com-
prises of a magnetite skarn and it is known as iron-oxide-
type deposit. The case is implemented by using a step-by-
step procedure as follows: 
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Step 1. After reviewing the literatures and a lot of 
face-to-face interviews, solid information is developed on 
the evaluation criteria and alternatives. After preliminary 
screening, three alternatives have left in the list of feasi-
ble alternatives, including belt conveyor system (A1), 
truck (A2), and truck-in-pit crusher-belt conveyor system 
(A3). Some basic features of these three systems are 
listed in Table 3. Then, a group of decision makers con-
tains of ten experts with minimum four years’ experience 
in the field of mining design in an assembly process iden-
tified the effective criteria as Capital cost (C1), Operation 
cost (C2), Production (C3), Material size (C4), Ground 
condition (C5), Distance (C6), Weather condition (C7), 
Environment (C8), Risk (C9), Reliability (C10), Efficien-
cy (C11), Availability (C12), Safety (C13), Flexibility 
(C14), and Useful life (C15). These fifteen criteria are 
classified into three main criteria, including Economic 
parameters (EP), Operating parameters (OP), and Tech-
nical parameters (TP). 

Among the effective criteria, the first two criteria 
and the ninth criterion (i.e. C1, C2, and C9) are the cost 

type criteria (the lower, the better). The rest of the evalua-
tion criteria (i.e. C3, C4, C5, C6, C7, C8, C10, C11, C12, 
C13, C14, and C15) are the benefit type criteria (the 
higher, the better). 

The hierarchy of handling equipment selection pre-
sented in Figure 5 can be divided into four levels: level 1 
includes the goal of the decision hierarchy, which is se-
lection the optimum handling equipment. The criteria are 
on the second level. The sub-criteria are located in the 
third level. Level 4 comprises the decision alternatives. 

Step 2. After constructing the decision hierarchy, the 
importance weights of the criteria are obtained by using 
the computations of the FAHP method. For achieving the 
aim, the ten evaluators are asked to form individual pair-
wise comparison matrix based on the scale given in Ta-
ble 1. For example, when comparing the Reliability and 
Efficiency, the responses of ten evaluators are EI, EI, EI, 
IMI, EI, IMI, (IMI)*, EI, MI, and EI, respectively. 

 
* Triangular fuzzy reciprocal scale 

 

 
Fig. 3. Schematic diagram of the proposed model 

 
Table 3. Some basic features of alternatives  

 A1 A2 A3 
Capital cast ($) 2904100 2340000 2736000 
Operation Cost ($) 208.66 194.62 187.85 
Useful life (year) 18 14 10 
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Fig. 4. Geography of Sangan iron mine (Naghizadeh et al. 2011) 

 
The responses gathered from ten questionnaires fil-

led by the experts are transferred into a final pairwise 
comparison matrix to the results be aggregated. In this 
paper, Buckley’s FAHP methodology that applies the 
geometric mean technique is used for calculating the 
elements of the synthetic pairwise comparison matrix in 
order to obtain a consensus as presented in Table 4.  

As a sample, 10. 11C Ca�  is calculated as follows:  
10. 11

1/10

1/10

1/10

1/10

((1,1,1) (1,1,1) (1,1,1) (1,2,3) (1,1,1)
(1,2,3) (1 3,1 2,1) (1,1,1) (1,2,3) (1,1,1))
((1 1 1 1 1 1 1 3 1 1 1) ,
(1 1 1 2 1 2 1 2 1 2 1) ,
(1 1 1 3 1 3 1 1 3 1) )
(0.896,1.149,1.39).

C Ca = ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ =

× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × × =

�

 

Similar calculations were carried out for the other 
elements and the results are listed in Table 4. 

