

Corresponding author: A. B. M. Saiful Islam
E-mail: abm.saiful@gmail.com
 Copyright © 2014 Vilnius Gediminas Technical University (VGTU) Press
 www.tandfonline.com/tcem
477

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT

ISSN 1392-3730 / eISSN 1822-3605
2014 Volume 20(4): 477–484

doi:10.3846/13923730.2013.801917

PARALLEL FRAMEWORK FOR EARTHQUAKE INDUCED RESPONSE
COMPUTATION OF THE SDOF STRUCTURE

Sarfraz MUNIRa, Raja Rizwan HUSSAINb, A. B. M. Saiful ISLAMc

aThe Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
bDepartment of Civil Engineering, College of Engineering, King Saud University, Saudi Arabia

cDepartment of Civil Engineering, University of Malaya, Kuala Lumpur, Malaysia
Received 11 Mar 2012; accepted 20 Apr 2012

Abstract. Parallel computing briskly diminishes computation time through simultaneous use of multiple computing re-
sources. In this research, parallel computing techniques have been developed to parallelize a program for obtaining a re-
sponse of single degree of freedom (SDOF) structure under earthquake loading. The study uses Distributed Memory Pro-
cessors (DMP) hardware architecture and Message Passing Interface (MPI) compilers directives to parallelize the
program. The program is made parallel by domain decomposition. Concurrency in the program is created by dividing the
program into two parts to run on different computers, calculating forced response and free response of the first half and
the second half. Parallel framework successfully creates concurrency and finds structural responses in significant lesser
time than sequential programs.
Keywords: parallel computing, SDOF, parallel framework, earthquake response, parallelization, computation cost.
Reference to this paper should be made as follows: Munir, S.; Hussain, R. R.; Islam, A. B. M. S. 2014. Parallel frame-
work for earthquake induced response computation of the SDOF structure, Journal of Civil Engineering and Management
20(4): 477–484. http://dx.doi.org/10.3846/13923730.2013.801917

Introduction
Parallel computing is simultaneous use of multiple com-
puting resources to solve a computing problem in a re-
duced computation time. Such parallel computing is the
best way to increase the computation speed and reduce
run time of a program. Its application is rapidly increas-
ing in the field of scientific and engineering computations
(Chan et al. 2005; Polychronopoulos 1988; Wilkinson,
Allen 2005). The approach surprisingly makes the calcu-
lations and simulations time efficient based on multi-core
processors in addition to clusters. All major applications
in different fields of science and technology are employ-
ing parallel computing for high speed computations and
getting results in lesser time. Most desktop and laptop
systems now ship with dual-core microprocessors or
quad-core processors, which are best suited for parallel
computing. Parallel programming is different from se-
quential computing, in which a problem/program is di-
vided into a number of small instructions or tasks called
threads, which are executed in the processor one by one.

To make many processors simultaneously work on a
single program, the program must be divided into smaller
independent chunks so that each processor can work on
separate chunks of the problem (Wilkinson, Allen 2005).
Distributed Memory Processors (DMP) is the computer
hardware architecture, which is used in the research. DSM

systems require a communication network to connect inter-
processor memory (ordinary computers). To parallelize
programs on DMP, the Message Passing Interface (MPI)
compilers directives have to be used. In this case first find
or create concurrency in the program and then by using
MPI commands send concurrent parts of the program from
the master computer to different computers; different com-
puters perform operations on it and send back the results to
the master computer, which is arranged and written by
master computer (Polychronopoulos 1988).

The specialty of this research is that the master
computer acts as a worker during the computation time
and then it also collects the results from the worker, ar-
ranges the data and at the end displays the results. Parallel
computing techniques (Fig. 1) have been implemented to
parallelize a program for the response of the single degree
of freedom structure against typical earthquake force. The
program aimed at finding a response of the SDOF struc-
tures is created concurrently in the program by dividing
the program into two parts, finding forced response and
free response of the first half and the other part. Each part
is executed on a different computer; and as SDOF Struc-
ture is linear and homogeneous, results can be added. In
this way, the program for finding a response of the SDOF
structure is parallelized. Time reduction in parallel pro-
grams can be seen over sequential programs in the pre-
sented results. Using multiple computing devices

S. Munir et al. Parallel framework for earthquake induced response computation of the SDOF structure

478

successfully created the concurrency, found the response
of structure against earthquake force in lesser time than
that of in case of sequential programs.

