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Abstract. Tall buildings have become increasingly one-of-a-kind signature structures that are often irregular in plan and 

elevation with complicated dynamic behavior. Vibration control of irregular highrise building structures using a recently 

developed tuned mass dampers (TMD), the bidirectional TMD (BTMD), is investigated. A key issue for effective imple-

mentation of a TMD is the determination of their tuning parameters. Eight different sets of equations for tuning the pa-

rameters of TMDs are investigated using a 5-story building with plan and elevation irregularity, and a 15-story and a  

20-story building with plan irregularity subjected to seismic loading. Appropriate equations are recommended for building 

structures with a fundamental period of vibrations of greater than one second. 

Keywords: vibration control, tuned mass damper, highrise building, irregular structure. 

 

Introduction 

In recent years clients for tall buildings have increasingly 

been demanding one-of-kind signatures that are often 

irregular in plan and elevation with complicated dynamic 

behavior (Wang, Adeli 2014). An innovative approach to 

mitigate the vibration of structures during dynamic wind 

and earthquake events is the use of tuned mass dampers 

(TMDs). For example, Kang et al. (2012) evaluate per-

formance of TMD installed on a 39-story, 184.6 m steel 

building located in Incheon, Korea under typhoon using 

system identification (Cen et al. 2013) and inverse wind 

load estimation. Amini et al. (2013) present optimal vi-

bration control of a 10-storey shear-frame building struc-

ture using an active TMD and a wavelet-based (Ghodrati 

Amiri et al. 2012; Xiang, Liang 2012; Lin et al. 2012; 

Acharya et al. 2012; Kodogiannis et al. 2013) control 

algorithm and particle swarm optimization (Tao et al. 

2012; Shafahi, Bagherian 2013; Hsu 2013). Ghaem-

maghami et al. (2013) study dynamic behavior of annular 

tuned liquid dampers in tall wind towers. A review of 

TMDs is presented by Gutierrez Soto and Adeli (2013). 

Vibration control of structures can be divided into 

passive, semi-active, and active control (Ko et al. 2012; 

Hemami et al. 2012; Rodrıguez-Seda et al. 2012; Rigatos 

2013; Boutalis et al. 2013; El-Khoury, Adeli 2013). 

Passive dampers have proven to be a good practical op-

tion for retrofitting of historic buildings (Branco, Guerrei-

ro 2011; Nawrotzki 2006) and can be implemented on 

existing buildings with relatively modest rehabilitation. 

Nawrotzki (2008) points out adding TMDs create a dy-

namic upgrade in existing bridges and buildings that 

increases structural safety and improves serviceability 

and comfort conditions. 

Irregular structures behave in a complex manner du-

ring strong ground motions and their vibration control is 

of particular interest (Lei et al. 2012; Nigdeli, Boduroğlu 

2013). Kim and Adeli (2005a, b) investigate vibration 

control of irregular highrise building structures under 

various seismic excitations using a hybrid control system 

consisting of a passive supplementary damping system 

and a semi-active tuned liquid column damper (TLCD) 

system. They use a novel wavelet-based optimal control 

algorithm (Adeli, Kim 2004; Kim, Adeli 2004) to find the 

optimum control forces. Simulation results for control of 

two multistory moment-resisting space steel structures 

with vertical and plan irregularities show clearly that the 

hybrid damper-TLCD control system significantly redu-

ces responses of irregular buildings subjected to various 

earthquake ground motions. Bitaraf et al. (2012) present 

active and semi-active adaptive control for undamaged 

and damaged building structures under seismic motions. 

Aldemir et al. (2012) propose a simple method to obtain 

the suboptimal passive damping and stiffness parameters 

from the optimal control gain matrix. They also propose a 

new performance index in order to consider the mechani-

cal energy of the structure, control and the seismic ener-

gies simultaneously in the minimization procedure. The 

resulting closed-loop control algorithm does not require 

the solution of the nonlinear Riccati equation (Saleh, 

Adeli 1997; Adeli, Saleh 1999). They present examples 

of multistory frames subjected to seismic excitations. 