The fuzzy weights of the main and sub-criteria are 
computed by Eqn (5), the computations are presented as 
follows:  

 
1/3 1/3

1/3
((1 0.77 1.23) , (1 0.96 2.29) ,

(1 1.29 3.37) ) (0.98,1.3,1.63).
EPr = × × × ×

× × × =

�

�

 

Similar calculations are conducted for the other 
main and sub-criteria and the results are summarized in 
the following part: 

(0.95,1.31,1.61),OPr =� (0.45,0.59,0.9),TPr =�

1 (0.6,0.84,1.08),r =� 2 (0.93,1.19,1.66),r =�

3 (1.55, 2.25,2.83),r =�  

4 (0.46,0.66,0.96),r =� 5 (0.79,1.15,1.75),r =�

6 (1.62,2.23,2.94),r =� 7 (0.31,0.39,0.57),r =�

8 (0.45,0.66,0.96),r =�  
9 (0.68,1.01,1.57),r =� 10 (1.37,1.9,2.52),r =�

11 (1.04,1.6,2.1),r =� 12 (0.55,0.79,1.15),r =�

13 (1.33,1.73,2.36),r =�  
14 (0.28,0.36,0.5),r =� 15 (0.5,0.68,0.96).r =�  

The weight of each criterion can be calculated 
through Eqn (6): 



Journal of Civil Engineering and Management, 2014, 20(5):  660–673 

 

667

(0.98,1.3,1.63) (1/ (1.63 1.61 0.9),
1/ (1.3 1.31 0.59),1/ (0.98 0.95 0.45))
(0.24,0.41,0.68)

EPw = ⊗ + +
+ + + + =

�

 

Similarly, the remaining iw�  are obtained as follows: 
(0.23,0.41,0.68),OPw =� (0.11,0.18,0.38),TPw =�

1 (0.22,0.41,0.7),w =� 2 (0.34,0.59,1.09),w =�

3 (0.13,0.27,0.48),w =� 4 (0.04,0.08,0.16),w =�

5 (0.07,0.14,0.3),w =� 6 (0.14,0.27,0.5),w =�

7 (0.03,0.05,0.1),w =� 8 (0.04,0.08,0.16),w =�

9 (0.06,0.12,0.27),w =� 10 (0.14,0.27,0.5),w =�

11 (0.11,0.23,0.41),w =� 12 (0.06,0.11,0.23),w =�

13 (0.14,0.26,0.47),w =� 14 (0.03,0.05,0.1),w =�

15 (0.05,0.1,0.19).w =�  

The output of fuzzy synthetic decisions obtained by 
each dimension is a fuzzy number. Therefore, it is neces-
sary to convert fuzzy numbers into crisp numbers by 
defuzzification in order to compare the relative im-
portance of dimensions. The procedure of defuzzification 
is to locate the Best Nonfuzzy Performance (BNP) value. 
Methods of such defuzzified fuzzy ranking generally 
include mean of maximal (MOM), center of area (COA), 
and α-cut (Chen et al. 2011). 

This research for transforming the fuzzy weights in-
to the crisp weights applies the centre of area (COA) 
method which is a simple and practical method (Foulad-
gar et al. 2012a) to compute the best nonfuzzy perfor-
mance (BNP) value of the fuzzy weights of each criteri-
on. The BNP value of the fuzzy number iR� can be found 
by using Eqn (19): 

 [( ) ( )]
3

i i i i
i i

UR LR MR LRBNP LR− + −
= + . (19) 

The relative weights of the main and sub-criteria 
and their ranks are shown in Table 5.  

As seen in Table 5, the relative weights for the eval-
uation criterion are: Operation cost (0.355), Capital cost 
(0.234), Distance (0.161), Production (0.156), Ground 
condition (0.092), Reliability (0.084), Risk (0.081), Safe-
ty (0.079), Efficiency (0.07), Material size (0.051), Envi-
ronment (0.051), Availability (0.037), Useful life (0.032), 
Weather condition (0.03), and Flexibility (0.017). Based 
on the weights obtained by FAHP, the most important 
criteria for the evaluation of handling equipment is Oper-
ation cost (0.355). Moreover, the less important criterion 
is Flexibility (0.017). The ranks of the evaluation criteria 
from the largest to smallest are schematically shown in 
Figure 6. 

