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Abstract. The methodology, Multicriteria Decision Making (MCDM), refers to finding the best alternative from all of 
the feasible alternatives in the presence of multiple, usually conflicting, decision criteria. Nowadays, intelligent build-
ings’ performance that is increasingly evidenced in building design and construction has been analyzed by using MCDM 
techniques. Intelligent buildings (IBs) are also under assessment according to their IB related characteristics and actual 
circumstances as a MCDM problem. In this paper, two most known MCDM methodologies, Analytic Hierarchy Process 
(AHP) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), are used for intelligent building 
assessment under fuzzy environment for dealing with the evaluations’ uncertainty and imprecision in which the expert’s 
comparisons that are represented as fuzzy numbers. For this aim, three intelligent building alternatives for a business 
centre in Istanbul are evaluated by using these two fuzzy MCDM methods and the obtained ranking results are com-
pared.
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Introduction

For many years, buildings that offer comfortable, flexible 
and energy efficient living environment at a minimal cost 
has been the expectation of building owners and occupi-
ers. To attain this aspiration, a variety of advanced build-
ing technologies have been developed in the past two 
decades, aiming to improve the building performance to 
satisfy a variety of human needs and environmental sus-
tainability. While a plethora of advanced building prod-
ucts have been accessible, it has become increasingly ev-
ident that developers are confronted with the quandary of 
choosing components or products to suit the needs and to 
accomplish the unique configuration of a particular intel-
ligent building (IB) project (Wong, Li 2008).

There has been a myriad of academic and technical 
literature discussing the definition of intelligent build-
ings. Early intelligent building definitions focused almost 
entirely on technology aspect and did not suggest user in-
teraction at all. An intelligent building can be defined as 
‘one which has fully automated building service control 
systems’. The Intelligent Building Institution in Wash-
ington defined an intelligent building as ‘one which inte-
grates various systems to effectively manage resources in 

a coordinated mode to maximize: technical performance, 
investment and operating cost savings, flexibility’. Most 
recently, a number of authors have extended the defini-
tion of an intelligent building and have added ‘learning 
ability’ and ‘performance adjustment from its occupancy 
and the environment’ in the definition. They proposed 
that an intelligent building is not only able to react and 
change accordingly to individual, organizational and en-
vironmental requirement, but is also capable of learning 
and adjusting performance from its occupancy and the 
environment (Wong et al. 2005). 

An intelligent building is defined as “a building 
that integrates technology and process to create a facil-
ity that is safer, more comfortable and productive for its 
occupants, and more operationally efficient for its own-
ers. Advanced technology combined with improved pro-
cesses for design, construction and operations provide 
a superior indoor environment that improves occupant 
comfort and productivity while reducing energy con-
sumption and operations staffing”(Intelligent Building 
Dictionary 2012). 

An intelligent building is a single building or a com-
plex of buildings that offers a coherent set of facilities for 
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the building managers and the occupants. For the building 
managers, it provides an integrated set of management, 
control maintenance, and inter-building communications 
facilities that allow efficient and cost-effective environ-
mental control, security surveillance, alarm monitoring 
and communications, both inside the building and out to 
municipal authorities (police, fire stations, and hospitals). 
For the building occupants (tenants) in the workplace, it 
provides an environment ergonomically designed to in-
crease productivity and encourage creativity and in resi-
dences and hotels, environments that will foster comfort 
and a “humanizing” atmosphere as well as provide so-
phisticated computer and telecommunications services. 
An essential part of both these cases is an integrated set 
of computer and communications facilities that respond 
cost-effectively to office automation and internal and ex-
ternal communications needs and a holistic, ergonomic 
approach to the design of the building and the work, liv-
ing, and recreation spaces. The design extends from a 
macro level encompassing the building and its internal 
and external spaces to a micro level involving furniture, 
workplace, and residential equipment, local atmospheric 
control, and lighting (Finley et al. 1991). IBs should be 
sustainable, healthy, and technologically aware, meeting 
the needs of the occupants and business, and should be 
flexible and adaptable to deal with change (ALwaer et al. 
2010; Kahraman, Kaya 2012).

In this regard, building assessment is becoming 
popular in order to have a standard method to evaluate 
new and existing building design. For example, the U.S. 
Green Building Council developed the Leadership in En-
ergy and Environmental Design Green Building Rating 
System as a voluntary, consensus based national standard 
for developing high-performance, sustainable buildings. 
The Japan Sustainable Building Consortium developed 
the comprehensive assessment system for building envi-
ronmental efficiency system as a new environmental as-
sessment system to meet both the political requirements 
and market needs for achieving a sustainable society. 
The Building Research Establishment Ltd. (BRE) from 
UK developed the Building Research Establishment En-
vironmental Assessment Method to assess the environ-
mental performance of both new and existing buildings. 
Meanwhile, intelligent buildings (IBs) are also under as-
sessment according to their IB related characteristics and 
actual circumstances. For example, the Asian Institute of 
Intelligent Buildings developed an IB Index system to 
specifically assess the performance of IBs; and the BRE 
developed a matrix tool called MATOOL for assessing 
the performance of IBs (Chen et al. 2006; Kahraman, 
Kaya 2012). 