Almazan et al. (2012) study the performance and 

placement of one or more TMDs in asymmetric buildings 
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using four different examples including a three-

dimensional (3D) 15-story RC structure with plan irregu-

larity subjected to seismic loading with the goal of mini-

mizing the inter-story displacement or drift. They use the 

Kanai-Tajimi spectrum to model the seismic excitation 

and place 1 or 2 TMDs on the roof. For asymmetric 

structures, they conclude that the optimum TMD 

frequency and location on the roof depend on structural 

lateral and torsional stiffnesses, eccentricity between 

centers of mass and rigidity and the frequency content of 

the ground motion; and the optimum location is near the 

geometric center of the plan. They also conclude: “if the 

uncertainty associated to the dynamic parameters of the 

main structure is ignored, a significant improvement 

would not be obtained by adding a second TMD”. 

Lu et al. (2013) present vibration control of The 

Shanghai World Financial Center Tower, currently the 

tallest building in China, with a height of 492 m under 

wind using two Active Tuned Mass Dampers (AMTD) 

place on the 90th floor. AMTDs are employed to mitigate 

wind vibrations only. During earthquakes actuators are 

turned off and ATMDs behave like passive TMDs. The 

authors report a reduction in the wind acceleration res-

ponse of up to 60% when the wind speed is below the 

design value.  

It was noted by Villaverde (1985) that vibration ab-

sorbers yield a desired response subjected to earthquake 

loading only if the appropriate parameters of vibration 

absorber device are selected. Equations for parameters of 

vibration dampers have evolved over the years. Early 

equations were based on harmonic excitations acting 

directly on the mass which is different when earthquake 

excitation is acted at the base.  

Vibration control of irregular highrise building 

structures using a recently developed TMD, the bidi-

rectional TMD (BTMD), is investigated in this paper. 

Eight different sets of equations for tuning the parameters 

of tuned mass dampers (TMDs) are investigated using a 

5-story building with plan and elevation irregularity, and 

a 15-story and a 20-story building with plan irregularity 

subjected to seismic loading. The BTMD is combination 

of two cables forming a Y-shape connected to the mass at 

the middle, and a friction damper connected to the mass 

from the bottom. 

 

1. Selection of optimum parameters values for a TMD 

Different researchers have presented equations for the 

optimum values of the parameters of the TMD using 

different criteria or approaches. A summary is provided 

in Table 1. Most researchers present optimum values of 

the damping and frequency ratios based on a given mass 

ratio. 

 
Table 1. Equations for finding the optimum tuning parameters of a TMD 

Author 
Year of 

Publication 

Frequency ratio 

optγ  

Damping ratio 

doptξ  Comments 

Den Hartog 1956 
1

1+µ
 

3

3

8(1 )

µ

+µ
 

First equations for 

optimum tuning pa-

rameters of a TMD 

and an undamped 

SDOF system based 

on a harmonic excita-

tion 

Warburton 1982 
1 / 2

1

−µ

+µ
 

( )

( )

1 / 4

4(1 ) 1 / 2

µ −µ

+µ −µ
 

Based on random 

white-noise accelera-

tion excitation and an 

undamped SDOF 

system 

Fujino and 

Abe 
1993 

1 / 2

1

−µ

+µ
 

( )

( )

1 3 / 41

2 (1 ) 1 / 2

µ + µ

+µ +µ
 

Based on random 

excitations for 

undamped 2DOF 

systems 

Feng and 

Mita 
1995 

1 / 2

1

−µ

+µ
 

(i) ( )
( )

( )

2 2

4 2

3

1 3 11
1

2  1

− +µ γ
+µ γ + γ +

+µ

 

(ii) ( ) 2
1

1 1
2 1

γ
+ µ γ + −

+µ
 

Based on white-noise 

excitation of 2DOF 

system for displace-

ment (i) and accelera-

tion (ii) 

Sadek et al. 1997 

(i) 
1

1+µ
 

(ii) 
1

1
1 1

s

 µ
− ξ 

+ µ +µ  
 

(i)  
1

µ

+µ
 

(ii)  
1 1

s
ξ µ

+
+µ +µ

 

Based on earthquake 

excitation for both 

undamped (i) and 

damped (ii) 30 SDOF 

systems 
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Continued Table 1 

Author 
Year of 

Publication 

Frequency ratio 

optγ  

Damping ratio 

doptξ  Comments 

Rudinger 2006 
2

(2 µ)