Fig. 1. Schematic representation of Parallel Computing
1. Parallel computing in earthquake engineering
Starting in the late 80’s, clusters came to compete and
eventually displace the concept of supercomputers for
many applications. A cluster is a type of parallel comput-
er built from large numbers of off-the-shelf computers
connected by an off-the-shelf network. Today, clusters
are the workhorse of scientific computing and are the
dominant architecture in the data centres that power the
modern information age (MPICH2 2006). Parallel and
distributed computations can be efficaciously implement-
ed in structural mechanics (Bittnar et al. 2001).

Frequent earthquakes that occur all over the world
cause gigantic threat on structures (Islam et al. 2012a, b;
Jameel et al. 2012a). Structural responses substantially
vary with the occurrence of ground excitation induced
from severe earthquake (Islam et al. 2012c; Jameel et al.
2012b). Therefore, the computation of seismic responses
of structures is of utmost important (Islam et al. 2013;
Lin et al. 2011). Ólafsson, Sigbjörnsson (2011) presented
digital filters for simulation of seismic ground motion and
structural response. Uma et al. (2010) developed proba-
bilistic framework for performance-based seismic as-
sessment of structures considering residual deformations.
The equivalent force control method for real-time testing
of nonlinear structures has been proposed by Wu et al.
(2011) and Stochastic Modeling by Yazdani, Abdi
(2011).

Goda et al. (2009) studied probabilistic characteris-
tics of seismic ductility demand of SDOF systems with
Bouc-Wen hysteretic behaviour. Grand challenges are the
computational problems, which can’t run on one comput-
er because of memory restraint or problems that take too
much time to execute on a single computer, such as ap-
plied fluid dynamics, macro-scale environmental model-
ling, ecosystem simulations, weather forecast, biomedical
imaging and biomechanics, earth quake & plate tectonics,
molecular design and process optimization, nuclear pow-
er and weapons simulations, and strong artificial intelli-
gence (Janies, Wheeler 2001; Čiegis et al. 2006). For
such computations, parallel computing is readily used by,
for example, the Earth Simulator Center (Bruck et al.
1997).

Parallel computing is used in the field of earthquake
engineering as well (Zhong et al. 2003). It is worth men-
tioning that the computer aided analysis of complex
structural model poses economic solution in time cost in
advanced structural mechanics (Jameel et al. 2012c, d;
Šliseris, Rocēns 2010; Vaidogas, Šakėnaitė 2011). Stabil-
ity and ductility of structures are vital issues to be ana-
lysed in an accurate fashion with the rapid solution ap-
proach (Kvedaras 2010; Rasiulis, Gurkšnys 2010).
Parallel computing is a competent tool used in optimiza-
tion of earthquake response, selection of equivalent
earthquake wave and optimization of damaged response
index. This solution technique is used in getting the re-
sponse of structure, which is rather difficult and is still in
under progress (Gropp et al. 2007).

In the present study, parallel computing has been
used to get the response of the simplest structure, i.e. the
single degree of freedom structure against earthquake
force. For the program of finding response of the SDOF
structures concurrency in the program is created by divid-
ing the program into two parts finding the forced response
and the free response of the first half and the other part.
Each part is executed on a different computer. As the
SDOF Structure is linear and homogeneous, results can be
added. In this approach, the program used for obtaining the
responses of the SDOF structure is parallelized.

Parallel computing provides an effective utilization
of multi-core processors as well as old computers, so its
usage is becoming a more popular computational tech-
nique at present (Hossain et al. 2002). Chip manufactur-
ers have begun to increase overall processing perfor-
mance by adding additional CPU cores. The reason is that
increasing performance through parallel processing can
be far more energy-efficient than increasing microproces-
sor clock frequencies. In the world, which is increasingly
more mobile and energy conscious, this has become es-
sential (Quinn 2004).

