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Abstract. Completing a project within the planned budget is the bottom-line of construction companies. To achieve this 
goal, periodic cost estimation is vitally important not only in the planning phase, but also in the execution phase. Due to 
high uncertainty in operational environment, point estimation of project cost is oftentimes not sufficient to assist the deci-
sion-making process. This study utilizes Least Squares Support Vector Machine (LS-SVM), machine learning based in-
terval estimation (MLIE), and Differential Evolution (DE) to establish a novel model for predicting construction project 
cost. LS-SVM is a supervised learning technique used for regression analysis. MLIE is employed for inference of predic-
tion intervals. Moreover, our model deploys DE in the cross validation process to search for the optimal values of tuning 
parameters. The newly developed model, named as EAC-LSPIM, yields results consisting of a point estimate coupled 
with lower and upper prediction limits, at a certain level of confidence, to accentuate uncertainty. Simulation and perfor-
mance comparison demonstrate that the new model is capable of delivering accurate and reliable forecasting results. 
Keywords: construction management, prediction interval, estimate at completion, least squares support vector machine, 
differential evolution, machine learning. 
Reference to this paper should be made as follows: Cheng, M.-Y.; Hoang, N.-D. 2014. Interval estimation of construction 
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Introduction 
In construction industry, project success has always 
foundered on the high uncertainty in operational envi-
ronment. Thus, it is not surprising that construction pro-
jects frequently suffer cost overrun (Nassar et al. 2005). 
In order to operate profitably, construction companies 
must frequently evaluate project cost at completion to 
detect deviations and to carry out appropriate responses. 
However, construction firms typically focus on budget 
planning during the initial project stage, which practically 
ignores the impact of engineering cost changes and in-
formation updates during construction (Cheng et al. 
2010). This fact prevents effective project cost control 
and detection of potential problems. Therefore, cost esti-
mation is a crucial task and it needs to be carried out at 
various stages of a project (Liu, Zhu 2007). Moreover, 
the accuracy of construction cost estimation is a critical 
factor in the success of the project (Kim et al. 2004). Poor 
cost estimation may result in profit loss and occasionally 
leads to project failure. 

Due to its importance, various predictive methods 
have been proposed for cost estimation. Approaches that 
are applicable to cost estimation range from statistics 
based multivariable regression analysis to machine-
learning techniques such as Classification and Regression 
Trees (CART), M5 model tree (M5-MT), Artificial Neu-

ral Network (ANN), Support Vector Machines (SVM), 
and Least Squares Support Vector Machine (LS-SVM).   

Multivariable regression analysis is a very powerful 
statistical tool that can be used as both an analytical and a 
predictive technique in assessing the contribution of po-
tential new items to the overall estimation, although it is 
limited in modeling non-linear relationships (Kim et al. 
2004). In addition, when the number of input variables 
becomes considerably large, the prediction performance 
of this method often deteriorates significantly. 

CART (Breiman et al. 1984) is a classification me-
thod which utilizes historical data to construct decision 
trees. A CART model that forecasts the value of conti-
nuous variables from a set of input variables is known as 
a regression-type model (Razi, Athappilly 2005). One 
major advantage of the decision tree based model is its 
ability to handle small-size data set. Moreover, CART 
can mitigate the negative effect of outliers because the 
model is capable of isolating the outliers in a separate 
node. However, one disadvantage of CART is that it may 
produce unstable decision trees (Timofeev 2004). The 
reason is that insignificant modification of learning sam-
ple could result in radical changes in the decision tree. In 
addition, previous works (Razi, Athappilly 2005) have 
indicated that prediction performance of CART can be 
inferior to ANN. 
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A model tree (MT) is similar to a decision tree, but 
includes the multivariate linear regression functions at the 
leaves and is able to predict continuous numeric value 
attributes (Shrestha, Solomatine 2006; Witten, Frank 
2000; Kaluzny et al. 2011). The algorithm separates the 
parameter space into subspaces and constructs a local 
linear regression model in each of them. Thus, MT is, to 
some degree, similar to a piecewise linear function. In the 
M5-MT, the nodes of the tree are selected over the attri-
bute that maximizes the expected error reduction as a 
function of the standard deviation of output parameter 
(Bonakdar, Etemad-Shahidi 2011). MT is proved to have 
the capability of learning in an efficient manner and it can 
tackle regression tasks with high dimensionality. Compa-
red to other machine learning techniques, MT training 
process is relatively fast and the results are interpretable 
(Shrestha, Solomatine 2006). 

ANN is a viable alternative for forecasting construc-
tion costs and in practice, it has been used to construct 
various cost prediction models (Hegazy, Ayed 1998; Zhu 
et al. 2010; Sonmez 2011). This method eliminates the 
need to find a mapping relationship that mathematically 
describes the construction cost as a function of input va-
riables. When the influence factors and the structure of 
ANN are all specified, the task boils down to collecting a 
reasonable number of data to train the ANN. However, 
the training process of ANN based models is often time-
consuming; and ANN also suffers from difficulties in 
selecting a large number of controlling parameters such 
as hidden layer size, learning rate, and momentum term 
(Bao et al. 2005).  

Furthermore, one major disadvantage of ANN is 
that its training process is achieved through a gradient 
descent algorithm on the error space, which can be very 
complex and may contain many local minima (Kiranyaz 
et al. 2009). Thus, the training of ANN is likely to be 
trapped into a local minimum and this definitely hinders 
the forecasting capability. To overcome such issue, evo-
lutionary algorithms, such as Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO), can be used to 
train the ANN model (Nasseri et al. 2008; Zhang et al. 
2007). It is because these advanced optimization 
techniques can significantly reduce the chance of getting 
trapped in local minima. Hence, the training process pos-
sibly settles in an optimum solution; nevertheless, this 
cannot be guaranteed (Kiranyaz et al. 2009). 

In construction area, SVM has been utilized in cost 
estimation (Cheng et al. 2010; Kong et al. 2008; An et al. 
2007; Hongwei 2009). The principles of SVM are based 
on the structural risk minimization and statistical learning 
theory. The SVM based models also involve identifica-
tion of influence factors, collection of data sample, and 
training/testing process. After the mapping function has 
been established, the model is capable of predicting the 
future value of project cost. The advantages of SVM are 
widely known including strong inference capacity, 
excellent generalization, and accurate prediction ability 
(Lam et al. 2009; Huang et al. 2004). Nevertheless, SVM 
training process entails solving a quadratic programming 
problem subjected to inequality constraint. This means 

that SVM’s training process for large data sets requires 
expensive computational cost (Guo, Bai 2009).  