2(1 µ)

+

+
 

3

µ(4 3µ)
 

4(1 µ)

+

+
 

Based on white noise 

excitation on un-

damped and damped 

linear and nonlinear 

SDOF systems with 

linear damping =1 

Krenk and 

Hogsberg 
2008 

1

1+µ
 

1

2 (1 )

µ

+ µ
 

Based on force and 

white noise accelera-

tion excitation on 

undamped and 

damped 2DOF sys-

tems 

Hoang et al. 2008 

(i) 
( )( )21 6 1

0.7
1

s

− µ + µ
− ξ

+µ
 

(ii) 

1
6 0.7

1
1

2

s

δµ −  ξ 
−

µ+µ −
 

(iii) 
(1 / 2) 0.7

1 1 / 2

s
−µ ξ

−
+µ −µ

 

(i) 
( )
( )

21 2.5 2

2 1 2.7

µ + µ + µ

+ µ
 

(ii) 

( )

1
4

0.25

4 1 1
2

s

µ µ − 
  + µξ

µ + µ − 
 

 

(iii) 
( )( )

(1 / 4)
0.25

4 1 1 / 2
s

µ −µ
+ µξ

+µ −µ
 

Based on seismic 

excitation of a 

damped SDOF for 

ranges of ground 

frequency ratio of 

g sδ ω / ω=   

(i) 1δ =  

(ii)  1 3< δ <  

(iii) 3δ ≥   

 

Den Hartog (1956) derived equations by minimizing 

the response of an undamped single-degree-of-freedom 

(SDOF) system subjected to sinusoidal loading. The 

author showed how damper and spring coefficients can 

be determined to minimize vibration for a specific 

structural mode.   

Warburton (1982) uses Den Hartog’s approach and 

broadband optimization to derive equations considering 

harmonic and white noise random excitations directly on a 

SDOF system based on the notion that the average dam-

ping ratios of the resonant modes between the uncontrolled 

structure and the TMD is approximately equal to the  

effective damping ratio of a building with TMD.  

Villaverde (1985) derived equations for a TMD with 

high damping and small mass ratios by minimizing the 

dynamic response of a 2D three-story frame and a 3D 10-

story building subjected to seismic loading.  

Fujino and Abe (1993) present four sets of equations 

for optimum tuning parameters of a 2DOF system for 

four different cases: free vibration, harmonic, self-

excited, and random excitations based on a modification 

of the 2DOF dynamic characterization proposed by Igusa 

and Der Kiureghian (1985) using the mean-square values 

of perturbation solutions of displacement responses 

assuming both mass and structural damping ratios of less 

than two percent. The equations for the case of random 

excitations are included in Table 1. 

Feng and Mita (1995) proposed two sets of equa-

tions, one for displacement and the other for acceleration, 

for the optimum values of frequency and damping ratios 

of a TMD attached to a 2 DOF system by minimizing the 

dynamic response in terms of mean square values of 

displacement and acceleration. They study the perfor-

mance of their equations on a 200-m tall building 2D 

frame with a structural damping ratio of 0.02 subjected to 

earthquake excitations.  

Sadek et al. (1997) modified the equations proposed 

by Villaverde (1985) and use curve fitting to find op-

timum parameters of the TMD system such that the first 

two modes of the controlled structure have the same 

damping ratio with a value equal to greater than the ave-

rage damping ratio of TMD and structure alone. Their 

formulation varies from previous authors in that it inclu-

des the structural damping ratio of the primary structural 

system ( sξ ). The authors also investigated the optimum 

parameters for MDOF using a factor that takes into con-

sideration the amplitude of the first mode shape of the 

structure. 

Rudinger (2006) used statistical linearization to deri-

ve TMD optimum tuning parameter equations for a dam-

ped SDOF system subjected to white noise excitation. The 

author concludes TMD optimum tuning parameters are the 

same for undamped and damped systems that behave line-

arly. On the contrary, optimal parameters for a nonlinear 

system with TMD are dependent on structural damping 

and excitation intensity (vibration amplitude).  