Fig. 2. Schematic representation of Distributed Memory
Computers
2. Technique of parallel computing
To execute programs in parallel, there are certain re-
quirements, such as parallel computers/processors, an
operating system (Linux preferred), a high level pro-
gramming language, such as C or Fortran, the parallel
application programming interface (MPI), and above all –

Journal of Civil Engineering and Management, 2014, 20(4): 477–484

479

a parallel algorithm. The author had used two computers
connected by a high speed network, i.e. ether net, with
LINUX 9 on each computer, programming language used
was Fortran 77 with the latest MPICH version, in which
one computer acted like the Master computer and the
other one was a worker. It is to mention here that the
Master computer also worked as a worker after distribu-
tion of the tasks to workers and then it also got the results
from the Worker and displayed them after organization
(Strout et al. 2006; MPI 1997).

MPI is parallel application programming interface
(API), it is the sets of routines, data structures, object
classes and/or protocols provided by libraries in order to
support building of a parallel application. To make many
processors simultaneously work on a single program, the
program was divided into smaller independent chunks so
that each processor could work on separate chunks of the
problem. This is the foremost theme of parallel program-
ming (MPI 1997). This way decomposed program is a
parallel program and then it can be run on parallel archi-
tecture computers.

Parallel computing techniques depend on the com-
puter hardware architecture, nature of the program and
the number of available computers/processors (Kurc,
Ozmen 2008). In this research, the main emphasis of
parallel computing techniques is the distributed memory
architecture (Fig. 2). There are several ways to develop
such architectures like making clusters, or by installing
different programs on multiple computers, which sup-
ports parallel programming. It is also within the scope of
the study to create a parallel computing system from old
ordinary computer with the help of the Local Area Net-
work (LAN). A computer cluster is a group of linked
computers, working together closely, so that in many
respects they form a single computer. The components of
a cluster are commonly, but not always, connected to
each other through fast local area networks. These are
usually used for a computational purpose.

Another very important trait of such computers is
that these computers sustain their Identities. So, those
computers are ordinary computers most of the time and
when anyone wants to run any parallel application, those
computers act as a single computer at that time. The idea
of parallelization using the MPI is that we divide the
problem into independent parts and data, which is re-
quired to operate that part independently, then it is shared
and communicated with the help of MPI subroutines to
different computers. So, the computers operate on differ-
ent parts of a program independently and send back the
results to the master computer, which assembles and dis-
plays the results (Pacheco 1998).

The main part of parallel computing is to exploit or
to create the concurrency in the program, share it to the
other computers/processors using the parallel application
programming interface (API), such as the MPI, so that
other computers can act upon the data (Peterson, Arbenz
2004). Some programs have inherent concurrency, which
is easy to parallelize like some loops having different
variables to operate upon; while, in some programs we
can create concurrency, such as matrix operations; but

some programs cannot be parallelized, such as the pro-
gram to find Fibonacci series (Wittwer 2006).

The parallel program accomplishes the following
code:

 program hello

include 'mpif.h'
integer rank, size,
ierr,tag,status(MPI_STATUS_SIZE)
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,
size, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,
rank, ierr)
print*, 'Hello world from process', rank, 'of ', size
call MPI_FINALIZE(ierr)
end

In this code, MPI subroutines will initiate the paral-

lel environment, get the size (Numbers) of parallel com-
puters, assign the numbers to parallel computers starting
from 0 for masters and size – 1 to workers and then ter-
minates the parallel environment respectively. The Mas-
ter computer then displays the print statement, which is in
case of two computers in a parallel cluster (Kurc, Will
2006):

Hello world from process 0 of 2
Hello world from process 1 of 2

Following next are important points, which have been
followed to develop the parallel algorithm for parallel
programming:
1) Design, implementation, and tuning of the parallel

algorithm should be such that it takes full advantage
of parallel computing systems;

2) Partitioning the overall problem into separate tasks
and allocating tasks to processors should uphold all
computers busy equally;

3) The parallel algorithm can apply to the problems
that are inherently parallelizable, mostly without da-
ta dependence;

4) Communication time should be as small as possible;
5) Communication always implies overhead, so try to

reduce the communication by creating course granu-
lar partition of data;

6) All tasks should be kept busy, data should be evenly
distributed;

7) Primary inhibitors to parallelism are loops, which
usually the most common target of parallelization
effort, so the first loop dependency should be ana-
lysed and then tried to parallelize that, if possible;

8) If work involves much I/O it is not suitable for par-
allelizing because I/O operations take nearly 10X
more time than any operation;

9) Input and output should be displays only on master
computer, i.e. computer, which has ID 0.