In recent years, some papers have concentrated on 
the assessment of IBs. Kahraman and Kaya (2012) pro-
posed a fuzzy multiple attribute utility (MAUT) model 
for an intelligent building assessment and three alterna-
tive intelligent buildings for a business centre in Istanbul 
were evaluated. ALwaer and Clements-Croome (2010) 

used a consensus-based analytical hierarchical process 
(AHP) model for multi-criteria decision-making to iden-
tify key issues related to sustainable intelligent buildings. 
They developed a conceptual model for the selection 
of the appropriate key performance indicators (KPIs). 
Wong and Li (2008) proposed a MCDM model using 
the analytic hierarchy process (AHP) approach to evalu-
ate the selection of IB systems. Kolokotsa et al. (2007) 
proposed a methodology for the buildings’ intelligence 
assessment through the development of a matrix tool. 
Chen et al. (2006) developed an analytic network process 
(ANP) based MCDM model which was called IBAss-
essor for lifespan energy efficiency assessment of IBs. 
Hong et al. (2006) presented a Knowledge-oriented In-
formation Visualization (KIV) approach to facilitate the 
implementation of building rating systems for the post-
assessment of IBs. Asian Institute of Intelligent Build-
ings constructed a quantitative assessment method, called 
the intelligent building index (IBI) that originated from 
the nine ‘Quality Environment Modules’ (M1–M9), each 
index possesses a score which is a real number (within 
the range of 1–100). A building can be ranked from A 
to E to indicate the overall intelligent performance (So, 
Wong 2002). Preiser and Schramm (2002) developed the 
post-occupancy evaluation process model that consists of 
three stages in order to determine the intelligence level of 
intelligent buildings. Arkin and Paciuk (1997) developed 
a “Magnitude of Systems’ Integration” Index (MSIR) to 
examine the level of systems’ integration of intelligent 
buildings. This assessment methodology was used for 
evaluation and comparison of single aspect of building’s 
intelligence. Yang and Peng (2001) adapted the MSIR 
model for using in the IB performance evaluation.

Differently from the above papers, this paper pro-
poses two multicriteria decision-making model that are 
the fuzzy AHP and fuzzy TOPSIS to evaluate IB assess-
ment under fuzzy environment. For this aim three build-
ing alternatives from Istanbul, Turkey are evaluated. The 
fuzzy set theory that first introduced by Zadeh (1965) in 
order to deal with vagueness of human thought is used 
to represent the linguistic evaluations of decision mak-
ers (DMs).

The rest of this paper is organized as follows: fuzzy 
TOPSIS and fuzzy AHP methodologies that are used in 
this paper are briefly introduced in Sections 1 and 2, re-
spectively. An application for intelligent building assess-
ment in Istanbul is detailed in Section 3. The obtained 
results are compared and future research directions are 
indicated in final section.

1. Fuzzy TOPSIS

TOPSIS (Technique for Order Preference by Similar-
ity to Ideal Solution) is one of the useful MCDM tech-
niques to rank different alternatives through numerical 
evaluations the decision maker performs with respect to 
certain criteria. Weights can also be specified for each 
criterion, in order to introduce a measure of the relative 
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importance felt by the decision maker (Gamberini et al. 
2006; Kahraman et al. 2009). The method is based on 
the consideration that the chosen alternative should have 
the shortest distance from the positive ideal solution and 
the farthest distance from the negative ideal solution. 
TOPSIS defines an index called similarity to the positive 
ideal solution and remoteness from the negative ideal so-
lution. Then the method chooses an alternative with the 
maximum similarity to the ideal solution (Yoon, Hwang 
1995). In this study, firstly, fuzzy TOPSIS approach is 
used to specify the ranking of alternatives according to 
aggregated decision matrix and weight vector as well as 
the individual decision matrices and weigh vectors.

The Fuzzy TOPSIS (FTOPSIS) method is first 
presented in Chen and Hwang (1992), with reference 
to Hwang and Yoon (1981). The basic principle of the 
fuzzy TOPSIS is that the chosen alternative should have 
the shortest distance from the positive ideal solution and 
the farthest distance from the negative-ideal solution in a 
geometrical (i.e. Euclidean) sense (Hwang, Yoon 1981). 
The steps of this algorithm can be summarized as follows 
(Chen 2000; Aydın et al. 2012; Baysal et al. 2013):
Step 1: form a group of decision-makers and then iden-

tify the evaluation criteria.
Step 2: choose the appropriate linguistic variables for 

the importance weight of the criteria and the 
linguistic ratings for alternatives with respect to 
criteria. For this aim, Tables 1 and 2 can be used.

Step 3: pool the decision makers’ opinions to get the ag-
gregated fuzzy rating ijx  of alternative Aj under 
criterion Cj and aggregate the weights of criteria 
to get the aggregated fuzzy weight jw  of crite-
rion Cj by using Eqns (1) and (2), respectively: 

 
1 21 ( ) ( ) ( ) .K

ij ij ij ijx x x x
K
 = + + ⋅⋅⋅ +     ; (1)

 
1 21 ( ) ( ) ( ) .K

j j j jw w w w
K
 = + + ⋅⋅⋅ +     , (2)

where K is the number of decision makers, 
K
ijx  and K

jw  are the rating and the importance 
weight of the Kth decision maker.

Step 4: construct the fuzzy decision matrix and the normal-
ized fuzzy decision matrix as in Eqns (3) and (4):
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where B and C are the set of benefit criteria and 
cost criteria, respectively.

Step 5: construct the weighted normalized fuzzy deci-
sion matrix by using Eqns (5) and (6):
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Step 6: determine fuzzy positive-ideal solution (FPIS) 
and fuzzy negative-ideal solution (FNIS).