Krenk and Hogsberg (2008) use an approximation 

technique with minimum standard deviation to obtain op-

timum tuning equations for undamped and damped 2DOF 

systems subjected to force and acceleration excitations 

independent of the structural damping ratio. Their approxi-

mation suggests that optimal performance can be obtained 

without considering the structural damping of the primary 

system in formulation of tuning and frequency ratios.  
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Hoang et al. (2008) present equations for optimum 

parameters of a TMD for a SDOF system subjected to 

seismic excitation for different ranges of the ratio of the 

dominant ground frequency g(ω )  to structural frequency 

s
(ω ) , g s δ ω / ω= , using a nonlinear programming tech-

nique (Adeli, Soegiarso 1999; Adeli, Sarma 2006) that 

follows the Davidon-Fletcher-Powell algorithm  

(Hoang, Warnitachai 2005). The idea is to have site-

specific parameters thus taking into account the type of 

soil on which a structure is built. In their formulation, the 

authors simulate artificial earthquakes using the Kanai-

Tajimi model and choose a specific ground frequency. 

Their formulas are separated on a specific range of 

ground frequency ratio, but in reality the range of ground 

frequencies in an earthquake cannot be known a priori. 

The authors presented a numerical example where they 

studied the effect of large mass ratios for TMD in a brid-

ge subjected to earthquake loading. They noted that the: 

“optimal TMD has lower tuning frequency and higher 

damping ratio with increasing mass ratio”. They also 

concluded that using a large mass ratio can help against 

parameter uncertainties that occur between theoretical 

model and the actual practical implementation. In their 

example, they use a mass ratio of 77% and provided res-

ponse reduction for their example, yet using such high 

mass ratio on a building such as a TMD on roof can inf-

luence the practicality and constructability of the design.  

 

2. Bidirectional tuned mass damper 

Almazan et al. (2007) proposed a bidirectional TMD 

(BTMD) device and applied it to control vibrations of a 

25-story reinforced concrete 3D regular frame and an  

80-m by 3-m diameter thin-walled cylindrical steel struc-

ture subjected to seismic loading. This device is a combi-

nation of two cables forming a Y-shape connecting to the 

mass at the middle, and a friction damper connected to 

the mass from the bottom (Fig. 1). 

The tuning parameters of a BTMD are the mass md 

and the lengths 
x
L  and 

y
L  of the cables from the mass to 

the fix support and to Y-intersection (Fig. 1) which are 

determined as follows:  

 
2 2

 x

opt sx

g
L =

γ ω
; (1) 

 
2 2

 y

opt sy

g
L =

γ ω
; (2) 

 
( )

1 /

opt oo
o

d x f

f
f

m g L L

ξ − ξ π
= =

−
ɶ , (3) 

where ω
sx
 and syω  stand for the fundamental natural 

frequencies of the structure in the two principal directions 

considered. These frequencies are determined based on 

the dominance of the modal mass participation factor. 

The optimal slip force 
o
fɶ  is obtained based on the equiv-

alent damping ratio, 
eq

ξ  (which is set equal to optξ ). 
o

ξ  

is the viscous damping ratio of the friction damper locat-

ed at the connection and Lf  is the remaining distance 

from the intersection to the floor. The optimum tuning 

parameters can be the same values used for a standard 

TMD presented in Table 1. 

A mass ratio (  µ ) within the range of 3–5% has been 

recommended in the literature (Connor 2003). A mass 

ratio of 0.03µ =  and structural damping ( sξ ) of 0.05 is 

recommended for steel structures (ASCE 2010) are used 

in this paper.  
 

 

Fig. 1. Bidirectional Tuned Mass Damper (BTMD): (a) Three-

dimensional view; (b) view in the xz plane; (c) view in the yz 

plane 

 
3. Comparison of equations for optimum BTMD 

tuning parameters 

In this section, eight different sets of equations for finding 

the optimum BTMD tuning parameters summarized in 

Table 1 are compared using three different irregular struc-

tures. 