S. Munir et al. Parallel framework for earthquake induced response computation of the SDOF structure

480

3. Parallelization of the SDOF program
The program has successfully been parallelized for re-
sponse of the SDOF structure against earthquake. The
numerical method, which the author used to calculate
response of the SDOF structure is the Runge–Kutta
Method. The Runge–Kutta Method is the initial value
problem and it doesn’t have any inherent parallelism. But
due to the linear property of the SDOF structure, we can
induce parallelism in the program. The main idea to par-
allelize such program is that we can find the free response
as well as the forced response of the SDOF structure
separately and then according to the principle of the super
position we can add them up.

To make this parallel computing technique more gen-
eral, effective and applicable to most programs, the author
tried to parallelize the program using subroutines. As most-
ly programming for structural analysis and responses de-
veloped using different subroutines. We use several sub-
routines in a complicated problem and in the main program
we just call these subroutines. The author found the tech-
nique to effectively call the same subroutine in the parallel
program from different computers. We can apply the same
method to parallelize a similar program.

These are the steps, which should be followed in
making a parallel program for the response of the SDOF
structure:
1) Split the input ground acceleration history into two

equal parts as the author wanted to run that parallel
program on two computers;

2) Input data is divided in such a way that we have
some free response of the first part exactly after half
of the computations, which can be added to forced
response of the second computer to get the exact re-
sult. Normally, this extra computation for the free
response in the first half is kept at 200 units;

3) Separate the computations from the subroutines,
which required executing only once;

4) Send the subroutine parameters from computer 1 to
computers 2;

5) Call the subroutine in the main program simultane-
ously from both computers;

6) Watch the processor history so that we can observe
that both computers are busy in computations;

7) Format the calculations in such a way that we have
acceleration, velocity and displacement responses
easily in the form of graphs;

8) Compare results with that of the single computer
calculations.

4. Framework for the parallel program
The author successfully ran the parallel program for the
structure having typical values of damping, natural circu-
lar frequency, and input of the sine wave. The calcula-
tions from Computer 1 and Computer 2 from the same
parallel program is obtained and shown in Figures 3 and
4, respectively. Then these results added to get the com-
plete response of the SDOF structure, which is also
shown in Figure 5.

Fig. 3. Parallel framework for response of SDOF structure

Fig. 4. Schematic representation of Parallel Program for respon-
se of SDOF structure

The response, which is received by parallel compu-
ting is then compared with the results from the equivalent
sequential program, which is shown in Figure 6, and the
difference between the results from the parallel program
and the equivalent sequential program is shown in Fig-
ure 7. The difference between the results from the parallel
program and the equivalent sequential program is negli-
gible, which can be observed easily. The schematic repre-
sentation of the parallel program for the response of the
SDOF has been displayed in Figure 8.

This was one way to parallelize the program for the
response of the SDOF structure by dividing all the com-
putations into half, which is executed of different com-
puter and later joined the results. There is another method
of parallel programming, in which we divide the calcula-
tions. For example, a loop first calculates the sum of both
variables in it and then calculates the square of resultants.
Suppose we are able to calculate the sum on one comput-
er and then square it on the other computer. This is anoth-
er way to parallelize the problem but it is very difficult.

Journal of Civil Engineering and Management, 2014, 20(4): 477–484

481

Fig. 5. Response of SDOF Structure from Computer 1

Fig. 6. Response of SDOF Structure from Computer 2

Fig. 7. Response of SDOF Structure from Parallel Program

Fig. 8. Response of SDOF Structure from Sequential Program

S. Munir et al. Parallel framework for earthquake induced response computation of the SDOF structure

482

First of all, such computations are highly dependent,
which is very difficult to parallelize; secondly in such
parallelization, one computer may have little computa-
tional effort compared to the other, so effective parallel-
ism can be very difficult to achieve.