To overcome the drawback of SVM, LS-SVM has 
been proposed recently by Suykens et al. (2002), Gestel 
et al. (2004), and Brabanter et al. (2010).  LS-SVM is a 
modified version of SVMs to alleviate the burden of 
computational cost. In LS-SVM’s training process, a least 
squares cost function is proposed to obtain a linear set of 
equations in the dual space. Consequently, to derive the 
solution, it is required to solve a set of linear equations, 
instead of the quadratic programming as in standard 
SVM. And, this linear system can be efficiently solved by 
iterative methods such as conjugate gradient (Wang, Hu 
2005). Studies have been carried out to demonstrate the 
excellent generalization, prediction accuracy, and fast 
computation of LS-SVM (Yu et al. 2009; Samui, Kothari 
2011; Chen et al. 2005). Despite of its superiority, appli-
cation of LS-SVM in construction cost estimation is still 
very limited. 

Additionally, when applying LS-SVM, it is recogni-
zable that the tuning parameters, namely regularization 
and kernel function parameters, play an important role in 
establishing the predictive model (Yu et al. 2009; Suy-
kens et al. 2002). These parameters control the model’s 
complexity, and they are needed to be determined proper-
ly via cross-validation. In doing so, the main objective is 
to obtain an optimal model that can explore the underly-
ing input-output mapping function and is capable of pro-
ducing the best predictive performance on new data 
(Bishop 2006).  In this study, DE, a population-based 
stochastic search engine proposed by Storn and Price 
(Price et al. 2005), is employed in the cross-validation 
process to achieve such objective. 

In practice, cost estimation in construction industry 
is often stated in the form of a point forecast (Trost, 
Oberlender 2003; Iranmanesh et al. 2007; Cheng et al. 
2010; Zhu et al. 2010). However, decision makers require 
not only accurate forecasting of certain variables but also 
the uncertainty associated with the forecasts. Point esti-
mation does not take into account the various sources of 
uncertainty that stem from the model itself, input varia-
bles, and tuning parameters. Thus, incorporating predic-
tion uncertainty into deterministic forecasts can help imp-
rove the reliability and the credibility of the model 
outputs (Shrestha, Solomatine 2006). 

Various approaches (Wonnacott, T. H., Wonna-
cott, R. J. 1996; Heskes 1997; Mencar et al. 2005; Bra-
banter et al. 2011) have been introduced to achieve inter-
val estimation. However, existing methods also have 
many limitations such as requiring the prior distributions 
of the uncertain input parameters or data and involving 
certain assumptions about the data and error distribution. 
The accuracy and the credibility of those approaches rely 
significantly on the precision of prior information and 
their assumptions. Another class of methods for deriving 
prediction interval (PI) is relied on re-sampling or boot-
strap. Although bootstrap based methods (Sonmez 2011; 
Stine 1985; Lam, Veall 2002) can yield accuracy predic-
tion result, this method is notably characterized by high 
computational cost.  
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Recently, a new framework for estimation of PI 
which is based on machine learning technique has been 
established by Shrestha and Solomatine (2006). The pro-
posed method does not require any assumption and prior 
knowledge of input data or model error distribution.  
Moreover, it also does not demand intensive computatio-
nal cost as in bootstrap based methods. In their research 
work (Shrestha, Solomatine 2006), the superiority of 
machine-learning based interval estimation (MLIE) over 
traditional methods is exhibited. 

Therefore, this study aims to propose an artificial in-
telligence model, namely as EAC-LSPIM, that hybridizes 
various advanced techniques including LS-SVM, MLIE, 
and DE to help project manager in construction cost pre-
diction. The newly built model incorporates the strengths 
and mitigates the weaknesses of each individual 
technique. The research goal is to build a model that can 
operate automatically without human intervention and 
can deliver accurate and reliable forecasting results. 
Equipped with this tool, it is expected that the tasks of 
cost control and cost planning in construction industry 
can be carried out effectively. 

The remaining part of this paper is organized as 
follows. The second section of this paper reviews related 
research works on estimating of construction cost at 
completion, LS-SVM, techniques for achieving predic-
tion intervals, and DE. In the third section, the DE-based 
cross-validation process is introduced. The fourth section 
describes the framework of the newly proposed model in 
detail. Simulation and result comparison of the model are 
demonstrated in the fifth section. 

 
1. Review of pertinent literature 
1.1. Estimate of project cost at completion 
In construction management, estimating cost of work at 
completion is vitally important for project success. To 
achieve this, project managers often rely on Earned Value 
Management (EVM) methodology. EVM is widely 
known as a management technique that relates resource 
planning and schedule usage and technical performance 
requirement (Abba 1997). EVM comprises of three es-
sential components that support project control: Plan 
Value (PV) or Budgeted Cost of Work Schedule 
(BCWS), Earned Value (EV) or Budgeted Cost of Work 
Performed (BCWP), and Actual Cost (AC) or Actual 
Cost of Work Performed (ACWP). In the construction 
industry, project managers emphasize the application of 
EVM as it provides a tool for tracking project status and 
for measuring project performance. 

EVM is a systematic approach to forecast Estimate 
at Completion (EAC). The role of EAC is accentuated 
due to the fact that managers or planners can appraise the 
total project cost based on the estimated value of EAC. 
Iranmanesh et al. (2007) point out that the correct and the 
on time EAC is essential for preventive response during 
the project execution. If EAC indicates an overrun in 
cost, the project managers can use proper strategies to 
adjust construction cost. In the situation of cost overrun, 
project managers arguably carry out a value engineering 

program for cost reduction in which scope or quality in 
some sections of project is decreased. Another option is 
to require additional budget to offset overrun cost. 

At every completion period, managers can extract 
data from progress report, calculate project Earned Value 
(EV) and predict EAC. The EAC can be computed by 
formula using cost management data provided by the 
contractor in the Cost Performance Report or the 
Cost/Schedule Status Report. The reliability of these 
reports depends on the degree to which the contractor 
adheres to internal controls involving measuring perfor-
mance on a contract (Christensen 1993).   

According to previous works by Christensen (Chris-
tensen 1993; Christensen et al. 1995) and Chen (2008), 
determining an appropriate estimation of EAC is an ar-
duous task. To obtain EAC, managers need to collect 
voluminous cost management data provided by the cont-
ractor in progress report, usually monthly report. For the 
contractors, in order to form the periodic report to the 
owner, their site-engineers must gather sufficient data 
summarized in the daily man-hours summary, daily mate-
rial summary and daily equipment summary. Finally, one 
can use various formulas to compute EAC based on the 
combination of several data elements presented in the 
report: BCWS, BCWP, and ACWP.   