Step 7: calculate the distances of each alternative 
from the FPIS ( )*A

 
and the FNIS ( )A−  as in 

Eqn (7), respectively:

 

* * * *
1 2

1 2

( , ,..., ),

( , ,..., ).
n

n

A v v v

A v v v− − − −

=

=

  

  

 
(7)

Step 8: calculate the closeness coefficient of each alter-
native as in Eqn (8):
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where ( *
id , id − ) is the distance measurement be-

tween two fuzzy numbers.
Then a closeness coefficient is defined to 

determine the ranking order of all alternatives 
as in Eqn (9):
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Step 9: according to the closeness coefficient, the rank-
ing order of all alternatives can be determined.

2. Fuzzy AHP

AHP is developed to solve complex MCDM problems 
involving multiple qualitative and quantitative criteria. It 
allows decision-makers to specify their preferences us-

Table 1. Linguistic variables for the importance weight  
of each criterion

Very low (VL) ( 0, 0, 1 )
Low (L) ( 0, 0.1, 0.3 )
Medium low (ML) ( 0.1, 0.3, 0.5 )
Medium (M) ( 0.3, 0.5, 0.7 )
Medium high (MH) ( 0.5, 0.7, 0.9 )
High (H) ( 0.7, 0.9, 1 )
Very high (VH) ( 0.9, 1, 1)

Table 2. Linguistic variables for the ratings

Very poor (VP) ( 0, 0, 1 )
Poor (P) ( 0, 1, 3 )
Medium poor (MP) ( 1, 3, 5 )
Fair (F) ( 3, 5, 7 )
Medium good (MG) ( 5, 7, 9 )
Good (G) ( 7, 9, 10 )
Very good (VG) ( 9, 10, 10 )
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ing the Saaty’s 1–9 scale (Saaty 1980). This scale can be 
very useful in helping a group of experts or an individual 
to make a decision. The purpose of AHP is to provide 
weights for each criterion and alternatives. AHP requires 
three steps: (i) identifying evaluation criteria, (ii) assess-
ing the decision-maker evaluations by pairwise compar-
isons, and (iii) calculating the weights for criteria and 
alternatives. In AHP, logical consistency is also consid-
ered by evaluating the validity of the pairwise compari-
son process obtained from decision-makers’ preferences. 
A number of fuzzy AHP methods or their applications 
have been published in recent years.

In this paper, Buckley’s (1985) fuzzy AHP method 
is used. The steps of this method are given in the fol-
lowing (Hsieh et al. 2004; Kahraman et al. 2013; Baysal 
et al. 2013):
Step 1: Pairwise comparison matrices are constructed. 

Each element ( ijc ) of the pairwise comparison 
matrix (C) is a linguistic term representing the 
importance of one criterion over the other. The 
pairwise comparison matrix is given by:
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where kC  is a pairwise comparison matrix that 
belongs to the kth expert. For the evaluation pro-
cedure, the linguistic terms given in Table 3 are 
used. By the way, geometric mean is used to ag-
gregate expert opinions. 

Table 3. Linguistic scale for weight matrix  
(Hsieh et al. 2004)

Linguistic scales Scale of fuzzy number
(1,1,3)
(1,3,5)
(3,5,7)
(5,7,9)
(7,9,9)

Equally important
Weakly important
Essentially important
Very strongly important
Absolutely important

(Eq)
(Wk)
(Es)
(Vs)
(Ab)

Step 2: Weights are calculated. At first, the fuzzy weight 
matrix is calculated as follows: 
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where ir  is the geometric mean of fuzzy com-
parison value and iw indicated by triangular 
fuzzy numbers ( , , )i i i iw L M U  is fuzzy weight 
of thi criterion. 

Step 3: After the fuzzy relative weight matrix is ob-
tained, defuzzification process which converts a 
fuzzy number into a crisp value is utilized. In 
this paper, the total integral method is used for 
this aim. Liou and Wang (1992) proposed the 
total integral value method with an index of op-

timism [ ]0,1ω∈ . Let A  be a fuzzy number with 
left membership function L

A
f


and right member-
ship function R

A
f


. Then the total integral value is 
defined as (Kahraman et al. 2004):

 ( ) ( ) ( ) ( )1 ,R LE A E A E Aω = ω + −ω  

 
(13)

where:

 
( ) ( ) ,R

R A
E A x f x dx

β

α

= ∫ 

   (14)

and 

 
( ) ( ) ,L

L A
E A x f x dx

δ

γ

= ∫ 

  (15)

where: −∞ < α ≤ β ≤ γ ≤ δ < ∞ . For a triangular 
fuzzy number, ( ),  ,  A a b c= , the total integral 
value is obtained by:
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3. Application

Istanbul is simultaneously located on the two continents 
and it is known as a link between the east and the west. 
Istanbul has always been the centre of trade and com-
merce due to its strategic location. The rapid develop-
ment of the service sector, demand for high-rise office 
buildings in Istanbul, has led to the completion of many 
high rises in the recent years. Most of these high rises 
are IBs and all the future high rises are planned to be 
IBs thereafter. Since the assessment of an IB requires 
the consideration of many criteria, two fuzzy MCDM 
models for intelligent building assessment are proposed 
for a business centre project in this paper. The criteria 
which are determined from a literature survey (ALwaer, 
Clements-Croome 2010; Wong, Li 2006, 2008; Chen 
et al. 2006; Kahraman, Kaya 2012) and decision makers’ 
evaluations are used for intelligent building assessment. 
These criteria are shown in Table 4. 