5. Results and discussions
The program for the response of the SDOF structure ran
on two computers in parallel and reduced the run time of
the program. Another important point in this research is
that the Master computer also worked as a worker. Actu-
ally, in most of the parallel programs, the main computer
acts as the Master computer and only distributes the data
to be parallelized and then waits for the results, but in this
research, the main computer distributes the data and then
works on its part of data, then receives results and dis-
plays them. So, if we have small number of computers in
the parallel computer cluster then the Master computer
can also work as worker.

Moreover, the parallel computing technique used in
this research was also very convenient and workable. In the
program of finding response of the SDOF structures, con-
currency in the program has been created by dividing the
program into two parts finding the forced response and the
free response of the first half and the other part. Schematic
representation of the parallel computing technique is
shown in Figures 3 and 4. Each part is executed on a dif-
ferent computer and as the SDOF structure is linear and
homogeneous, the results can be added. In this way, the
program for finding the response of the SDOF structure is
parallelized. Time reduction in parallel programs is ob-
served over sequential programs in the obtained results.

The use of processors of both computers has been
checked during the runtime and processors use of both
computers showed 100% use of processors by the pro-
gram. The runtime is compared for the parallel program
with similar sequential programs for the response of the
SDOF structure. And the runtime of the parallel program
reduced to nearly 2/3 of that of the sequential program.
The reasons for this reduction of the runtime instead of
making it half then that of the sequential program are: the
coarseness or finesse of the parallel data, communication
time between the parallel computers and computational
efforts. There can be little drawbacks of the parallel com-
puting like; latency in the network communications, steep
learning curve, some programs have no concurrency like
Fibonacci series, fineness in concurrent data. It is mostly
useless to parallelize the program with high fineness.

The courser the data will be, the more reduces the
runtime of the program will be. And if the data division is
fine then the runtime of the program will be less reduced.
Course data means that a large amount of data can send in
single communication; and fine data means a small
amount of parallel data send to other parallel computer.
The 2nd factor, which affects the results, is the communi-
cation time between the parallel computers. Data com-
municates between the computers via the Local Area
Networks (LAN). The maximum communication speed is
determined by the Switch we are using in the parallel
computing. So we can have a 100 MB or 1 GB switch but

even those have very small speed as compared to proces-
sor speed available nowadays. Generally, the data com-
munication takes nearly 10 times more delay than that of
processing. If data is needed to be sent to different com-
puters in the cluster many times, then the runtime will
also be affected. So, if we have to send small amounts of
data many times in a parallel program, then such parallel
program can take more time to show the results compared
to sequential programming.

Computational effort is also made nearly equal in
this research. So, the efforts have made course data paral-
lel program, minimum communication between the data
(only for distribution of the data and receiving the results)
and nearly equal computational efforts. For comparison
of a parallel and a sequential program, the computations
should be reasonable, because for small computational
efforts programs, the run time of parallel as well as se-
quential programs are nearly equal even in some cases the
runtime of a parallel program can be more than that of a
sequential program because of data communication be-
tween computers.

The study uses a reasonable amount of earthquake
input data so that they can easily compare the results
from the sequential as well as the parallel program. So, to
make appropriate computational efforts, the author en-
larged the data to be processed by the processors. The
author introduced large computations of about 200,000
iterations of the loop. This then ran on parallel computers
as well as equivalent sequential program, which also ran
on a single computer.

The results from Computer 1 and Computer 2 were
presented in Figures 5 and 6, respectively; and the sum of
these two results is presented in Figure 7. Then, it is
compared with the results from the sequential program
shown in Figure 8. Those results are compared. The dif-
ference of calculations between the parallel as well as the
sequential programming is very small and can be easily
neglect as it is in the range of exponent –6 to exponent
–9, as shown in Figure 9. Runtime comparison is shown
in Figure 10. Time reduction in parallel programs can be
seen over sequential programs in the presented results.