To forecast the EAC, numerous index-based formu-
las have been utilized. Those formulas are divided into 
three categories: non-performance method, performance 
method, composite method (Christensen et al. 1995; 
Chen 2008; Cheng et al. 2010). Based on a survey carried 
out by Christensen et al. (1995), the accuracy of index-
based formulas depends significantly on the type of sys-
tem, and the stage and phase of project. This interprets 
why performance of a particular formula might be quiet 
acceptable in a certain case, while it could be much worse 
in other cases (Cheng et al. 2010). Project planners must 
employ their own judgments to ascertain a most approp-
riate EAC or a range of reasonable EACs. Currently, 
there is no official guidance on how to choose an ame-
nable EAC calculation according to a specific setting. 

Besides index-based formulas, other EAC prediction 
methods are based on regression analysis (Iranmanesh 
et al. 2007; Christensen et al. 1995). The regression-
based formulas are typically derived using linear or non-
linear univariate regression analysis (Christensen 1993). 
However, methods based on traditional regression analy-
sis also have disadvantages such as their limitations in 
describing nonlinear relationships (An et al. 2007). In 
addition, the number of influence factors for construction 
cost estimate can be appreciable (Trost, Oberlender 2003; 
Cheng et al. 2010) and the underlying regression function 
is possibly very intricate. That fact explains why EAC 
estimation based on traditional regression analysis is not 
widely used in the industry (Christensen 1993). 

Needless to say, EAC prediction problem is compli-
cated since it involves voluminous construction data, 
considerable number of influence factors, and complica-
ted regression function. Thus, it is reasonable for planners 
or managers to resort to more advanced methods, specifi-
cally Artificial Intelligence (AI) methods, such as Artifi-
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cial Neural Network (ANN) and Least Squares Support 
Vector Machine (LS-SVM).  

 
1.2. Least squares support vector machine for 
regression analysis 
This section is dedicated to describing the LS-SVM’s 
mathematical formulation. Consider the following model 
of interest, which underlies the functional relationship 
between a response variable and one or more independent 
variables (Suykens et al. 2002; Wang, Hu 2005):  
 ( ) ( )Ty x w x b= φ + , (1) 
where: nx R∈ , y R∈ , and ( ) : n nhx R Rφ →  is the map-
ping to the high dimensional feature space. In LS-SVM 
for regression analysis, given a training dataset 

1{ , }Nk k kx y
=

, the optimization problem is formulated as 
follows: 

minimize 2

1

1 1( , ) 2 2
N

Tp k
k

J w e w w e
=

= + γ ∑ ; (2) 

subjected to ( )T
k k ky w x b e= φ + + , 1, ...,k N= , 

where: ke R∈  are error variables; 0γ >  denotes a regu-
larization constant. 

In the above optimization problem, it is noted that 
the objective function includes a sum of squared fitting 
error and a regularization term. This cost function is simi-
lar to standard procedure in training feedforward neural 
networks and is related to a ridge regression (Wang, Hu 
2005). However, when w becomes infinite dimensional, 
one cannot solve this primal problem. Therefore, it is 
necessary to construct the Lagrangian and derive the dual 
problem (Suykens et al. 2002). 

The Lagrangian is given by: 

1
( , , ; ) ( , ) { ( ) },

N
Tp k k k k

k
L w b e J w e w x b e y

=

α = − α φ + + −∑ (3) 

where: kα  are Lagrange multipliers. The conditions for 
optimality are given by: 
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∑

∑
. (4) 

After elimination of e and w, the following linear system 
is obtained: 

 0
1v


1
/

T
v
I

ω + γ
b  α  = 0y

    , (5) 

where: Nyyy ,...,1= , ]1;...;1[1 =v , and 1[ ;...; ]Nα = α α . 
And the kernel function is applied as follows:  
 ( ) ( ) ( , )T

k l k lx x K x xω = φ φ = . (6) 
The resulting LS-SVM model for function estimation is 
expressed as: 

 
1

( ) ( , )
N

k k l
k

y x K x x b
=

= α +∑ , (7) 

where: kα  and b are the solution to the linear system (5). 
The kernel function that is often utilized is Radial Basis 
Function (RBF) kernel. Description of RBF kernel is 
given as follows: 

 
2

2( , ) exp( )2
k l

k l
x x

K x x
−

=
σ

, (8) 

where: σ  is the kernel function parameter.  
In the case of the Radial Basis Function kernel, there 

are two tuning parameters ( , )γ σ  that are needed to be 
determined in LS-SVM. The regularization parameter ( )γ  
controls the penalty imposed to data points that deviate 
from the regression function. Meanwhile, the kernel para-
meter ( )σ  affects the smoothness of the regression func-
tion. It is worth noticing that proper setting of these tuning 
parameters is required to ensure desirable performance of 
the prediction model (Suykens et al. 2002).  

 
1.3. Regression analysis with prediction intervals  
1.3.1. Background 
Regression analysis is the study of the function that un-
derlies the relation between the dependent variable Y and 
a vector x as the independent variable (Olive 2007). A 
typical regression model can be expressed as follows: 
 ( ) ,i i iY m x e= +  1, ...,i n= , (9) 
where: m denotes a function of x and ei is the prediction 
error. 

Various methods are used to find the estimate �m  of 
m. These methods range from traditional techniques, such 
as multiple linear regression model and many time series, 
nonlinear, nonparametric, and semiparametric models 
(Olive 2007), to various machine learning techniques, 
such as M5-MT (Bhattacharya, Solomatine 2005; Jekab-
sons 2010), ANN (Zhu et al. 2010; Wong et al. 1997), 
SVM (Cheng et al. 2010; Lu et al. 2009), and LS-SVM 
(Suykens et al. 2002; Brabanter et al. 2010).  

Once the mapping function is obtained, the primary 
task is to predict the future value of Y when a specific 
input x is presented to the system. In point estimation, Y 
is expressed as a single value. On the contrary, in interval 
estimation, the prediction result is given in the form of an 
interval of possible values. In many situations, interval 
estimation draws more attention than point estimation. 
The reason is that the requirement of decision makers not 
only resides in an accurate forecasting but also in the 
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inherent uncertainty of the forecasts (Shrestha, Solomati-
ne 2006).  