Three intelligent building alternatives for a business 
centre project are evaluated with respect to these criteria 
and the hierarchical structure which is shown in Figure 1. 
The building alternatives are coded as IB-A, IB-B, and 
IB-C, respectively.

All criteria are evaluated by using the linguistic 
scales which are explained in Section 2. In this real case 
application, four decision makers evaluate the alterna-
tives for intelligent building assessment. The decision 
makers are three professors from Departments of Civil 
Engineering, Mechatronics Engineering, and Computer 
Engineering, respectively. And the last one is a top man-
ager in the construction sector. 

3.1. The application phase by using Fuzzy TOPSIS 
In this section, Fuzzy TOPSIS is used to for intelligent 
building assessment under fuzzy environment for deal-
ing with the evaluations’ uncertainty and imprecision in 
which the expert’s comparisons are represented as fuzzy 
numbers. The criteria weights for TOPSIS are deter-
mined as shown in Table 5.
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Table 4. Intelligent Building Assessment Criteria  
(Kahraman, Kaya 2011)

Main  
Attributes Sub-Attributes

Engineering (C1)

Functionality (C11)
Safety and structure (C12)
Working efficiency (C13)
Responsiveness (C14)
Office automation (C15)
Power supply (C16)
System integration (C17)

Environmental (C2)

Energy consumption (C21)
Water and Water Conservation (C22)
Materials used, Durability and Waste 
(C23)
Land use and Site selection (C24)
Greenhouse Gas Emissions 
(Pollution) (C25)
 Indoor Environmental Quality (C26) 

Economical (C3)

Economic performance and 
affordability (C31)
Initial costs, operating and 
maintenance costs (C32)
Life cycle costing (C33)

Socio-Cultural (C4)

Functionality, Usability and Aesthetic 
aspects (C41)
 Human comfort (C42)
Health and sanitation (C43)
Architectural considerations – 
cultural heritage integration and the 
compatibility with local heritage 
value (C44)

Technological (C5)

Work efficiency (C51)
Use of high-tech system (C52)
Use of advanced artificial intelligence 
(C53)
Telecom and data system-
Connectibility (C54)
Security monitoring and access 
control system (C55)
Addressable fire detection and alarm 
system (C56)
Digital addressable lighting control 
system (C57)

Fig. 1. The hierarchical structure for intelligent building 
assessment (Kahraman, Kaya 2011)

Goal
Intelligent Building

Assessment

C1

C11

C12

C13

C14

C15

C16

C17

C21

C22

C23

C24

C25

C26

C31

C32

C33

C41

C42

C43

C44

C51

C52

C53

C54

C55

C56

C57

C2

C3

C4

C5

IB-A

IB-B

IB-C

The decision-makers use the linguistic variables to 
evaluate the ratings of alternatives with respect to each 
criterion and these evaluations are shown in Table 6. 
Then the fuzzy decision matrix is obtained and fuzzy 
weights of alternatives are shown in Table 7. The normal-
ized fuzzy decision matrix and the weighted normalized 
fuzzy decision matrix are obtained as shown in Tables 8 
and 9, respectively.

The distances of each IB alternative from FPIS and 
FNIS are calculated and they are shown in Table 10.

In the last step, the closeness coefficient of each al-
ternative is calculated as shown in Table 11.

According to Table 11, the alternative IB-B is deter-
mined as the best alternative for an intelligent building 
and the ranking of alternative is determined as {IB-B; 
IB-A; IB-C}.

This result is also similar with the result of the fuzzy 
multi-attribute utility theory (MAUT) proposed by Kah-
raman and Kaya (2012).
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Table 6. The rating of alternatives

C11 C12 C13 C14 C15 C16 C17
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

IB-A VG G VG G MG M M G VG G VG VG G MG G G MG G G G F F F M MG F M MG

IB-B VG G VG G VG G VG G G G VG G VG VG VG VG VG VG G G M M MG M G G G MG

IB-C F M MG F G MG M F G G G G G G MG G MG G G G P F VP M M M M F

C21 C22 C23 C24 C25 C26
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

IB-A M F P F M M MG M VG VG G G M MG M F MG M M F G VG G VG

IB-B MG M F F M M MG M VG VG G G M MG M M G MG G G VG VG VG VG

IB-C G G M G M M MG M M F G F M M M F G MG G G G VG G VG

C31 C32 C33 C41 C42 C43 C44
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

IB-A VG VG VG G VG VG G G F F P F G G G G M G G G M M MG F VG G G VG

IB-B G G VG G VG VG VG G MG G MG G VG VG VG VG VG VG VG VG VG VG VG VG MG MG M M

IB-C G G VG G M M MG G G G G G G G G G M G MG G VG VG VG VG G MG M M

C51 C52 C53 C54 C55 C56 C57
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

IB-A G G G MG G MG G G MG G VG MG G G VG G M M M M F MG M MG F P F F

IB-B VG G VG G G G MG G VG VG VG VG VG VG VG VG F P P F M MG M MG M F F G

IB-C MG G G MG G G G MG G G VG MG M G MG G G MG MG G VG G VG VG M F F G

Table 5. Linguistic evaluations for criteria weights 

D1 D2 D3 D4 Aggregation of the weights ( jw )