Conclusion
Parallel computing is the technology of the future; we can
convert our computations from sequential computing to
parallel computing for time efficiency of the program. As
modern computing systems are multi-core computer sys-
tems, to fully utilize all the processors of modern comput-
ers we will have to use parallel programming and parallel
computing. Moreover, parallel computing requires using
multiple ordinary computers as a super computer.

Runtime of these parallel programs has been com-
pared with equivalent sequential programs. But one im-
portant thing is that reduction of time by parallel compu-
ting is dominant in case of large computational efforts.
For example, the run time for the parallel program for
response of the SDOF structure is equal to equivalent
sequential program, which is negligible in both cases. But
when a large data is to be processed by the same parallel
program and equivalent sequential program, then runtime

Journal of Civil Engineering and Management, 2014, 20(4): 477–484

483

Fig. 9. Difference of results from Parallel Program & Sequential
Program

Fig. 10. Runtime comparison of sequential and parallel program
for the parallel program is nearly 2/3 than that of the se-
quential program.

The cheapest way of parallel computing is by using
Distributed Memory Processors like a multiple computer
as in my case where a parallel computer and then using
the MPI libraries on Linux OS. Because it consists of
cheap computers connected together and all software is
available either absolutely free or at a low cost. It is fruit-
ful to parallelize those programs having large computa-
tional efforts. As you can see, for ordinary programs or
programs with little computational efforts, it takes equal
time in sequential as well as in parallel programs. To
make a program parallel, problem should have inherent

concurrency. Some problems, which do not have concur-
rency cannot be parallelized like the program used to
calculate Fibonacci series.

Reference
Bittnar, Z.; Kruis, J.; Němeček, J.; Patzák, B.; Rypl, D. 2001.

Parallel and distributed computations for structural me-
chanics: a review, in Topping, B. H. V. (Ed.). Civil and
Structural Engineering Computing: 2001. Saxe-Coburg
Publications, Stirlingshire, UK, Chapter 9, 211–233. http://dx.doi.org/10.4203/csets.5.9

Bruck, J.; Dolev, D.; Ho, C.-T.; Roşu, M.-C.; Strong, R. 1997.
Efficient Message Passing Interface (MPI) for parallel
computing on clusters of workstations, Journal of Parallel
and Distributed Computing 40(1): 19–34. http://dx.doi.org/10.1006/jpdc.1996.1267

Chan, A.; Gropp, W.; Lusk, E. 2005. User’s Guide for MPI
Programs. University of Chicago, Illinois: Aragon nation-al laboratory. 34 p.

Čiegis, R.; Baravykaitė, M.; Belevičius, R. 2006. Parallel global
optimization of foundation schemes in civil engineering,
Applied Parallel Computing. State of the Art in Scientific
Computing 3732: 305–312. http://dx.doi.org/10.1007/11558958_36

Goda, K.; Hong, H. P.; Lee, C. S. 2009. Probabilistic characte-
ristics of seismic ductility demand of SDOF systems with
Bouc-Wen hysteretic behavior, Journal of Earthquake
Engineering 13(5): 600–622. http://dx.doi.org/10.1080/13632460802645098

Gropp, W.; Lusk, E.; Ashton, D.; Buntinas, D.; Butler, R.;
Chan, A.; Ross, R.; Thakur, R.; Toonen, B. 2007.
MPICH2. User’s Guide Manual. University of Chicago, Illinois: Aragon national laboratory. 44 p.