 

 
Fig. 1. Prediction limits and prediction interval  

 
Interval estimation includes the upper and lower  

limits between which a pointwise value of response va-
riable is expected to lie with a certain level of confidence 
(usually 95%). The range restricted by those limits is 
known as prediction interval (PI) (Fig. 1). Prediction 
intervals as outputs are desirable since they provide a 
range of values that most likely include the point estima-
tion of the predicted variable. In addition, one can employ 
prediction intervals to discern the accuracy of the estima-
tion provided by the model, and then decide to keep or 
reject the result (Mencar et al. 2005). 

 
1.3.2. Evaluating performance of prediction interval  
Once the output with interval has been obtained, the Pre-
diction Interval Coverage Probability (PICP) can be uti-
lized for performance evaluation (Shrestha, Solomatine 
2006; Khosravi et al. 2010). PICP measures the propor-
tion of data point lying within the PI. In some cases, the 
empirical PICP can be much less than the pre-specified 
level of confidence. This phenomenon indicates that the 
derived PIs are not reliable (Khosravi et al. 2011). Hence, 
PICP is oftentimes expected to be equal or greater than 
the level of confidence, since this reflects the reliability 
of the prediction results.  

However, PICP is not the only metric for evaluating 
PIs. The reason is that one can simply construct a very 
large PI to achieve the maximum reliability of the predic-
tion outcomes (e.g. 100%). Nevertheless, extremely large 
PIs, in practice, reduce the usability of forecasting results 
because the interval estimation does not convey any valu-
able information for the decision-makers (Khosravi et al. 
2011). Hence, to guarantee the usability of the interval 
estimation, Mean Width of Prediction Interval (MPI) 
(Khosravi et al. 2010; Shrestha, Solomatine 2006), which 
measures the average width of the PIs, is also needed to 
be considered. Accordingly, a well-constructed PI should 
achieve the balance between reliability and usability. Put 
differently, it is desirable to obtain a high PICP corre-
sponding to a narrow MPI (Khosravi et al. 2010, 2011). 
Nevertheless, these two criteria oftentimes conflict with 
each other and this makes interval estimation a challeng-
ing problem. Due to its importance and challenge, studies 
have dedicated in establishing PIs for variety of predic-
tion models.  

 

2.3.3. Previous works on prediction interval estimation 
Sonmez (2011) integrated neural networks with bootstrap 
prediction intervals for range estimation of construction 
costs. In this approach, neural networks are used for 
modeling the mapping function between the influence 
factors and costs. Bootstrap method is utilized to quantify 
the level of variability included in the estimated costs. 
However, to construct interval estimates based on the 
bootstrap, which possibly produces accurate intervals, 
requires heavy computational expense (Brabanter et al. 
2011).  

Mencar et al. (2005) proposed a method for estima-
ting prediction interval for neuro-fuzzy network such that 
the system provides an estimate of the uncertainty asso-
ciated with predicted output values. This method does not 
require any strict assumption on the unknown distribution 
of data. However, the derived intervals are constant 
throughout the input domain. This feature might not  
reflect the true phenomenon happening in real-world time 
series data. In these cases, inherent uncertainty may dis-
tribute unequally in different periods of time (Cheng, Roy 
2011). 

 

 
Fig. 2. Machine learning (ML) based interval estimation 

 
Another method for constructing PI, which is based 

on machine learning approach, is established by Shrestha 
and Solomatine (2006). In their study, the authors presen-
ted a method to estimate PI via uncertainty of the model 
output. The crucial idea herein is the historical residuals 
between the model outputs and the corresponding observ-
ed data can be the quantitative indicators of the difference 
between the model and the modeled real world system 
and provide the valuable information to evaluate the mo-
del uncertainty.   

The machine learning based interval estimation 
(MLIE) approach (Shrestha, Solomatine 2006) can be 
divided into five main steps (Fig. 2). First, the point esti-
mation process is carried out. A regression technique is 
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employed to learn the underlying mapping function 
between input data and outputs. Second, the input data 
points are separated into different clusters that have simi-
lar historical residuals, which are obtained from point 
estimation process, using fuzzy c-means clustering. In the 
third step, prediction limits (PLs) for each cluster are 
computed based on empirical distributions of the errors 
associated with all data points of one cluster. In the next 
step, PLs for each training data point is then calculated 
according to their membership grades in each cluster. In 
the final step, a machine learning (ML) technique can be 
deployed to learn the underlying functions between the 
input data and the computed PLs for training data. PLs 
for testing data can be inferred using those underlying 
functions.  

Another advantage of MLIE method is its independ-
ence on the machine learning technique. However, this 
approach lacks a mechanism for selecting tuning param-
eters of the regression machine appropriately. Additional-
ly, the performance of the proposed MLIE, in term of 
prediction accuracy and of computational cost, can be 
enhanced significantly by using more superior technique 
such as LS-SVM. 

 
1.4. Differential Evolution optimization algorithm 
This section describes the standard algorithm of Differen-
tial Evolution (DE) proposed by Storn and Price (Price 
et al. 2005; Storn, Price 1997). The algorithm (Fig. 3) 
consists of five main stages: initialization, mutation, 
crossover, selection, and stopping condition verification. 
Given that the problem at hand is to minimize a cost 
function f(X), where the number of decision variables is 
D, we can describe each stages of DE in details. 
 
1.4.1. Initialization  
DE commences the search process by randomly generat-
ing NP number of D-dimensional parameter vectors 

,i gX  
where i = 1, 2, …, NP and g denotes the current genera-
tion. In original DE algorithm, NP does not change dur-
ing the optimization process (Storn, Price 1997). Moreo-
ver, the initial population (at g = 0) ought to cover the 
entire search space in a uniform manner. Thus, we can 
simply generate these individuals as follows: 

 ,0 [0,1] ( )iX LB rand UB LB= + × − , (10) 
where: 0,iX  is the decision variable i at the first genera-
tion. rand[0,1] denotes a uniformly distributed random 
number between 0 and 1. LB and UB are two vectors of 
lower bound and upper bound for any decision variable. 

 
1.4.2. Mutation 
A vector in the current population (or parent) is called a 
target vector. Hereafter, the terms parent and target vector 
are used interchangeably. For each target vector, a mutant 
vector is created according to the following equation 
(Storn, Price 1997): 
 , 1 1, 2, 3,( )i g r g r g r gV X F X X+ = + − , (11) 
where: r1, r2, and r3 are three random indexes lying be-
tween 1 and NP. These three randomly chosen integers 
are also selected to be different from the index i of the 
target vector. F denotes the mutation scale factor, which 
controls the amplification of the differential variation 
between Xr2,g and Xr3,g. Vi,g+1 represents the newly created 
mutant vector. 
 