 
Table 4. Synthetic pairwise comparison matrices 

EP OP TP 
EP 1.00 1.00 1.00 0.77 0.96 1.29 1.23 2.29 3.37 
OP 0.78 1.04 1.30 1.00 1.00 1.00 1.12 2.16 3.24 
TP 0.30 0.44 0.81 0.31 0.46 0.89 1.00 1.00 1.00 

 
Table 4. Continued  

C1 C2 
C1 1.00 1.00 1.00 0.36 0.71 1.16 
C2 0.86 1.41 2.78 1.00 1.00 1.00 

 
Table 4. Continued  

C3 C4 C5 C6 C7 C8 C9 
C3 1.00 1.00 1.00 2.43 3.56 4.71 1.32 2.47 3.57 0.69 0.92 1.16 3.24 4.35 4.51 2.65 3.72 4.87 1.12 2.23 3.39 
C4 0.21 0.28 0.41 1.00 1.00 1.00 0.37 0.54 0.79 0.24 0.34 0.47 0.96 1.76 2.83 0.66 1.12 1.92 0.34 0.56 0.92 
C5 0.28 0.40 0.76 1.27 1.85 2.70 1.00 1.00 1.00 0.34 0.53 0.87 2.21 3.27 4.38 0.92 1.73 2.84 0.78 1.21 2.28 
C6 0.86 1.09 1.45 2.13 2.94 4.17 1.15 1.89 2.94 1.00 1.00 1.00 3.24 4.36 5.54 3.12 4.19 5.31 1.39 2.46 3.67 
C7 0.22 0.23 0.31 0.35 0.57 1.04 0.23 0.31 0.45 0.18 0.23 0.31 1.00 1.00 1.00 0.31 0.48 0.82 0.25 0.34 0.51 
C8 0.21 0.27 0.38 0.52 0.89 1.52 0.35 0.58 1.09 0.19 0.24 0.32 1.22 2.08 3.23 1.00 1.00 1.00 0.42 0.76 1.14 
C9 0.29 0.45 0.89 1.09 1.79 2.94 0.44 0.83 1.28 0.27 0.41 0.72 1.96 2.94 4.00 0.88 1.32 2.38 1.00 1.00 1.00 
 
Table 4. Continued  

C10 C11 C12 C13 C14 C15 
C10 1.00 1.00 1.00 0.87 1.12 2.15 1.46 2.52 3.67 0.57 0.96 1.16 4.08 5.15 6.31 2.23 3.33 4.47 
C11 0.47 0.89 1.15 1.00 1.00 1.00 1.31 2.42 3.57 0.62 0.87 1.23 2.96 4.12 5.15 1.12 2.19 3.27 
C12 0.27 0.40 0.68 0.28 0.41 0.76 1.00 1.00 1.00 0.38 0.63 0.94 1.23 2.34 3.47 0.76 0.98 1.35 
C13 0.86 1.04 1.75 0.81 1.15 1.61 1.06 1.59 2.63 1.00 1.00 1.00 3.14 4.21 5.22 2.32 3.39 4.47 
C14 0.16 0.19 0.25 0.19 0.24 0.34 0.29 0.43 0.81 0.19 0.24 0.32 1.00 1.00 1.00 0.29 0.42 0.76 
C15 0.22 0.30 0.45 0.31 0.46 0.89 0.74 1.02 1.32 0.22 0.29 0.43 1.32 2.38 3.45 1.00 1.00 1.00 
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Table 5. Relative weight of the evaluation criteria 
Main and sub-criteria  Local weights Global weights BNP Rank  

Economic parameters (0.24,0.41,0.68) – –  
Capital cost  (0.22,0.42,0.70) (0.052,0.169,0.482) 0.234 2 
Operation cost (0.34,0.58,1.09) (0.080,0.238,0.746) 0.355 1 