Hossain, M. A.; Kabir, U.; Tokhi, M. O. 2002. Impact of data
dependencies in real-time high performance computing,
Microprocessors and Microsystems 26(6): 253–261. http://dx.doi.org/10.1016/S0141-9331(02)00027-3

Islam, A. B. M. S.; Hussain, R. R.; Jumaat, M. Z.; Rahman, M. A.
2013. Nonlinear dynamically automated excursions for
rubber-steel bearing isolation in multi-storey construction,
Automation in Construction 30: 265–275. http://dx.doi.org/10.1016/j.autcon.2012.11.010

Islam, A. B. M. S.; Jumaat, M. Z.; Hussain, R. R.; Alam, M. A.
2012a. Incorporation of rubber-steel bearing isolation in
multi-storey building, Journal of Civil Engineering and
Management 19(Supplement 1): S33–S49. http://dx.doi.org/10.3846/13923730.2013.801904

Islam, A. B. M. S.; Hussain, R. R.; Jameel, M.; Jumaat, M. Z.
2012b. Non-linear time domain analysis of base isolated
multi-storey building under site specific bi-directional
seismic loading, Automation in Construction 22: 554–566. http://dx.doi.org/10.1016/j.autcon.2011.11.017

Islam, A. B. M. S.; Ahmad, S. I.; Jumaat, M. Z.; Hussain, R. R.
2012c. Efficient design in building construction with
rubber bearing in medium risk seismicity: case study &
assessment, Journal of Civil Engineering and Manage-
ment (in Press). http://dx.doi.org/10.3846/13923730.2013.801910

Jameel, M.; Islam, A. B. M. S.; Khaleel, M.; Amirahmad, A.
2012a. Efficient three dimensional modeling of high-rise
building structures, Journal of Civil Engineering and Ma-
nagement 19(6): 811–822. http://dx.doi.org/10.3846/13923730.2013.799096

S. Munir et al. Parallel framework for earthquake induced response computation of the SDOF structure

484

Jameel, M.; Islam, A. B. M. S.; Hussain, R. R.; Khaleel, M.;
Zaheer, M. M. 2012b. Optimum structural modelling for
tall buildings, The Structural Design of Tall and Special
Buildings 22(15): 1173–1185. http://dx.doi.org/10.1002/tal.1004

Jameel, M.; Islam, A. B. M. S.; Khaleel, M.; Jumaat, M. Z.
2012c. Nonlinear finite element analysis of spar platform,
Advanced Science Letters 13: 723–726. http://dx.doi.org/10.1166/asl.2012.3851

Jameel, M.; Ahmad, S.; Islam, A. B. M. S.; Jumaat, M. Z.
2012d. Nonlinear dynamic analysis of coupled spar plat-
form, Journal of Civil Engineering and Management
19(4): 476–491. http://dx.doi.org/10.3846/13923730.2013.768546

Janies, D. A.; Wheeler, W. C. 2001. Efficiency of parallel direct
optimization, Cladistics 17(1): S71–S82.
http://dx.doi.org/10.1111/j.1096-0031.2001.tb00106.x

Kurc, O.; Ozmen, S. 2008. An efficient parallel solution
framework for the linear analysis of large structures on PC
Clusters, Tsinghua Science and Technology 13(SI): 65–70.

Kvedaras, A. K. 2010. Stability and ductility of structures:
editorial, Journal of Civil Engineering and Management 16(2): 155–158. http://dx.doi.org/10.3846/jcem.2010.15

Lin, L.-k.; Chang, C.-c.; Lin, Y.-c. 2011. Structure development
and performance evaluation of construction knowledge
management system, Journal of Civil Engineering and
Management 17(2): 184–196.
http://dx.doi.org/10.3846/13923730.2011.576833

MPI 1997. A message passing interface standard from message
passing interface forum. University of Tennessee, Knox-ville, Tennessee. 245 p.

MPICH2 Installation and Configuration Guide 2006.
Ólafsson, S.; Sigbjörnsson, R. 2011. Digital filters for simula-

tion of seismic ground motion and structural response,
Journal of Earthquake Engineering 15(8): 1212–1237.
http://dx.doi.org/10.1080/13632469.2011.565862

Pacheco, P. S. 1998. A user’s guide to MPI. San Francisco.
51 p.

Peterson, W. P.; Arbenz, P. 2004. Introduction to parallel com-
puting – a practical guide with examples in C. New York: Oxford University Press. 288 p.

Polychronopoulos, C. 1988. Advanced loop optimizations for
parallel computers, supercomputing. Lecture Notes in
Computer Science. Springer Berlin/Heidelberg, 255–277.