1.4.3. Crossover  
The crossover stage aims to diversify the current popula-
tion by exchanging components of target vector and mu-
tant vector. In this stage, a new vector, named as trial 
vector, is created. The trial vector is also called the off-
spring. The trial vector can be formed as follows: 

, , 1
, , 1

, ,

, ( )
, ( )

j i g j
j i g

j i g j

V if rand Cr or j rnb iU X if rand Cr and j rnb i
+

+

 ≤ ==  > ≠
, (12) 

where: Uj,i,g+1 is the trial vector; j denotes the index of 
element for any vector; randj is a uniform random num-
ber lying between 0 and 1; Cr is the crossover probabil-
ity, which is needed to be determined by the user; rnb(i) 
is a randomly chosen index of {1, 2, ..., }NP  which guar-
antees that at least one parameter from the mutant vector 
(Vj,i,g+1) is copied to the trial vector (Uj,i,g+1). 
 

 

 
Fig. 3. Differential Evolution optimization algorithm 
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1.4.4. Selection 
In this stage, the trial vector is compared to the target 
vector (Price et al. 2005). If the trial vector can yield a 
lower objective function value than its parent, then the 
trial vector replaces the position of the target vector. The 
selection operator is expressed as follows: 

 , , ,
, 1

, , ,

( ) ( )
( ) ( )

i g i g i g
i g

i g i g i g

U if f U f XX X if f U f X+

 ≤=  >
. (13) 

1.4.5. Stopping criterion verification  
The optimization process can terminate when the stop-
ping criterion is met. The user can set the type of this 
condition. Commonly, maximum generation (Gmax) or 
maximum number of function evaluations (NFE) can be 
used as the stopping condition. When the optimization 
process terminates, the final optimal solution is readily 
presented to the user. 

 
2. Differential evolution based cross-validation 
As mentioned earlier, in machine learning, one important 
objective is to construct a prediction model that can de-
liver the best generalization. The reason is that the per-
formance on the training data set is not necessarily a good 
indicator of predictive performance on the testing data 
due to the problem of over-fitting (Bishop 2006). Over-
fitting arises when a regression model fits the training set 
very well, but performs poorly on the new data set. 
 

 
Fig. 4. Differential Evolution based cross-validation process 

 
Hence, to build a desirable prediction model, one 

commonly used technique is S-fold cross-validation 
(Bishop 2006; Samarasinghe 2006; Suykens et al. 2002). 
The training data is divided into S folds and this allows a 
proportion ( 1) /S S−  of the available data to be used for 
training while other portion of the data is for assessing 
model performance. However, one major disadvantage of 
cross-validation is that the number of training runs that 

must be performed is increased by a factor of S, and this 
can impose difficulty for models with high computational 
expense in the training process (Bishop 2006). Moreover, 
another challenge is that there might be infinite combina-
tions of model’s parameters. Thus, it is problematic and 
time-consuming when designing the combinations of 
parameters for the cross-validation process. 

Since our study employs LS-SVM as the regression 
machine, there are two parameters needed to be determi-
ned, namely regularization parameter γ and RBF kernel 
parameter σ. To avoid over-fitting and drawbacks of tradi-
tional cross-validation approach, the new model utilizes 
DE (Price et al. 2005) to automatically explore the various 
combinations of (γ, σ) and to identify the optimal set of 
these tuning parameters. In the following section, the DE-
based cross-validation (Fig. 4) is described in details. 

In the step of data processing, the training data set is 
divided into S folds (e.g. 5 folds). In each run, one fold is 
used as a validating set; meanwhile, the other folds are 
used for training the model (Fig. 5). Tuning parameters of 
LS-SVM is initialized randomly using Eqn (10). The 
lower bounds for γ and σ are both 0.001. Meanwhile, the 
upper bounds for γ and σ are specified to be 10000 and 
100, respectively. 

 

 
Fig. 5. S-fold cross-validation 

 
In LS-SVM training, LS-SVM is utilized to learn 

the regression function between input and output for each 
run. These regression functions can be described in the 
form of Eqn (7). After the training process, LS-SVM is 
applied to predict the output of the validating sets. In 
order to determine the optimal set of tuning parameters, 
the following objective function is used in the step of 
fitness function evaluation: 

 

5 5

1 1
5 5

k ktr va
k kfitness

E E
F = == +
∑ ∑

, (14) 

where: k
trE  and k

vaE  denotes the training error and vali-
dating error, respectively, for kth run. The training and 
validating errors herein are Root Mean Squared Error 
calculated as follows: 

 
2

1

( )j jN P A
j

Y Y
RMSE

N
=

−
= ∑ , (15) 

where: j
PY  and j

AY  denote predicted and actual value for 
output jth. In addition, N is the number of training data in 
each run. 
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Table 1. EAC prediction’s influencing factors 
No. Influence Factor (IF) Index Definition 
IF1 Construction duration Construction progress (%) Duration to date/ 

revised contract duration 
IF2 Actual cost ACp Actual Cost/ 

Budget at Completion 
IF3 Planned cost EVp Earned Value/ 

Budget at Completion 
IF4 Cost management CPI Earned Value/Actual Cost 
IF5 Time management SPI Earned Value/Planned Value 
IF6 Subcontractor management Subcontractor billed index Subcontractor billed amount/ 

Actual Cost 
IF7 Contract payment Owner billed index Owner billed amount/ 

Earned Value 
IF8 Change order Change order index Revised contract amount/ 

Budget at Completion 
IF9 Construction price fluctuation CCI Construction material price index of that month/ 

construction material price index of initial stage 
IF10 Number of rainy day Climate effect index (Revised project duration – number of rainy day)/ 

revised project duration 
 
The fitness function, in essence, represents the  

trade-off between model generalization and model 
complexity. It is worth noticing that well-fitting of the 
training set may reflect the model complexity. However, 
complex model tends to suffer from over-fitting (Bishop 
2006; Suykens et al. 2002). Thus, incorporating the error 
of the validating data can help identify the model that 
features the balance of minimizing training error and 
generalization property. 

In each generation, the DE optimization carries out 
mutation, crossover, and selection process to guide the 
initial population to the final optimal solution. The search 
terminates when the current generation g achieves the 
maximum number of generation Gmax. After being opti-
mized, the prediction model is ready to be used in the 
next step. 

