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Abstract. Artificial neural networks have been effectively used in various civil engineering fields, including construction 
management and labour productivity. In this study, the performance of the feed forward neural network (FFNN) was 
compared with radial basis neural network (RBNN) in modelling the productivity of masonry crews. A variety of input 
factors were incorporated and analysed. Mean absolute percentage error (MAPE) and correlation coefficient (R) were 
used to evaluate model performance. Research results indicated that the neural computing techniques could be success-
fully employed in modelling crew productivity. It was also found that successful models could be developed with differ-
ent combinations of input factors, and several of the models which excluded one or more input factors turned out to be 
better than the baseline models. Based on the MAPE values obtained for the models, the RBNN technique was found to 
be better than the FFNN technique, although both slightly overestimated the masons’ productivity. 
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Introduction

The term productivity is generally used to represent a 
relationship between outputs and the corresponding 
inputs used in a production process (Liou, Borcherding  
1986). Within the construction industry, productivity 
commonly refers to labour productivity (Ovararin 2001). 
Construction labour productivity is one of the most cru-
cial factors affecting the overall performance of any con-
struction project, whether large or small. In recent years, 
there have been numerous investigations dealing with 
labour productivity in construction, many of which are 
related to the quantification of the impact of productiv-
ity factors (Kazaz, Ulubeyli 2004; Fayek, Oduba 2005; 
Ayman et al. 2008; Rateb et al. 2009; Oral et al. 2012). 
The factors affecting productivity may differ from pro-
ject to project. Although some factors could have similar 
influences on the productivity of given tasks, their rate 
of impact on productivity may vary (Sonmez, Rowings 
1998). Several researchers identified the factors affecting 
labour productivity and developed models to predict it 
by using different methods. Sanders and Thomas (1991) 
focused on five project-related factors that significantly 
affect masonry productivity; namely, work type,  building 

element, design requirements, construction methods, and 
weather. Ezeldin and Sharara (2006) tried to estimate the 
productivity of concreting activities by using neural net-
works, and obtained successful predictive models with 
strong generalization capabilities.

Determination of realistic productivity values has 
been a complicated issue due to the complex nature of 
construction labour productivity. Thus, recent research 
has drawn on artificial intelligence applications which 
provide a flexible environment to deal with such com-
plexity. Most of these studies employed supervised meth-
ods in Artificial Neural Networks (ANN). 

Use of neural networks has been gaining widespread 
attention in the construction industry to aid in many different 
applications. Portas and Abourizk (1997) designed a sys-
tem that utilizes artificial neural networks to estimate form-
work productivity for slabs, walls, and columns. Alsugair  
and Al-Qudrah (1998) developed a neural network to 
support decision making in pavement maintenance and 
repairs. Arditi and Tokdemir (1999) attempted to create 
a neural network that would predict the outcome of con-
struction litigation. Wilmot and Bing (2005) used neural 
networks for modelling highway  construction costs.
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This paper presents the findings of a research study 
aimed at the determination of crew productivity in masonry  
work, and at modelling the relationships between produc-
tivity and influencing factors by using two ANN tech-
niques. An understanding of the factors affecting masonry 
labour productivity would help engineers and architects to 
design masonry structures that could be constructed more 
efficiently, while enabling constructors to better estimate, 
plan, schedule, and manage projects involving masonry. 
Background information on ANN, FFNN and RBNN 
techniques is briefly reviewed in the following sections, 
followed by the research methodology employed, results 
and discussion, and conclusions of the study.

1. Artificial neural networks

The development of artificial neural networks, abbreviated 
as ANNs has been motivated since their inception by the 
recognition that human brain computes in an entirely differ-
ent way from the conventional digital computer. An ANN 
has the capability to organize its structural constituents, 
known as neurons, so as to perform certain computations 
(e.g. pattern recognition, perception) many times faster than 
digital computers (Haykin 1998). ANNs consist of parallel 
processing layers of neurons, with each layer being fully 
connected to the next layer by interconnection strengths, or 
weights (Kisi 2007b). The ANN techniques can be super-
vised, unsupervised, or reinforced (Sarangapani 2006).

Many ANN algorithms, such as feed forward neural 
networks (FFNN), radial basis neural network (RBNN), 
dynamic networks, learning vector quantization (LVQ) 
and self-organizing map (SOM) have been adopted in re-
search studies, while being defined at different levels of 
abstraction, and modelled with a focus on different aspects 
of neural systems (Hancock 1995; Sudheer, Jain 2003, 
Oral et al. 2012). For this research study, we chose two 
supervised techniques; the feed forward neural network 
(FFNN), and the radial basis neural network (RBNN).