C11 VH H VH VH (0.85; 0.975; 1)
C12 L L L VL (0; 0.075; 0.25)
C13 H H H VH (0.75; 0.925; 1)
C14 M M ML M (0.25; 0.45; 0.65)
C15 VH VH VH VH (0.9; 1; 1)
C16 VL L VL VL (0; 0.025; 0.15)
C17 MH H MH H (0.6; 0.8; 0.95)
C21 L VL VL VL (0; 0.025; 0.15)
C22 L VL VL VL (0; 0.025; 0.15)
C23 H H VH H (0.75; 0.925; 1)
C24 H H H H (0.7; 0.9; 1)
C25 L L L VL (0; 0.075; 0.25)
C26 ML ML L L (0.05; 0.2; 0.4)
C31 VL VL VL VL (0; 0; 0.1)
C32 L VL VL VL (0; 0.025; 0.15)
C33 MH MH M M (0.4; 0.6; 0.8)
C41 L L VL VL (0; 0.05; 0.2)
C42 H H H H (0.7; 0.9; 1)
C43 MH MH MH H (0.55; 0.75; 0.925)
C44 MH MH M M (0.4; 0.6; 0.8)
C51 H H VH VH (0.8; 0.95; 1)
C52 H VH VH VH (0.85; 0.975; 1)
C53 H H VH VH (0.8; 0.95; 1)
C54 H H VH VH (0.8; 0.95; 1)
C55 MH MH H H (0.6; 0.8; 0.95)
C56 M ML L L (0.1; 0.25; 0.45)
C57 ML ML M M (0.2; 0.4; 0.6)
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Table 7. The fuzzy decision matrix and fuzzy weights of alternatives

C11 C12 C13 C14 C15 C16 C17
IB-A 8.00 9.50 10.00 4.50 6.50 8.25 8.50 9.75 10.00 6.50 8.50 9.75 6.50 8.50 9.75 1.50 3.50 5.50 3.50 5.50 7.50
IB-B 8.00 9.50 10.00 8.00 9.50 10.00 7.50 9.25 10.00 9.00 10.00 10.00 8.00 9.50 10.00 3.50 5.50 7.50 6.50 8.50 9.75
IB-C 2.50 4.50 6.50 4.00 6.00 7.75 7.00 9.00 10.00 6.50 8.50 9.75 6.50 8.50 9.75 1.00 2.25 4.00 2.50 4.50 6.50
 C21 C22 C23 C24 C25 C26
IB-A 1.25 3.00 5.00 3.50 5.50 7.50 8.00 9.50 10.00 3.00 5.00 7.00 3.00 5.00 7.00 8.00 9.50 10.00
IB-B 2.50 4.50 6.50 3.50 5.50 7.50 8.00 9.50 10.00 3.50 5.50 7.50 6.50 8.50 9.75 9.00 10.00 10.00
IB-C 6.00 8.00 9.25 3.50 5.50 7.50 3.00 5.00 6.75 2.50 4.50 6.50 6.50 8.50 9.75 8.00 9.50 10.00
 C31 C32 C33 C41 C42 C43 C44
IB-A 8.50 9.75 10.00 8.00 9.50 10.00 0.75 2.50 4.50 7.00 9.00 10.00 6.00 8.00 9.25 3.00 5.00 7.00 8.00 9.50 10.00
IB-B 7.50 9.25 10.00 8.50 9.75 10.00 6.00 8.00 9.50 9.00 10.00 10.00 9.00 10.00 10.00 9.00 10.00 10.00 4.00 6.00 8.00
IB-C 7.50 9.25 10.00 4.50 6.50 8.25 7.00 9.00 10.00 7.00 9.00 10.00 5.50 7.50 9.00 9.00 10.00 10.00 4.50 6.50 8.25
 C51 C52 C53 C54 C55 C56 C57
IB-A 6.50 8.50 9.75 6.50 8.50 9.75 6.50 8.25 9.50 7.50 9.25 10.00 3.00 5.00 7.00 3.50 5.50 7.50 0.75 2.50 4.50
IB-B 8.00 9.50 10.00 6.50 8.50 9.75 9.00 10.00 10.00 9.00 10.00 10.00 0.50 2.00 4.00 4.00 6.00 8.00 3.00 5.00 6.75

IB-C 6.00 8.00 9.50 6.50 8.50 9.75 7.00 8.75 9.75 5.50 7.50 9.00 6.00 8.00 9.50 8.50 9.75 10.00 3.00 5.00 6.75

Table 8. The fuzzy normalized decision matrix

 C11 C12 C13 C14 C15 C16 C17
IB-A 0.80 0.95 1.00 0.45 0.65 0.83 0.85 0.98 1.00 0.65 0.85 0.98 0.65 0.85 0.98 0.20 0.47 0.73 0.36 0.56 0.77