 
3. Interval estimation of construction cost at 
completion using LS-SVM inference model  
(EAC-LSPIM) 
Figure 6 provides the overall picture of the model EAC-
LSPIM. Before describing the model in detail, it is noted 
that our study benefits from previous research works of 
Chen (2008) and Cheng et al. (2010) in identifying the 
influence factors for EAC prediction (Table 1), and of 
Shrestha and Solomatine (2006) in establishing the 
MLIE. 
 
3.1. Input data 
Historical data sets (Table 2) used in this paper were col-
lected from 13 reinforced concrete building projects exe-
cuted between 2000 and 2007 by one construction compa-
ny headquartered in Taipei City, Taiwan. Building heights 
ranges from 9 to 17 stories (including underground floors). 
Contract values ran from NT$80 million to NT$1.1 billion. 
Total floor areas for the projects ranged from 2,094 m2 to 
31,797 m2. Besides, construction durations varied between 
15 to 63 months. Historical data sets were separated into 

training sets (from 1 to 11) and testing sets (12 and 13). 
The training and testing data sets consist of 262 and 44 
data cases respectively. Table 3 provides descriptive statis-
tics of influencing factors as well as desired output of the 
historical data.  In Table 4, the sample of 10 input variables 
from project 2, which had 24 completion periods, is used to 
illustrate the data set. 

 
Fig. 6. EAC-LSPIM 

 
3.2. LS-SVM for point estimation of Estimate to 
Completion  
Herein, LS-SVM is employed to learn the mapping func-
tion between model’s input and output. Each 1 10×  vec-
tor of influence factor acts as input for LS-SVM. Input 
vectors and observed values of Estimate to Completion 
(ETC) take the role of training data to obtain the predic-
tion model.  LS-SVM uses regularization parameter (γ) 
and RBF kernel parameters (σ), which are chosen by DE-
based cross-validation process. After the training process, 
the model is capable of inferring unknown ETC value 
whenever new input information is presented. 
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Table 2. Project information 

Project
Total  
area 
(m2) 

Under-
ground 
floors 

Ground 
floors Buildings Start date Finish date Duration 

(days) 
Contract amount 

(NTD) 
Prediction 
periods 

1 12622 2 9 1 2003/12/1 2005/8/22 630 289,992,000 29 
2 4919 3 11 1 2003/12/13 2005/11/10 689 149,300,000 24 
3 19205 5 8 1 2000/5/20 2002/5/19 729 332,800,000 20 
4 5358 3 9 1 2000/11/15 2002/11/14 729 199,600,000 25 
5 27468 2 11 3 1999/12/16 2001/12/3 718 1,142,148,388 26 
6 31797 2 9 4 2001/7/4 2003/3/31 635 530,000,000 20 
7 7707 2 14 1 2001/11/24 2003/10/20 695 153,500,000 22 
8 10087 3 14 1 2002/6/18 2004/7/6 749 216,000,000 27 
9 3479 1 10 1 2003/6/2 2004/9/30 486 85,714,286 18 
10 7289 2 8 1 2005/6/15 2006/9/15 457 190,844,707 20 
11 6352 4 11 1 2004/3/5 2006/2/18 715 202,241,810 31 
12 4774 2 11 1 2004/2/21 2006/2/20 730 145,377,589 27 
13 3094 2 7 1 2005/10/1 2007/2/28 515 102,500,000 17 

 
Table 3. Descriptive statistics of historical data 

 IF1(%) IF2(%) IF3(%) IF4 IF5 IF6 IF7 IF8 IF9 IF10 ETC(%) EAC(%) 
Mean 65.48 51.62 60.66 1.20 1.00 1.06 0.89 1.03 1.05 0.89 42.93 93.87 
Median 65.30 49.25 58.05 1.16 1.00 1.08 0.91 1.00 1.03 0.90 42.00 91.70 
Minimum 2.40 0.00 0.00 0.34 0.40 0.00 0.00 0.87 0.97 0.70 0.00 73.20 
Maximum 130.60 132.70 141.60 2.33 1.62 1.90 1.57 1.42 1.20 1.00 108.70 132.70 
Std. Dev. 32.92 31.50 35.72 0.23 0.09 0.26 0.22 0.10 0.06 0.07 30.81 14.84 

Table 4. Input data for project 2 with 24 completion periods 
IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IF10 
2.4 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
6.9 2.5 0.0 1.0 1.0 1.2 1.0 1.0 1.0 1.0 
11.0 6.3 11.0 1.8 1.0 1.8 1.0 1.0 1.1 1.0 
15.5 9.6 12.7 1.3 1.0 1.3 1.0 1.0 1.1 1.0 
19.9 12.6 14.8 1.2 1.0 1.0 0.9 1.0 1.1 1.0 
24.2 14.3 16.4 1.1 1.0 0.9 0.8 1.0 1.1 1.0 
28.7 16.5 16.4 1.0 1.0 1.4 1.4 1.0 1.1 0.9 
33.0 19.4 18.8 1.0 1.0 1.2 1.2 1.0 1.1 0.9 
37.4 22.3 26.5 1.2 1.0 1.4 1.2 1.0 1.1 0.9 
41.8 25.3 30.4 1.2 1.0 1.4 1.1 1.0 1.1 0.9 
46.1 29.2 29.7 1.0 1.0 1.3 1.3 1.0 1.1 0.9 
50.6 32.6 33.1 1.0 1.0 1.2 1.2 1.0 1.1 0.9 
54.9 36.4 37.0 1.0 1.0 1.3 1.2 1.0 1.1 0.9 
59.3 40.6 41.5 1.0 1.0 1.1 1.1 1.0 1.1 0.9 
63.5 43.8 44.8 1.0 1.0 1.0 1.0 1.0 1.1 0.9 
72.2 54.6 55.8 1.0 1.0 1.1 1.1 1.0 1.1 0.9 
76.5 61.5 62.9 1.0 1.0 1.1 1.0 1.0 1.1 0.8 
81.0 66.1 67.6 1.0 0.9 1.0 1.0 1.0 1.1 0.8 
85.2 72.5 82.5 1.1 1.0 1.1 1.0 1.0 1.1 0.8 
89.7 78.5 92.0 1.2 1.0 1.1 1.0 1.0 1.1 0.8 
94.1 79.6 94.4 1.2 1.0 1.2 1.0 1.0 1.1 0.8 
98.4 81.6 99.0 1.2 1.0 1.2 1.0 1.0 1.1 0.8 
102.9 84.5 100.5 1.2 1.0 1.2 1.0 1.0 1.1 0.8 
107.2 91.2 100.5 1.1 1.0 1.1 1.0 1.0 1.1 0.8 

3.3. Estimate at Completion calculation 
In this step, Actual cost percentage (AC) of completed 
jobs is added to the Estimate to Completion (ETC) in 
order to obtain the Estimate at Completion (EAC) values, 
as defined in Eqn (16): 
 EACp = ACp + ETCp, (16) 
where: EACP denotes point estimation of EAC; ETCP 
represents point estimation of ETC; ACP is actual cost 
percentage. 