Operating parameters (0.23,0.41,0.68) – –  
Production (0.13,0.27,0.48) (0.031,0.110,0.327) 0.156 4 
Material size (0.04,0.08,0.16) (0.009,0.033,0.111) 0.051 10 
Ground condition (0.07,0.14,0.30) (0.016,0.057,0.203) 0.092 5 
Distance (0.14,0.27,0.50) (0.032,0.109,0.341) 0.161 3 
Weather condition (0.03,0.05,0.10) (0.006,0.019,0.066) 0.030 14 
Environment (0.04,0.08,0.16) (0.009,0.032,0.111) 0.051 11 
Risk (0.06,0.12,0.27) (0.013,0.049,0.181) 0.081 7 

Technical parameters (0.11,0.18,0.38) – –  
Reliability (0.14,0.27,0.50) (0.016,0.049,0.188) 0.084 6 
Efficiency (0.11,0.23,0.41) (0.012,0.042,0.156) 0.070 9 
Availability (0.06,0.11,0.23) (0.006,0.020,0.086) 0.037 12 
Safety (0.14,0.25,0.47) (0.015,0.045,0.176) 0.079 8 
Flexibility (0.03,0.05,0.10) (0.003,0.009,0.037) 0.017 15 
Useful life (0.05,0.10,0.19) (0.006,0.018,0.071) 0.032 13 
 

 
Fig. 5. Decision hierarchy 

 

 
 

 
Fig. 6. Ranking of criteria 

 

Step 3. In the last step, fuzzy evaluation matrices are 
established by ten evaluators for evaluating the handling 
equipment methods with respect to the criteria under 
consideration based on linguistic variables given in Ta-
ble 2 and Figure 2. For example, the fuzzy decision ma-
trix filled by one of the experts is shown in Table 6. 

Then, the aggregated fuzzy performance ratings of 
handling methods with respect to each criterion are calcu-
lated by Eqn (9) and the results are presented in Table 7.  

The second phase of this step is to normalize the ag-
gregated fuzzy decision matrix using Eqn (11). After nor-
malizing the decision matrix, by applying the relative im-
portance of the evaluation criteria derived in previous step, 
the weighted decision matrix is resulted as shown in Table 8.  
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Table 6. A sample of filled questionnaire  
A1 A2 A3 

C3 VG G VG 
C4 VP VG G 
C5 VP G G 
C6 G G VG 
C7 VP G P 
C8 G F G 
C9 VG P G 
C10 F G G 
C11 G F VG 
C12 G VG P 
C13 G F F 
C14 VP VG F 
 
Then, the fuzzy positive ideal solution (FPIS, A+ ) 

and the fuzzy negative ideal solutions (FNIS, A− ) are 
calculated. Fuzzy preferences are normalized positive 
triangular fuzzy numbers, so the FPIS and the FNIS can 
be defined as (1,1,1)i jv w+ = ⊗�  and (0,0, 0)iv

−

=� . The dis-
tance of each alternative from A+ and A− is calculated by 
using Eqns (16) and (17).  

In the last phase of this step, the alternatives are 
ranked in descending order as listed in Table 9. Accord-
ing to CCi values, the final ranking of the alternatives in 
descending order are A2, A3, and A1. The proposed 
model shows that Truck (A2) is the most appropriate 
handling system with CC value of 0.642. Final rankings 
of the handling equipment based on CCi values are de-
picted in Figure 7. 

 

 
Fig. 7. Final rankings of alternatives 

 
 

Table 7. Aggregated fuzzy performance ratings 
A1 A2 A3 

C1 2904100 2904100 2904100 2340000 2340000 2340000 2736000 2736000 2736000 
C2 209 209 209 195 195 195 188 188 188 
C3 5 7.43 10.00 3 6.53 9 5 7.23 10 
C4 0 2.07 5.00 5 7.76 10 3 6.42 9 
C5 0 2.12 5.00 3 6.59 9 3 6.89 10 
C6 3 6.24 9.00 3 6.74 10 5 7.32 10 
C7 0 1.87 5.00 3 6.34 9 0 3.17 7 
C8 3 6.54 9.00 1 4.46 9 3 6.32 9 
C9 5 7.87 10.00 1 3.12 7 3 6.94 10 
C10 1 4.31 7.00 3 6.43 9 3 6.57 9 
C11 3 6.45 9.00 1 4.57 7 5 7.12 10 
C12 3 6.92 10.00 5 7.56 10 1 3.24 7 
C13 1 6.21 9.00 1 4.23 7 1 4.36 7 
C14 0 3.12 7.00 5 7.21 10 1 4.67 9 
C15 18 18.00 18.00 14 14 14 10 10 10 