 

3.1. Example 1: five-story 3D ordinary moment 

resisting steel frame with plan and elevation 

irregularity 

The 5-story 3D ordinary moment resisting steel frame 

with setbacks and an L-shape plan is shown in Figures 2 

and 3. This example was originally created by Young and 

Adeli (2014). Roof and floor framing systems consist of 

steel beams and 6-in thick lightweight concrete over steel 

metal deck working as a rigid diaphragm. The loads on 

the structure include dead load from self-weight for steel 

members and concrete floors, additional dead load for 

roofing, partitions, furniture and other structure items 

(15 psf), cladding (25 psf), live load (50 psf) and wind 

load corresponding to 85 mph, gust factor 0.85 and expo-

sure category C. It is designed for a design acceleration 

spectrum of 0.28 g, site class D and seismic category B 

(ASCE 2010). Centers of mass (CM) and centers of rigid-

ity (CR) are identified in Figure 3.  
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Fig. 2. Five-story irregular 3D building structure with setbacks 

and an L-shape plan 

 

 
Fig. 3. Plan view of 5-story building (+CR1 = center of rigidity 

of the top two floors, +CR2 = center of rigidity of the bottom 

three floors, ●CM1 = center of mass of the top two floors,  

●CM2 = center of mass of the bottom three floors) 

 

Table 2 presents the modal response data for the 

first 7 modes of the uncontrolled structure. The more 

irregular the structure, the larger number of modes is 

needed for accurate determination of the dynamic respon-

se of the structure (Liang et al. 2012). In this example, 

the dominant modes, that is, the modes with the largest 

modal participation factors, are found to be the first two 

modes (their participation factors are identified in shaded 

boxes in Table 2). 

The most dominant mode turns out to be the second 

mode of vibrations. As such, the parameters of BTMD are 

determined for the first two modes of vibrations and used 

for the comparative study in this paper. A BTMD is placed 

at the CR of the roof location (B-5 in Fig. 3). The uncont-

rolled structure is subjected to Loma Prieta, Northern Cali-

fornia, earthquake of October 17, 1989, with Magnitude 

7.1 (Station 58378) displayed in Figure 4 using twenty four 

different incident angles with increments of 15 degrees in 

the horizontal plane. The maximum absoliute displacement 

Table 2. Free vibration modal response of the 5-story irregular 

building 

Mode 
Period  

(sec) 

Modal Participation Factors 

X  

Translation 

Y  

Translation 

Z  

Torsion 

1 0.807 0.001 0.470 0.036 

2 0.553 0.480 0.071 0.770 

3 0.502 0.150 0.360 0.021 

4 0.444 0.180 0.027 0.003 

5 0.279 0.052 0.000 0.016 

6 0.240 0.018 0.004 0.027 

7 0.183 0.047 0.027 0.023 

 
Total 

Sum = 
0.928 0.959 0.896 

 

was obtained for the incident angle of 75 degrees with 

respect to the X-axis shown in Figure 3. Next, the incident 

angle resolution was reduced to 5 degrees around the inci-

dent angle of 75 degrees between 60 and 90 degrees. The 

maximum absolute displacement was obtained for the 

incident angle of 80 degrees at joint A6-5. Each node is 

identified with a letter (indicating the grid in the N-S di-

rection) followed by a number (indicating the grid in the E-

W direction), a dash, and a second number (indicating the 

floor number). For example, A6-5 indicates the node at the 

intersection of grid lines A and 6 on the 5th floor. The 

maximum absolute joint displacements in cm for different 

earthquake incident angles are depicted in Figure 5.  

 

 

Fig. 4. Loma Prieta earthquake accelerogram (October 17, 1989, 

Magnitude 7.1) 
 

 
Fig. 5. Maximum absolute joint displacement (cm) for different 

earthquake incident angles for the 5-story building 
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The critical angle of incidence of 80 degrees is used 

to compare the 8 sets of equations for PTMD/BTMD 

tuning parameters presented in Table 1. The results of the 

comparisons for maximum absolute displacements, acce-

lerations and base shear are presented in Table 3.  

Based on Table 3, the formulas suggested by Hoang 

et al. (2008) using δ = 1 present the most effective cont-

rol in decreasing the maximum displacement by 41.3%, 

maximum acceleration by 35.3%, while formulas sugges-

ted by Sadek et al. (1997) result in the highest decrease in 

absolute base shear by 25.7%. 