IB-B 0.80 0.95 1.00 0.80 0.95 1.00 0.75 0.93 1.00 0.90 1.00 1.00 0.80 0.95 1.00 0.47 0.73 1.00 0.67 0.87 1.00
IB-C 0.25 0.45 0.65 0.40 0.60 0.78 0.70 0.90 1.00 0.65 0.85 0.98 0.65 0.85 0.98 0.13 0.30 0.53 0.26 0.46 0.67
 C21 C22 C23 C24 C25 C26
IB-A 0.14 0.32 0.54 0.47 0.73 1.00 0.80 0.95 1.00 0.40 0.67 0.93 0.31 0.51 0.72 0.80 0.95 1.00
IB-B 0.27 0.49 0.70 0.47 0.73 1.00 0.80 0.95 1.00 0.47 0.73 1.00 0.67 0.87 1.00 0.90 1.00 1.00
IB-C 0.65 0.86 1.00 0.47 0.73 1.00 0.30 0.50 0.68 0.33 0.60 0.87 0.67 0.87 1.00 0.80 0.95 1.00
 C31 C32 C33 C41 C42 C43 C44
IB-A 0.85 0.98 1.00 0.80 0.95 1.00 0.08 0.25 0.45 0.70 0.90 1.00 0.60 0.80 0.93 0.30 0.50 0.70 0.80 0.95 1.00
IB-B 0.75 0.93 1.00 0.85 0.98 1.00 0.60 0.80 0.95 0.90 1.00 1.00 0.90 1.00 1.00 0.90 1.00 1.00 0.40 0.60 0.80
IB-C 0.75 0.93 1.00 0.45 0.65 0.83 0.70 0.90 1.00 0.70 0.90 1.00 0.55 0.75 0.90 0.90 1.00 1.00 0.45 0.65 0.83
 C51 C52 C53 C54 C55 C56 C57
IB-A 0.65 0.85 0.98 0.67 0.87 1.00 0.65 0.83 0.95 0.75 0.93 1.00 0.32 0.53 0.74 0.35 0.55 0.75 0.11 0.37 0.67
IB-B 0.80 0.95 1.00 0.67 0.87 1.00 0.90 1.00 1.00 0.90 1.00 1.00 0.05 0.21 0.42 0.40 0.60 0.80 0.44 0.74 1.00
IB-C 0.60 0.80 0.95 0.67 0.87 1.00 0.70 0.88 0.98 0.55 0.75 0.90 0.63 0.84 1.00 0.85 0.98 1.00 0.44 0.74 1.00

Table 9. The fuzzy weighted normalized decision matrix

 C11 C12 C13 C14 C15 C16 C17
IB-A 0.68 0.93 1.00 0.00 0.05 0.21 0.64 0.90 1.00 0.16 0.38 0.63 0.59 0.85 0.98 0.00 0.01 0.11 0.22 0.45 0.73

IB-B 0.68 0.93 1.00 0.00 0.07 0.25 0.56 0.86 1.00 0.23 0.45 0.65 0.72 0.95 1.00 0.00 0.02 0.15 0.40 0.70 0.95

IB-C 0.21 0.44 0.65 0.00 0.05 0.19 0.53 0.83 1.00 0.16 0.38 0.63 0.59 0.85 0.98 0.00 0.01 0.08 0.15 0.37 0.63

 C21 C22 C23 C24 C25 C26
IB-A 0.00 0.01 0.08 0.00 0.02 0.15 0.60 0.88 1.00 0.28 0.60 0.93 0.00 0.04 0.18 0.04 0.19 0.40
IB-B 0.00 0.01 0.11 0.00 0.02 0.15 0.60 0.88 1.00 0.33 0.66 1.00 0.00 0.07 0.25 0.05 0.20 0.40
IB-C 0.00 0.02 0.15 0.00 0.02 0.15 0.23 0.46 0.68 0.23 0.54 0.87 0.00 0.07 0.25 0.04 0.19 0.40
 C31 C32 C33 C41 C42 C43 C44
IB-A 0.00 0.00 0.10 0.00 0.02 0.15 0.03 0.15 0.36 0.00 0.05 0.20 0.42 0.72 0.93 0.17 0.38 0.65 0.32 0.57 0.80
IB-B 0.00 0.00 0.10 0.00 0.02 0.15 0.24 0.48 0.76 0.00 0.05 0.20 0.63 0.90 1.00 0.50 0.75 0.93 0.16 0.36 0.64
IB-C 0.00 0.00 0.10 0.00 0.02 0.12 0.28 0.54 0.80 0.00 0.05 0.20 0.39 0.68 0.90 0.50 0.75 0.93 0.18 0.39 0.66
 C51 C52 C53 C54 C55 C56 C57
IB-A 0.52 0.81 0.98 0.57 0.85 1.00 0.52 0.78 0.95 0.60 0.88 1.00 0.19 0.42 0.70 0.04 0.14 0.34 0.02 0.15 0.40
IB-B 0.64 0.90 1.00 0.57 0.85 1.00 0.72 0.95 1.00 0.72 0.95 1.00 0.03 0.17 0.40 0.04 0.15 0.36 0.09 0.30 0.60
IB-C 0.48 0.76 0.95 0.57 0.85 1.00 0.56 0.83 0.98 0.44 0.71 0.90 0.38 0.67 0.95 0.09 0.24 0.45 0.09 0.30 0.60
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3.2. The application phase by using fuzzy AHP
In this paper, intelligent building assessment is also ana-
lysed and is re-evaluated by using a fuzzy AHP method-
ology. For this aim, the similar criteria and hierarchical 
structure are used. 

The linguistic evaluations of DMs for criteria which 
are shown in Table 12 are converted to fuzzy numbers 
as shown in Table 13. The pairwise comparison matrices 
for criteria and sub-criteria are obtained by using the geo-
metric mean method as shown in Table 14.

In the last step, the fuzzy weights can be calculated 
and defuzzified by using Liou and Wang’s total integral 
method (1992). The fuzzy and crisp weights of criteria 
and subcriteria with global weights are shown in Table 15. 

After the weights of criteria and sub-criteria are 
determined, the alternatives are evaluated with respect 
to the evaluation criteria. The obtained results are sum-
marized in Table 16.