Quinn, M. J. 2004. Parallel programming in C with MPI and
OpenMP. New York: McGraw Hill. 516 p.

Rasiulis, K.; Gurkšnys, K. 2010. Analyses of the stress intensity
of the cylindrical tank wall at the place of the geometrical
defect, Journal of Civil Engineering and Management
16(2): 209–215. http://dx.doi.org/10.3846/jcem.2010.23

Šliseris, J.; Rocēns, K. 2010. Curvature analysis for composite
with orthogonal, asymmetrical multi-layer structure,
Journal of Civil Engineering and Management 16(2): 242–248. http://dx.doi.org/10.3846/jcem.2010.28

Strout, M. M.; Kreaseck, B.; Hovland, P. D. 2006. Data-flow
analysis for MPI programs, in International Conference
on Parallel Processing (ICPP 2006), 14–18 August,
2006, Columbus, Ohio, 175–184. http://dx.doi.org/10.1109/ICPP.2006.32

Uma, S. R.; Pampanin, S.; Christopoulos, C. 2010. Develop-
ment of probabilistic framework for performance-based
seismic assessment of structures considering residual de-
formations, Journal of Earthquake Engineering 14(7):
1092–1111. http://dx.doi.org/10.1080/13632460903556509

Vaidogas, E. R.; Šakėnaitė, J. 2011. A brief look at data on the
reliability of sprinklers used in conventional buildings,
Journal of Civil Engineering and Management 17(1):
115–125. http://dx.doi.org/10.3846/13923730.2011.559908

Wilkinson, B.; Allen, M. 2005. Parallel programming
techniques and applications using networked workstations
and parallel computers. New York: Pearson Prentice Hall. 496 p.

Wittwer, T. 2006. An introduction to parallel programming. The Netherlands: VSSD Delft. 63 p.
Wu, B.; Xu, G.; Shing, P. B. 2011. Equivalent force control

method for real-time testing of nonlinear structures, Jour-
nal of Earthquake Engineering 15(1): 143–164.
http://dx.doi.org/10.1080/13632461003681171

Yazdani, A.; Abdi, M. S. 2011. Stochastic modeling of
earthquake scenarios in Greater Tehran, Journal of
Earthquake Engineering 15(2): 321–337. http://dx.doi.org/10.1080/13632469.2010.498906

Zhong, H.; Lin, G.; Li, J. 2003. Application of parallel compu-
ting to seismic damage process simulation of an arch dam,
in IOP Conference Series: Materials Science and
Engineering 10(1): 1–9. http://dx.doi.org/10.1088/1757-899X/10/1/012003

Sarfraz MUNIR is a PhD Student, in The Hong Kong Polytechnic University Hong Kong. He obtained Master’s degree
in Engineering from Saitama University, Japan. He has a BSc in Civil Engineering from University of Engineering &
Technology Lahore, Pakistan. He served as a Research Assistant at CoE-CRT, KSU, KSA, Assistant Professor at Univer-
sity of Lahore, Lahore, Pakistan, and as a Lecturer at University of Engineering & Technology Lahore, Pakistan.
Raja Rizwan HUSSAIN is an Associate Professor in CoE-CRT, Department of Civil Engineering, College of Engineer-
ing, King Saud University, Riyadh, Saudi Arabia. He received his PhD and MSc in Civil Engineering from the University
of Tokyo, Japan for which he was ranked outstanding and was awarded best research thesis award from the University of
Tokyo. He received his PhD in record short period of just two years. He has authored more than 75 publications in less
than 5 years of his post PhD tenure and has received several awards, prizes and distinctions throughout his research and
academic career.
A. B. M. Saiful ISLAM is a Research Fellow after receiving his PhD at the Department of Civil Engineering, University
of Malaya, Malaysia. He completed his BSc in Civil Engineering and MSc in Structural Engineering from Bangladesh
University of Engineering and Technology (BUET), Bangladesh. He is a member of Institution of Engineers, Bangladesh
and American Society of Civil Engineers (ASCE). His research interests include offshore structures, nonlinear dynamics,
finite element modelling, seismic protection, base isolation, pounding and special tall buildings.