Results for the maximum inter-story drifts for the 

eight sets of equations are presented in Figure 6 and for 

the maximum floor accelerations are presented in Figu-

re 7. Figure 8 shows the maximum displacement and 

acceleration of joint A6-5 and base shear of the 5-story 

building with a BTMD system. Equations proposed by 

Hoang et al. (2008) provide the most effective inter-story 

displacement control. Equations proposed by Fujino and 

Abe (1993), Feng and Mita (1995), Sadek et al. (1997), 

Krenk and Hogsberg (2008) and Hoang et al. (2008) 

yield similar maximum floor acceleration results and are 

more effective than the rest of the equations.  
 

 

 

Fig. 6. Maximum interstory displacement (drift) for 5-story building using 

different equations for optimum TMD tuning parameters 

 

 

 

Fig. 7. Maximum absolute floor acceleration for 5-story building using different 

sets of equations for optimum TMD tuning parameters 
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Table 3. Optimum tuning parameters and maximum absolute displacement (cm) and acceleration (g) and base shear (kN) for  

the 5-story building 

Method 

Optimal Parameters Maximum Response of the Controlled Structure 

Frequency ratio 

optγ  

Damping ratio 

doptξ  

Absolute  

Displacement 

(cm) 

Absolute  

Acceleration  

(m/s2) 

Absolute  

Base Shear  

(kN) 

Hoang et al. (2008) (δ = 1) 0.858 0.083 5.44 0.460 802.7 

Sadek et al. (1997) 0.963 0.219 6.37 0.494 720.2 

Feng and Mita (1995) 0.964 0.083 6.44 0.502 764.0 

Hoang et al. (2008) (δ = 3) 0.928 0.086 6.49 0.504 763.9 

Krenk and Hogsberg (2008) 0.971 0.086 6.67 0.511 754.5 

Warburton (1982) 0.964 0.0860 6.95 0.523 745.4 

Den Hartog (1956) 0.971 0.101 6.96 0.520 764.2 

Fujino and Abe (1993) 0.964 0.0857 7.03 0.527 743.2 

Rudinger (2006) 0.971 0.005 7.82 0.583 788.9 

Uncontrolled – – 9.27 0.710 969.6 

% Max. Reduction 41.3 35.3 25.7 

 

 
 

 
 

 

Fig. 8. Maximum displacement and acceleration of joint A6-5 

and base shear of 5-story building with a BTMD system  

 

3.2. Example 2: fifteen-story reinforced concrete 

moment resisting frame with plan irregularity 

This example is a 15-story irregular reinforced concrete 

moment-resisting frame with an L-shape plan shown in 

Figure 9. This building was created originally by Alma-

zan et al. (2012). The beams have a 0.3 m by 0.7 m cross-

sectional area. All columns have a square 0.5 m by 0.5 m 

cross-sectional area, except columns along grid line 4 

which have a 1 m by 0.4 m cross-sectional area and grid 

location C-3 which have a 0.4 m by 1 m cross-sectional 

area. The slab is 0.15 m thick and is modeled as a rigid 

diaphragm.  

Table 4 presents the free vibrations response data 

for the uncontrolled structure. This structure is subjected 

to the same Loma Prieta earthquake accelerogram used in 

the previous 5-story example (Fig. 4) and studied using 

24 different incident angles with increments of 15 degre-

es in the horizontal plane. The maximum absolute displa-

cement was obtained for the incident angle of 45 degrees 

with respect to the X-axis (Fig. 9). Next, the incident 

angle resolution was reduced to 5 degrees around the 

incident angle of 45 degrees between 45 and 60 degrees. 

 

 
Fig. 9. 15-story building reinforced concrete 3D building with 

plan irregularity: (a) Perspective view; (b) Plan view; +CR = 

center of rigidity; ●CM = center of mass 
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Table 4. Free vibration modal response of the 15-story irregu-

lar building 

Mode 
Period 

(sec) 

Modal Mass Participation Factors 

X  

Translation 

Y  

Translation 

Z  

Torsion 

1 2.933 0.006 0.781 0.187 

2 2.875 0.774 0.006 0.296 

3 2.317 0.001 0.000 0.289 

4 0.946 0.000 0.099 0.028 

5 0.918 0.099 0.000 0.029 

6 0.739 0.002 0.000 0.044 

7 0.533 0.000 0.037 0.013 

8 0.513 0.036 0.000 0.007 

9 0.407 0.002 0.000 0.021 

 Total Sum = 0.921 0.925 0.915 

 

The maximum absolute displacement was obtained 

for the incident angle of 50 degrees at joint D1-15. The 

maximum absolute joint displacements in cm for different 

earthquake incident angles are also plotted in Figure 10. 