1.1. Feed forward neural network
Among the many ANN paradigms, the feed forward back-
propagation network (FFNN) is by far the most popular. 
Detailed theoretical information about FFNN can be found 
in (Haykin 1998; Cigizoglu 2004). The structure of a typi-
cal FFNN model is illustrated in Figure 1. Note that this 
type of network has one or more hidden  layers.  Initial esti-
mated weight values are progressively  corrected during a 
training process (at each iteration) that compares predicted 
outputs with known outputs, and back-propagates any 
errors to determine the appropriate weight adjustments, 
which is necessary to minimize the errors. The method-
ology commonly preferred for adjusting the weights of 
FFNN is the Levenberg–Marquardt technique, which is 
considered more powerful than the conventional gradient 
descent techniques (Hagan, Menhaj 1994; Kisi 2007a).

1.2. Radial basis neural network
The RBNN method was first introduced into the neural 
network literature by Broomhead and Lowe (1988). The 
RBNN is composed of two layers whose output nodes 
consist of a linear combination of the basis functions. 
The network is also called a localized receptive field net-
work since the basis functions in the hidden layer pro-
duce a significant non-zero response to input stimulus 
only when the input falls within a small localized region 
of the input space (Lee, Chang 2003). In empirical mod-
elling, according to Bilhan et al. (2010), the transfor-
mation of the inputs is essential for “fighting the curse 
of dimensionality”. A local nonlinear radial fixed-shape 
basis function is used in RBNN for the input transforma-
tion (Fig. 2). The Gaussian radial basis functions play the 
role of regressors after nonlinearly squashing the multi-
dimensional inputs without considering the output space. 
Since the output layer implements a linear regressor, the 
weights (parameters) of this regressor are only adjusted. 
Therefore, these parameters can be determined using the 
linear least-squares method, which gives an important 
advantage for convergence.

The basic algorithm and concept of the RBNN is 
described by Broomhead and Lowe (1988). As covered 
in this reference, a nonlinear function h(x,t) is referred 
to as a radial basis function when it depends only on the 
radial distance, which is given by: 

Fig. 2. Structure of a typical RBNN model

Fig. 1. Structure of a typical FFNN model
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 (1)

where: x is the input variable; and t is the centre of input.
Given N real numbers {yi ∈ R|I = 1, 2, . . , N} and 

N different points {xi ∈ Rn|I = 1, 2, . . . , N}, a function 
f can be obtained from Rn to R satisfying the interpola-
tion conditions: f(xi) = yi, i = 1, 2, . . . , N. In RBNN f is 
chosen from a linear N dimensional space, depending on 
the number of  data points {xi}. The basis of this space 
is the set of the functions expressed by:

 { ) |i = 1, 2, . . , N}, (2)

where || . || is the Euclidean norm. Therefore, the solution 
of the interpolation problem has the form:

 
 (3)

The unknown coefficients ci can be found by imposing 
the interpolation conditions f(xi) = yi, (i = 1, 2, . . ., N) on 
Eqn (3), and this yields the linear system:

  

j = 1, 2, . . ., N.   (4)

Defining the vectors y, c and the symmetric matrix H as 
(y)j = yj, (c)i = ci, and (H)ij = h(||xj _ xi||), the ci coeffi-
cients are given by the equation: 

  (5)

Thus, RBNN can be considered as a special case of a linear 
regression model. The RBNN method only performs linear 
adjustment of the weights for the radial bases and does not 
perform parameter learning as is the case for FFNN.

2. Research methodology
Masonry crews consist of two types of workers, skilled 
and unskilled, although there may not be clear demar-
cations between work tasks performed by these people 
as they work on the jobsite. Nevertheless, distinct task 
descriptions are provided for skilled and unskilled labour-
ers by the Turkish Ministry of Environment and Urban 
Affairs (2008), along with different wage structures for 
them. In our study we focused on total crew productivity, 
because we were able to capture onsite production data 
for the entire crew on a given day as opposed to collect-
ing data pertaining to productions of individual workers. 
This is consistent with the approach of other researchers 
(Ezeldin, Sharara 2006; Oral, E. L., Oral, M. 2010).

The aims of this study are twofold: (a) to analyse the 
relationship between the various input factors listed in 
Table 1 and the output of masonry crew  productivity; and 
(b) to develop predictive models for crew productivity 
under the given conditions. To achieve these goals, first 
standard time study sheets were developed to  systematize 
data collection. Afterwards, the data was organized and 
refined to establish the factors incorporated in the study. 
Data used for this research were obtained between Sep-
tember 2006 and September 2008 from randomly selected 

building construction sites in Turkey. A majority (about 
80 percent) of the data was collected from southern  
provinces (Gaziantep, Osmaniye, Adana, Antalya, Hatay 
and K. Maraş), and remaining 20 percent came from 
other regions (Istanbul, Ankara and Adiyaman).

The input factors listed in Table 1 belonged to three 
categories: labour related factors (numbers of skilled 
and unskilled labourers, average crew age, total crew 
 experience, experience of crew members on same team, and 
experience of crew members on particular site); contract- 

Table 1. Crew productivity factors considered in the study

Factor Abbr. Type Values

No. of skilled 
laborers SL Cont.