 
Table 8. Weighted decision matrix 

A1 A2 A3 
C1 0.00 0.00 0.00 0.15 0.15 0.15 0.05 0.05 0.05 
C2 0.00 0.00 0.00 0.16 0.16 0.16 0.23 0.23 0.23 
C3 0.03 0.06 0.10 0.00 0.05 0.09 0.03 0.06 0.10 
C4 0.00 0.01 0.02 0.02 0.03 0.03 0.01 0.02 0.03 
C5 0.00 0.01 0.03 0.02 0.04 0.05 0.02 0.04 0.06 
C6 0.00 0.05 0.09 0.00 0.06 0.11 0.03 0.06 0.11 
C7 0.00 0.00 0.01 0.01 0.01 0.02 0.00 0.01 0.02 
C8 0.01 0.02 0.03 0.00 0.01 0.03 0.01 0.02 0.03 
C9 0.03 0.01 0.00 0.05 0.04 0.02 0.04 0.02 0.00 
C10 0.00 0.02 0.04 0.01 0.04 0.06 0.01 0.04 0.06 
C11 0.01 0.03 0.04 0.00 0.02 0.03 0.02 0.03 0.05 
C12 0.01 0.02 0.02 0.01 0.02 0.02 0.00 0.01 0.02 
C13 0.00 0.03 0.05 0.00 0.02 0.04 0.00 0.02 0.04 
C14 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 
C15 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 
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Table 9. FTOPSIS results 

Alternatives jD+  jD−  jCC  Rank 
A1 0.730 0.344 0.32 3 
A2 0.391 0.701 0.642 1 
A3 0.419 0.662 0.612 2 
 

5. Sensitivity analysis 
In order to identify the cause of the difference in the out-
come of the proposed model, a sensitivity analysis is 
conducted. This technique generates different scenarios 
that may change the priority of alternatives and be needed 
to reach a consensus. If the ranking order is changed by 
increasing or decreasing the importance of the criteria, 
the results are expressed to be sensitive otherwise it is 
robust (Yazdani-Chamzini, Yakhchali 2012). In this 
study, sensitivity analysis is conducted to see how sensi-
tive the alternatives change with the importance of the 
criteria. This tool graphical exposes the importance of 
criteria weights in selecting the optimal alternative among 
the feasible alternatives. The main goal of sensitivity 
analysis is to see which criteria is most significant in 
influencing the decision making process. For this reason, 
thirty experiments were conducted that each experiment 
is generated by an increase of 300% and 400% in the 

amount of the weight of the criterion under consideration. 
Table 10 presents the details of these experiments. 

It can be shown from Figure 8 that out of thirty ex-
periments, alternative A2 has the highest score in twenty 
six experiments. In the rest of the experiments (experi-
ment numbers 2, 17, 18, and 26), alternative A3 is located 
in the top level as the winner. Therefore, it can be result-
ed that the decision making process is rarely sensitive to 
the criteria weight with alternative A2 emerging as the 
winner (87% votes). 