This angle of incidence is used to compare the eight sets 

of equations for TMD tuning parameters presented in 

Table 1. The results of the comparisons for maximum 

absolute displacements, accelerations and base shear as 

well as detailed values of the optimum tuning parameters 

for the eight sets of equations are presented in Table 5.  

 

 
Fig. 10. Maximum absolute displacement (cm) per earthquake 

incident angles of 15-story building 

 

Equations proposed by Sadek et al. (1997) are the 

most effective in reducing the structural response, shaded 

in Table 5. Equations proposed by Hoang et al. (2008) 

and Krenk and Hogsberg (2008) yield the next best re-

sults. Equations presented by Sadek et al. (1997) decrease 

the maximum absolute displacement by 49.76%, 

maximum acceleration by 32.14%, and absolute base 

shear (kN) by 42.22%. 

 

3.3. Example 3: twenty-story steel moment resisting 

frame with plan irregularity 

This example is a 20-story steel moment resisting frame 

structure with plan irregularity created originally by Liew 

et al. (2001) and used by Jiang et al. (2002) for plastic 

analysis of steel 3D buildings. This example is also used 

by Jiang and Adeli (2005) and Adeli and Jiang (2009) in 

their dynamic wavelet neural network model for structur-

al system identification, Van Long and Hung (2008) for 

local buckling determination during plastic analysis, and 

Chiorean (2009) for development of a computer program 

for nonlinear inelastic analysis.  

 

 

Fig. 11. 20-story building with plan irregularity: (a) Perspective 

view; (b) Elevation; and (c) Plan view; +CR = center of rigidity; 

●CM = center of mass 

 

The perspective, elevation and plan view of this 

building are shown in Figure 11. Roof and floor framing 

systems consist of steel beams and lightweight concrete 

with a slab thickness of 0.15 m over steel metal deck 

working as a rigid diaphragm (Fig. 11c). The building is 

designed for a combination of 4.8 kN/m2 static gravity 

load and 0.96 kN/m2 wind load acting on the y-direction. 

Table 6 presents the free vibrations response data for the 

uncontrolled structure including the modal mass partici-

pation factors. This structure is also subjected to the same 

Loma Prieta earthquake accelerogram displayed in Figu-

re 4. The maximum displacement was found at joint D3-

20 on the roof. The maximum absolute joint displace-

ments in cm for different earthquake incident angles are 

also plotted in Figure 12. The critical angle of earthquake 

incidence for the uncontrolled structure was determined 

to be 5 degrees with respect to the X axis (Fig. 11c). This 

angle of incidence is used to compare the eight sets of 
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equations for TMD tuning parameters presented in Tab-

le 1. The results of the comparisons for maximum absolu-

te displacements, accelerations and base shear as well as 

detailed values of the optimum tuning parameters for the 

eight sets of equations are included in Table 7.  

Similar to Example 2, equations proposed by Sadek 

et al. (1997) yield the most effective vibration reductions 

for the 20-story irregular structure; they decrease the 

maximum absolute displacement by 43.4%, maximum 

acceleration by 41.8%, and absolute base shear (kN) by 

25.3%.  