ETC is a value used to determine forecasted 
expenditures necessary to complete remaining project 
work. AC percentage is a known value defined as the 
ratio of actual construction cost (AC) value to the Budget 
at Completion (BAC). It is noted that the BAC itself is 
the cost of the project when all contracted works are 
completed. EAC replaces BAC for the predicted total cost 
of the project at a specific period during construction. 

 
3.4. Estimation of EAC prediction interval  
Prediction interval (PI) estimation is carried out in four 
steps. First, the input dataset is separated into a certain 
number of clusters corresponding to distributions of his-
torical residuals, obtained from the point estimation, us-
ing fuzzy c-means clustering algorithm (FCMC) (Bezdek 
1981). The FCMC is an unsupervised machine learning 
technique employed to separate data into different clus-
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ters. Notably, using this technique, a data point can be-
long to many clusters, and the degrees of belonging are 
quantified by fuzzy membership grades. In FCMC, the 
number of clusters needs to be specified by the user. 
Commonly, the optimal number of clusters can be select-
ed so that it results in the clustering performance corre-
sponding to the smallest Xie-Beni index. For details of 
FCMC and selecting cluster number, readers are guided 
to the previous works of Xie and Beni (1991), and of 
Oliveira and Pedrycz (2007). 

The next step is to compute the lower and upper PIs 
for each cluster. Given a certain level of confidence 
(e.g. 95% or α  is 5%), the PIs for each cluster is calcula-
ted from empirical distributions of the corresponding 
historical residuals (e). To construct (100 )%−α PI, the 
( / 2) 100α ×  and (1 ( / 2)) 100− α ×  percentile values are 
taken from empirical distribution of residuals for lower 
and upper PI, respectively (Fig. 7). The mathematical 
expression for calculating lower and upper PIs for cluster 
i ( L

ciPI  and U
ciPI ) is given as follows: 

 Lci jPI e=  , ,
1 1

:
2

j n
i k i j

k j
j
= =

αµ < µ∑ ∑ ; (17) 

 U jciPI e= , ,
1 1

: (1 )2
j n

i k i j
k j

j
= =

αµ > − µ∑ ∑ , (18) 

where: j is the index of the sorted data point that satisfies 
the corresponding inequalities; ej denotes historical resid-
uals of sorted data point j; and 

,i jµ  is membership grade 
of data point j to cluster i. 
 

 
Fig. 7. PI calculation for one cluster 

 
In the third step, the PI for each tcraining data point is 

calculated using the weighted mean of PI of each cluster: 

 ,
1

c
L Lj i j ci

i
PI PI

=

= µ ×∑ ; (19) 

 ,
1

c
U Ui jj ci

i
PI PI

=

= µ ×∑ , (20) 

where: LjPI  and UjPI  are lower and upper prediction 
intervals for data point  j. 

Finally, prediction limits of EAC for each data point 
are computed as follows: 
 L Lj i jEAC y PI= + ; (21) 

 U Uij jEAC y PI= + , (22) 

where: LjEAC  and UjEAC  are lower and upper predic-
tion limits of EAC for input data  j. 
 
3.5. LS-SVM for inference of EAC prediction limits 
Once the prediction limits for each training data point are 
obtained, LS-SVM is utilized to establish two regression 
functions that model the relationship between the input 
data and its corresponding prediction limits. Tuning pa-
rameters of LS-SVM in this step are also selected via DE-
based cross-validation. When the training process finish-
es, the model is then capable of estimating lower and 
upper prediction limits for new instances of input data. 

 
3.6. Interval estimation of project cost at completion 
In this step, the final model outputs ( pEAC , LjEAC , and 

UjEAC ) are presented. The interval estimation of total 
cost is available for decision-making process. The plan-
ners or managers can anticipate the cost required to com-
plete the project associated with uncertainty described in 
the form of prediction intervals. 
 
4. Simulation result and comparisons 
After the training process, the proposed model, EAC-
LSPIM, is utilized to predict two testing projects (12 and 
13). Projects 12 and 13 consist of 27 and 17 completion 
periods, respectively. To achieve interval forecast of 
EAC, the level of confidence is set as 95%, which is cor-
responding to α of 5%. In order to evaluate the accuracy 
of EAC point estimation, Root Mean Square Error 
(RMSE), Mean Absolute Percentage Error (MAPE), and 
Mean Absolute Error (MAE) are employed. In addition, 
to assess the performance of EAC interval estimation, 
PICP and MPI are utilized. 

Prediction results of EAC-LSPIM for two testing 
projects are illustrated in Tables 5 and 6, and Figures 8 
and 9. In these tables and figures, EACA denotes the actu-
al EAC. Meanwhile, EACL, EACP, and EACU represent 
lower prediction limit, point estimation and upper predic-
tion limit of EAC, respectively. Deviation is the error 
between point estimate of EAC and the actual EAC.  

In the experiment in which projects 12 and 13 serve 
as testing cases, the RMSE, MAPE, and MAE of point 
estimate are 0.044, 3,741, and 0.034, respectively. The 
PICP and the MPI derived from EAC-LSPIM are 97.73% 
and 19.22, respectively. Since the level of confidence is 
set as 95%, the derived PICP is desirable; and this de-
monstrates the reliability of the prediction results. 
Meanwhile, it can be observed that the width of PIs yield-
ed by the proposed model is acceptable. On average, the 
range of predicted EAC is 19.22%, and this is relatively 
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satisfactory in an operational environment of construction 
industry, which is often hazarded by uncertainty. 