According to Table 16, the alternative “IB-B” is de-
termined as the best alternative for intelligent building. 
The rank of the alternatives is as follows: {IB-B; IB-A; 
IB-C} and this result is similar with the result of fuzzy 
TOPSIS and fuzzy MAUT.

The obtained results for fuzzy decision making 
methodologies are summarized in Table 17.

According to Table 17, three fuzzy decision making 
methodologies have determined the similar results.

Conclusion

Although the AHP and TOPSIS are two of the most 
widely used MCDM tools to capture the expert’s evalu-
ation, the traditional AHP and TOPSIS still cannot re-
ally reflect the expert evaluations since they use exact 
value to express the expert opinion in a comparison of 
alternatives. Therefore, they cannot succeed in handling 
the inherent uncertainty and imprecision in the decision 
process. To overcome this, the fuzzy set theory can be 
successfully used. 

In this paper, the fuzzy set theory is integrated with 
AHP and TOPSIS methodologies to increase their flex-
ibility and sensitiveness. In the evaluation process, the 
fuzzy set theory brings many advantages on decision 
making process such as a possibility to evaluate immeas-
urable criteria and to take into consideration evaluation 
of human judgments. The fuzzy set theory also gives an 
advantage that is an ease definition of score for alterna-
tive and is a flexible scale for expert judgments. 

Table 10. The distance measurements from FPIS and FNIS

FPIS (A*) FNIS(A-)

 IB-A IB-B IB-C IB-A IB-B IB-C

C11 0.190 0.190 0.594 0.879 0.879 0.469

C12 0.919 0.899 0.924 0.122 0.150 0.115

C13 0.217 0.266 0.291 0.860 0.826 0.810

C14 0.637 0.585 0.637 0.438 0.475 0.438

C15 0.255 0.164 0.255 0.820 0.898 0.820

C16 0.961 0.946 0.972 0.064 0.087 0.046

C17 0.574 0.389 0.645 0.511 0.719 0.432

C21 0.971 0.962 0.945 0.047 0.061 0.087

C22 0.946 0.946 0.946 0.087 0.087 0.087

C23 0.241 0.241 0.576 0.843 0.843 0.490

C24 0.477 0.435 0.522 0.661 0.717 0.605

C25 0.931 0.901 0.901 0.106 0.149 0.149

C26 0.804 0.798 0.804 0.257 0.260 0.257

C31 0.968 0.968 0.968 0.058 0.058 0.058

C32 0.944 0.944 0.955 0.088 0.088 0.072

C33 0.831 0.549 0.507 0.226 0.537 0.580

C41 0.922 0.921 0.922 0.118 0.119 0.118

C42 0.374 0.221 0.406 0.719 0.858 0.687

C43 0.636 0.328 0.328 0.442 0.745 0.745

C44 0.479 0.644 0.622 0.596 0.434 0.455

C51 0.299 0.215 0.332 0.790 0.861 0.755

C52 0.265 0.265 0.265 0.825 0.825 0.825

C53 0.305 0.164 0.272 0.772 0.898 0.807

C54 0.241 0.164 0.368 0.843 0.898 0.710

C55 0.601 0.814 0.406 0.484 0.251 0.707

C56 0.839 0.827 0.755 0.211 0.226 0.300

C57 0.825 0.704 0.704 0.247 0.390 0.390

Table 11. the closeness coefficient of each alternative

 A* A- CCi Ranking
IB-A 16.652 12.115 0.4211 2
IB-B 15.453 13.340 0.4633 1
IB-C 16.821 12.013 0.4166 3

Table 12. Decision maker’s evaluations for criteria

D1 D2 D3 D4
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1  Vs Ab Es Eq  Es Vs Es 1/Eq  Es Es Es Eq  Es Es Es 1/Eq
C2   Vs Eq 1/Vs   Vs Eq 1/Vs   Eq Wk 1/Es   Es Eq 1/Es
C3    1/Vs 1/As    1/Es 1/Es    1/Es 1/Vs    1/Vs 1/Ab
C4     1/Es     1/Wk     1/Es     1/Es
C5                     
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Table 13. Converted Fuzzy Numbers of DMs’ Evaluations for Criteria

D1 D2
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 (5, 7, 9) (7, 9, 9) (3, 5, 7) (1, 1, 3) (3, 5, 7) (5, 7, 9) (3, 5, 7) (0.33, 1, 1)

C2 (0.11, 0.14, 0.2) (5, 7, 9) (1, 1, 3) (0.11, 0.14, 0.2) (0.14, 0.2, 0.33) (5, 7, 9) (1, 1, 3) (0.11, 0.14, 0.2)

C3 (0.11, 0.11, 0.14) (0.11, 0.14, 0.2) (0.11, 0.14, 0.2) (0.11, 0.11, 0.14) (0.11, 0.14, 0.2) (0.11, 0.14, 0.2) (0.14, 0.2, 0.33) (0.14, 0.2, 0.33)

C4 (0.14, 0.2, 0.33) (0.33, 1, 1) (5, 7.14, 9.09) (0.14, 0.2, 0.33) (0.14, 0.2, 0.33) (0.33, 1, 1) (3.03, 5, 7.14) (0.2, 0.33, 1)

C5 (0.33, 1, 1) (5, 7.14, 9.09) (7.14, 9.09, 9.09) (3.03, 5, 7.14) (1, 1, 3.03) (5, 7.14, 9.09) (3.03, 5, 7.14) (1, 3.03, 5)