 
Conclusion  
The problem of handling equipment selection plays a 
critical role in the process of mining design because it 
takes a great deal of the overall costs. For this reason, 
designers and managers should employ an efficient and 
capable method to select the most appropriate handling 
system among a pool of alternatives. The handling 
equipment selection problem is often influenced by un-
certainty in real world, and in such circumstances fuzzy 
set theory is an appropriate tool to face with this type of 
problems and handle the existing uncertainty. In practice, 
it is difficult or even impossible for decision makers to 
express the precise numerical information on the weights 
and the ratings; for this reason, the linguistic terms are 
useful. Likewise, by applying group decision making

 

 
Fig. 8. Sensitivity analysis 



Journal of Civil Engineering and Management, 2014, 20(5):  660–673 

 

671

Table 10. Changing the criteria weights for sensitivity analysis 
No. Weights of criteria Ranking  No. Weights of criteria Ranking  
1 1( ) 1( )3C new C oldW W= ×  A2 > A3 > A1 16 1( ) 1( )4C new C oldW W= ×  A2 > A3 > A1 
2 2( ) 2( )3C new C oldW W= ×  A3 > A2 > A1 17 2( ) 2( )4C new C oldW W= ×  A3 > A2 > A1 
3 3( ) 3( )3C new C oldW W= ×  A2 > A3 > A1 18 3( ) 3( )4C new C oldW W= ×  A3 > A2 > A1 
4 4( ) 4( )3C new C oldW W= ×  A2 > A3 > A1 19 4( ) 4( )4C new C oldW W= ×  A2 > A3 > A1 
5 5( ) 5( )3C new C oldW W= ×  A2 > A3 > A1 20 5( ) 5( )4C new C oldW W= ×  A2 > A3 > A1 
6 6( ) 6( )3C new C oldW W= ×  A2 > A3 > A1 21 6( ) 6( )4C new C oldW W= ×  A2 > A3 > A1 
7 7( ) 7( )3C new C oldW W= ×  A2 > A3 > A1 22 7( ) 7( )4C new C oldW W= ×  A2 > A3 > A1 
8 8( ) 8( )3C new C oldW W= ×  A2 > A3 > A1 23 8( ) 8( )4C new C oldW W= ×  A2 > A3 > A1 
9 9( ) 9( )3C new C oldW W= ×  A2 > A3 > A1 24 9( ) 9( )4C new C oldW W= ×  A2 > A3 > A1 
10 10( ) 10( )3C new C oldW W= ×  A2 > A3 > A1 25 10( ) 10( )4C new C oldW W= ×  A2 > A3 > A1 
11 11( ) 11( )3C new C oldW W= ×  A2 > A3 > A1 26 11( ) 11( )4C new C oldW W= ×  A3 > A2 > A1 
12 12( ) 12( )3C new C oldW W= ×  A2 > A3 > A1 27 12( ) 12( )4C new C oldW W= ×  A2 > A3 > A1 
13 13( ) 13( )3C new C oldW W= ×  A2 > A3 > A1 28 13( ) 13( )4C new C oldW W= ×  A2 > A3 > A1 
14 14( ) 14( )3C new C oldW W= ×  A2 > A3 > A1 29 14( ) 14( )4C new C oldW W= ×  A2 > A3 > A1 
15 15( ) 15( )3C new C oldW W= ×  A2 > A3 > A1 30 15( ) 15( )4C new C oldW W= ×  A2 > A3 > A1 

 
(social choice), decision making will be more accurate 
because it can improve the results by reducing the effect 
of individual errors. 

In this paper, an integrated group model based on 
FAHP and FTOPSIS is proposed that is able to consider 
both tangible and intangible criteria for evaluating the 
feasible alternatives in order to select the best handing 
equipment. FAHP is used to calculate the weights of the 
evaluation criteria, while FTOPSIS is utilized to prioritize 
alternatives. The weights obtained by FAHP are involved 
in the problem of the handling equipment selection by 
using them in FTOPSIS computations and ranking order 
is assigned based on these weights. Finally, the alterna-
tive with the highest score is selected. Also, sensitivity 
analysis was conducted to investigate the influence of 
criteria weights on the problem of the handling equip-
ment selection. A real world case study is illustrated to 
show the potential application of the proposed model. 
However, the proposed method can be applied for tack-
ling MCDM problems in real issues, such as management 
and engineering problems when information are incom-
plete, inaccurate, and uncertain by nature. 
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