 
Table 5. Interval Estimation of EAC for project 12 
No. EACA EACL EACP EACU Deviation 
1 91.69 74.45 84.79 93.77 6.90 
2 91.69 69.06 79.41 88.39 12.28 
3 91.69 79.11 89.33 98.31 2.36 
4 91.69 78.35 88.74 97.85 2.95 
5 91.69 76.39 86.75 95.73 4.94 
6 91.69 73.08 83.34 92.39 8.35 
7 91.69 73.86 84.01 93.11 7.68 
8 91.69 73.02 82.82 91.71 8.87 
9 91.69 78.20 87.94 96.78 3.75 
10 91.69 82.36 92.59 101.57 0.90 
11 91.69 80.73 91.00 99.98 0.69 
12 91.69 80.89 91.26 100.29 0.43 
13 91.69 80.14 90.55 99.57 1.14 
14 91.69 84.09 94.48 103.46 2.79 
15 91.69 80.85 91.25 100.22 0.44 
16 91.69 83.75 94.12 103.09 2.43 
17 91.69 80.40 90.74 99.72 0.95 
18 91.69 80.69 91.03 100.01 0.66 
19 91.69 75.33 85.69 94.68 6.00 
20 91.69 77.65 88.02 97.00 3.67 
21 91.69 78.10 88.48 97.47 3.21 
22 91.69 80.08 90.47 99.46 1.22 
23 91.69 77.24 87.62 96.61 4.07 
24 91.69 82.37 92.73 101.71 1.04 
25 91.69 82.57 92.48 101.29 0.79 
26 91.69 82.12 91.70 100.44 0.01 
27 91.69 83.60 93.24 102.06 1.55 

 
Table 6. Interval Estimation of EAC for project 13 
No. EACA EACL EACP EACU Deviation 
1 92.49 83.98 94.33 103.31 1.84 
2 92.49 86.85 97.42 106.39 4.93 
3 92.49 78.87 89.27 98.25 3.22 
4 92.49 78.16 88.54 97.52 3.95 
5 92.49 76.97 87.32 96.30 5.17 
6 92.49 83.88 94.24 103.22 1.75 
7 92.49 90.91 101.26 110.24 8.77 
8 92.49 91.51 101.82 110.79 9.33 
9 92.49 86.05 95.73 104.49 3.24 
10 92.49 81.05 90.32 98.91 2.17 
11 92.49 80.64 90.69 99.54 1.80 
12 92.49 84.49 94.79 104.04 2.30 
13 92.49 79.70 90.23 99.39 2.26 
14 92.49 78.55 89.39 98.61 3.10 
15 92.49 77.98 88.68 97.90 3.81 
16 92.49 81.06 91.12 100.08 1.37 
17 92.49 84.62 94.86 103.97 2.37 

 
In order to validate the superiority of EAC-LSPIM, 

its performance is compared to other benchmarked ap-
proaches. It is noted that the newly developed model is 
composed of LS-SVM, MLIE, and DE-based cross-
validation. In order to validate the superiority of the pro-
posed prediction model, various machine learning 

techniques, namely M5-MT, ANN, and LS-SVM, has 
been integrated with MLIE and are applied to for interval 
prediction of EAC. For LS-SVM, the selection of tuning 
parameters is achieved via the grid search approach (Su-
ykens et al. 2002; Shu et al. 2010). Utilizing this appro-
ach, various pairs of (γ and δ) are tried and the one with 
the best cross-validation accuracy is chosen. Accordingly, 
the values of γ and σ obtained from the grid search  
method, for point estimation of EAC, are 256 and 2.8, 
respectively. Meanwhile, the optimal values of γ and σ 
found by DE are 251.4 and 3.9, respectively. 

The result comparison is shown in the Table 7. 
From Table 7, it is observable that the proposed model, 
EAC-LSPIM, has achieved the best result in point esti-
mate of EAC having the smallest RMSE, MAPE, and 
MAE of testing data. Moreover, the model also yields the 
most desirable performance in interval estimation of pro-
ject cost. Its prediction interval has the highest PICP  
value (97.73%) with relatively narrow MPI (19.22) com-
pared to other outcomes. 

 

 
Fig. 8. EAC-LSMLPI prediction for project 12 

 

 
Fig. 9. EAC-LSMLPI prediction for project 13 

 
To better demonstrate the performance of each  

benchmark model, the results of different combinations of 
13 projects for training and testing have been added. In this 
experiment, 13 cases of experiment are carried out. In each 
case, a project serves as a testing set, the rest are training 
sets. As shown in Table 8, based on the average prediction 
results, the proposed model achieves the most desirable 
outcome.  For point estimation, the RMSE, MAPE, and 
MAE of EAC-LSPIM are 3.812, 0.035, and 0.042, respec-
tively. Meanwhile, for interval estimation, the PICP and 
MPI of the proposed model are 98.43% and 21.89. Obser-
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vably, EAC-LSPIM is the most accurate model in point 
forecast of project cost. Moreover, it also achieves the 
highest PICP value corresponding to a relatively small 
value of MPI. These facts strongly proved the superiority 
of the new model over other benchmark approaches. 

 
Table 7. Prediction result comparison for 2 testing projects 

Prediction model M5-MT ANN LS-
SVM 

EAC-
LSPIM 

Training 
MAPE 3.16 3.11 1.81 2.36 
MAE 0.03 0.03 0.02 0.02 
RMSE 0.04 0.05 0.03 0.03 

Testing  
MAPE 7.63 3.83 3.90 3.74 
MAE 0.07 0.04 0.04 0.03 
RMSE 0.09 0.06 0.05 0.04 

Interval 
Estimation 

PICP  81.8 90.9 93.2 97.7 
MPI 27.9 23.0 20.8 19.2 

 
Conclusion 
This study proposes a new prediction model, namely 
EAC-LSPIM, to assist project manager in construction 
cost planning and monitoring. To address the uncertainty 
in construction cost forecasting, this study incorporates 
LS-SVM, MLIE, and DE to achieve interval forecasting 
of construction project cost.  

In EAC-LSPIM, the utilization of LS-SVM is 
twofold. First, LS-SVM is used to infer the underlying 
function between input data and point estimation of ETC. 
Second, it is employed to model the mapping relationship 
between the input data and the prediction limits of EAC.  

Moreover, by using MLIE, the new model derives 
the prediction interval by evaluating the uncertainty inhe-
rent in the data set, without any assumption or prior 
knowledge about model’s error distribution.  

In order to avoid over-fitting, our study employs DE 
search engine in the cross-validation process. The DE-
based cross-validation successfully identifies the most 
appropriate set of tuning parameters and eliminates the 
need of expertise or trial-and-error process in parameter 
setting.  

Consequently, the proposed model has the capacity 
to operate automatically without human intervention and 
domain knowledge. In addition, simulation and perfor-
mance comparison have demonstrated the accuracy, the 
reliability, and the usability of EAC-LSPIM prediction. 
Therefore, the newly established model has a great poten-
tial to assist decision-makers in the field of construction 
management. 
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