D3 D4
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 (3, 5, 7) (3, 5, 7) (3, 5, 7) (1, 1, 3) (3, 5, 7) (3, 5, 7) (3, 5, 7) (0.33, 1, 1)

C2 (0.14, 0.2, 0.33) (1, 1, 3) (1, 3, 5) (0.14, 0.2, 0.33) (0.14, 0.2, 0.33) (3, 5, 7) (1, 1, 3) (0.14, 0.2, 0.33)

C3 (0.14, 0.2, 0.33) (0.33, 1, 1) (0.14, 0.2, 0.33) (0.11, 0.14, 0.2) (0.14, 0.2, 0.33) (0.14, 0.2, 0.33) (0.11, 0.14, 0.2) (0.11, 0.11, 0.14)

C4 (0.14, 0.2, 0.33) (0.2, 0.33, 1) (3.03, 5, 7.14) (0.14, 0.2, 0.33) (0.14, 0.2, 0.33) (0.33, 1, 1) (5, 7.14, 9.09) (0.14, 0.2, 0.33)

C5 (0.33, 1, 1) (3.03, 5, 7.14) (5, 7.14, 9.09) (3.03, 5, 7.14) (1, 1, 3.03) (3.03, 5, 7.14) (7.14, 9.09, 9.09) (3.03, 5, 7.14)

Table 14. The pairwise comparison matrices of the evaluation criteria

C1 C2 C3 C4 C5
C1 (1, 1, 1) (3.409, 5.439, 14.561) (4.213, 6.3, 7.937) (3, 5, 7) (0.574, 1, 1.732)
C2 (0.134, 0.184, 0.293) (1, 1, 1) (2.943, 3.956, 6.422) (1, 1.316, 3.409) (0.124, 0.167, 0.257)
C3 (0.126, 0.159, 0.237) (0.156, 0.253, 0.34) (1, 1, 1) (0.124, 0.167, 0.257) (0.117, 0.136, 0.19)
C4 (0.143, 0.2, 0.333) (0.293, 0.76, 1) (3.892, 5.976, 8.058) (1, 1, 1) (0.153, 0.227, 0.435)
C5 (0.577, 1, 1.741) (3.892, 5.976, 8.058) (5.273, 7.371, 8.559) (2.297, 4.412, 6.534) (1, 1, 1)

Table 15. The local and global weights of criteria and sub-criteria 

Criteria Fuzzy Crisp Sub-Criteria Fuzzy Crisp Global Weight

C1 (0.181, 0.381, 0.842) 0.39

C11 (0.167, 0.358, 0.697) 0.34 0.134
C12 (0.017, 0.035, 0.078) 0.04 0.014
C13 (0.046, 0.114, 0.271) 0.12 0.046
C14 (0.025, 0.048, 0.143) 0.06 0.023
C15 (0.18, 0.359, 0.752) 0.36 0.140
C16 (0.013, 0.028, 0.063) 0.03 0.011
C17 (0.022, 0.057, 0.127) 0.06 0.022

C2 (0.052, 0.095, 0.219) 0.10

C21 (0.016, 0.034, 0.094) 0.04 0.004
C22 (0.02, 0.05, 0.101) 0.05 0.005
C23 (0.214, 0.47, 0.976) 0.45 0.046
C24 (0.121, 0.276, 0.668) 0.28 0.029
C25 (0.031, 0.069, 0.194) 0.08 0.008
C26 (0.038, 0.101, 0.236) 0.10 0.010

C3 (0.019, 0.034, 0.065) 0.03
C31 (0.058, 0.107, 0.225) 0.11 0.004
C32 (0.062, 0.13, 0.224) 0.12 0.004
C33 (0.395, 0.762, 1.493) 0.77 0.025

C4 (0.045, 0.099, 0.204) 0.10

C41 (0.041, 0.101, 0.201) 0.09 0.009
C42 (0.194, 0.495, 1.17) 0.49 0.048
C43 (0.098, 0.219, 0.59) 0.23 0.023
C44 (0.079, 0.185, 0.469) 0.19 0.019

C5 (0.184, 0.391, 0.75) 0.38

C51 (0.069, 0.155, 0.404) 0.16 0.059
C52 (0.152, 0.387, 0.918) 0.37 0.139
C53 (0.041, 0.151, 0.364) 0.14 0.053
C54 (0.06, 0.142, 0.47) 0.16 0.061
C55 (0.026, 0.073, 0.183) 0.07 0.027
C56 (0.02, 0.053, 0.148) 0.06 0.021
C57 (0.016, 0.04, 0.115) 0.04 0.016
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By the way, in this paper, the fuzzy AHP and the 
fuzzy TOPSIS models for intelligent building assessment 
have been proposed and they have been successfully ap-
plied for the assessment of intelligent building alterna-
tives for a business centre in İstanbul. Then, the obtained 
results of these techniques are compared. 

As a result of evaluation process, these two MCDM 
methodologies, fuzzy AHP and fuzzy TOPSIS, have de-
termined the similar results. The alternative IB-B is se-
lected as the most suitable building with respect to intelli-
gent level by two methods. The ranking of the alternative 

is similar and also determined as follows: {IB-B; IB-A; 
IB-C}. Also the obtained results are compared with the 
results of fuzzy MAUT. These three fuzzy decision-mak-
ing methods have determined the similar results. 

In future studies, other fuzzy multi-criteria decision 
making methods such as VIKOR, ANP, DEMATEL and 
ELECTRE, etc. can be used for intelligent building as-
sessment. 
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