 

 
Fig. 12. Maximum absolute joint displacement (cm) per 

earthquake incident angles for the 20-story building 

 
Table 5. Optimum tuning parameters and maximum absolute displacement (cm), acceleration (g) and base shear (kN) response for 

the 15-story building 

Method 

Optimal Parameters Maximum Response of the Controlled Structure 

Frequency ratio 

optγ  

Damping ratio 

doptξ  

Absolute Displacement 

(cm) 

Absolute Acceleration 

(g) 

Absolute Base 

Shear (kN) 

Den Hartog (1956) 0.971 0.101 14.7 0.128 1011 

Warburton (1982) 0.964 0.086 13.5 0.128 922.6 

Fujino and Abe (1993) 0.964 0.086 13.5 0.128 922.6 

Feng and Mita (1995) 0.964 0.083 13.56 0.129 925.5 

Sadek et al. (1997) 0.963 0.219 11.31 0.124 792.9 

Rudinger (2006) 0.971 0.005 14.89 0.128 1003 

Hoang et al. (2008) (δ=1) 0.858 0.083 14.09 0.124 1022 

Hoang et al. (2008) (δ=3) 0.928 0.086 13.68 0.130 930.3 

Krenk and Hogsberg (2008) 0.971 0.085 13.58 0.129 920.0 

Uncontrolled – – 22.52 0.228 1372.2 

 
Table 6. Free vibration modal response of the 20-story irregular building 

Mode 
Period 

(sec) 

Modal Participation Factors 

X Translation Y Translation Z Torsion 

1 4.666 0.756 0.001 0.121 

2 4.256 0.001 0.718 0.444 

3 3.659 0.002 0.000 0.166 

4 1.707 0.000 0.127 0.088 

5 1.647 0.101 0.000 0.010 

6 1.396 0.000 0.000 0.021 

7 1.043 0.000 0.054 0.037 

8 0.981 0.040 0.000 0.005 

9 0.853 0.000 0.000 0.009 

10 0.728 0.000 0.025 0.017 

11 0.679 0.023 0.000 0.003 

Total Sum = 0.924 0.926 0.926 
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Table 7. Optimum tuning parameters and maximum absolute displacement (cm), acceleration (g) and Base Shear (kN) response for 

the 20-story building 

Method 

Optimal Parameters Maximum Response of the Controlled Structure 

Frequency ratio 

optγ  

Damping ratio 

doptξ  

Absolute Displacement 

(cm) 

Absolute Acceleration 

(g) 

Absolute Base 

Shear (kN) 

Den Hartog (1956) 0.971 0.101 18.77 0.188 378.2 

Warburton (1982) 0.964 0.086 16.11 0.188 378.1 

Fujino and Abe (1993) 0.964 0.086 16.11 0.188 378.1 

Feng and Mita (1995) 0.964 0.083 16.15 0.177 378.5 

Sadek et al. (1997) 0.963 0.219 14.45 0.167 349.5 

Rudinger (2006) 0.971 0.005 18.31 0.179 395.9 

Hoang et al. (2008) (δ = 1) 0.858 0.083 17.55 0.179 393.8 

Hoang et al. (2008) (δ = 3) 0.928 0.086 17.25 0.179 389.5 

Krenk and Hogsberg (2008) 0.971 0.085 16.10 0.187 377.8 

Uncontrolled – – 25.53 0.287 466.2 

 
Concluding remarks 

An innovation of this research is vibration control of irreg-

ular three-dimensional highrise building structures using 

the bidirectional TMD (BTMD). A key issue for effective 

implementation of the BTMD is the determination of their 

tuning parameters. The second novelty of this research is 

an investigation of eight different sets of equations for 

tuning the parameters of TMDs for highrise building struc-

tures with both plan and elevation irregularities. To the 

best of the authors’ knowledge such a comparative study 

has not been reported in the literature previously.  

Equations proposed by Hoang et al. (2008) yield the 

best result for the 5-story irregular structure and those 

proposed by Sadek et al. (1997) yield the best results for 

the 15- and the 20- story irregular buildings. In Tables 3, 

5, and 7 it is observed that Sadek et al. (1997) yields a 

relatively large value for the optimum damping ratio, 

0.219, which shows the impact of this ratio in the TMD 

tuning equations for flexible structures with a fundamen-

tal period of vibrations of, say, greater than 1 second 

(T > 1 sec).  

By examining the displacement, acceleration and 

base shear results, it is observed the performance of the 

BTMD in reducing the vibration responses is affected by 

the rigidity of the structure; it is more effective for taller 

and more flexible structures. Sadek et al. (1997) equa-

tions appear to be more suitable for structures with a 

fundamental period of vibrations greater than one second.   
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