No. of unskilled 
laborers UL Cont.

Daily unit cost of 
crew labor UP Cont.

Average of crew 
age A Categ.

1: 18–30
2: 31–35
3: 36–50

Total experience 
of crew EX1 Categ.

1: 1–120 mo.
2: 121–202 mo.
3: 203–300 mo.

Experience of 
crew members  
on same team

EX2 Categ.
1: 0–20 mo.
2: 21–50 mo.
3: 51–80 mo.

Experience of 
crew members  
on particular site

EX3 Categ.
1: 0–5 mo.
2: 6–15 mo.
3: 16–25 mo.

Wage type W Categ.
0: Daily
1: Lump Sum
2: Weekly

Days worked in 
a week WD Cont.

Daily work hours WH Cont.

Over time (h) OT Cont.

Break time (h) BR Cont.

Accommodation* AC Categ.

0: On site
1: Off Site  
(<29 minute)
2: Off Site  
(>30 minute)

Wall type WT Categ.

1: Brick
2: Iso-Brick
3: Briquette
4: Aerated Conc.  
(AAC)
5: Light Brick

Mortar type MT Categ. 1: Pre-Mixed
2: On site

Productivity 
(m2/h) P Cont.

* Where workers stay overnight
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based factors (daily unit cost of crew labour, wage type, 
days worked in a week, daily work hours, over time, break 
time and accommodation); and technical factors (wall type 
and mortar type). The factors were established as continu-
ous or categorical variables. All data analysis using FFNN 
and RBNN was performed by MATLAB software. The 
neural networks instruments were configured and tuned 
with different network structures and parameters in order 
to achieve the best prediction performances in modelling 
crew productivity. Crew productivity was determined for 
147 crews. The data were randomized and divided into 
two parts, training and testing. The first 110 cases were 
used for training and the remaining 37 cases were used for 
testing, representing a 75% to 25% split.

First, training input and output data were  normalized 
to zero mean and unit variance following the procedure 
suggested by Lawrence et al. (1997). Before applying the 
ANN techniques to the data, the training input and output 
values were normalized using the equation:

 
 (6)

where xmin and xmax denote the minimum and maximum 
values of the training and testing data (Eqn (6)).

Note that different numbers can be assigned for 
scaling factors a and b. There are no fixed rules as to 
which standardization approach should be used in partic-
ular circumstances (Dawson, Wilby 1998). In this study, 
the a and b were taken as 0.6 and 0.2, respectively.

Different FFNN and RBNN architectures were tried 
to determine the appropriate model structure. The FFNN 
technique was used with two hidden layers, and the num-
ber of hidden nodes was determined using a trial and er-
ror approach. The saturating linear and linear activation 
functions were used for the hidden and output nodes, 
respectively. The FFNN networks training were stopped 
after 50 epochs when the variation of error came down 
to the targeted error value (10–20). 

Different numbers of hidden layer neurons, as well 
as values of spread constants, were examined for the 
RBNN models. The optimal hidden layer neuron num-
ber for minimum mean square error (MSE) was found 
to be 11, while the spread constant value came out to be 
2. The model prediction abilities were evaluated based 
on the mean absolute percentage errors (MAPE) and cor-
relation coefficient (R). The MSE, MAPE and R are de-
fined in the following equations:

In these equations, N is the number of data sets 
and Yi values denote values of observed and forecast pro-
ductivity.

It should be noted that the (1-MAPE) value shows 
the prediction accuracy of a model (Oral, E. L., Oral, M.  
2010). The FFNN technique produced 32 different 
productivity models, eleven of which were considered 
successful according to the criteria selected based on  
(1-MAPE) values being greater than 0.85 (85%). A value 
of 0.75 was considered acceptable for correlation R the 
case for all models. The RBNN technique produced ten 
valid models following a similar process. 

4. Results and discussion

The results of data analysis using FFNN and RBNN 
are presented in Tables 2 and 3. Each row in the tables 
lists the input and output results for a particular model 
and the inputs represent the productivity factors for that 
model. These were determined by systematically omitting/
subtracting individual factors, or group of factors, from 
the entire list. The changes in MAPE values signify the 
improvements in the models from the effects of productiv-
ity factors. Model success level is based on lower values of 
(MAPE), which translates to higher values of (1-MAPE).

Table 2 for FFNN shows that model FF31 is the most 
successful one based on a (1-MAPE) value of 86.77%. 
The best model for RBNN is Model RB25 as given in 
Table 3 with a (1-MAPE) value of 92.64%. The models 
presented in Tables 2 and 3 are ranked in order from high 
to low success level. Based on mean MAPE values com-
puted for the two ANN techniques employed in this study, 
it can be stated that the RBNN technique yields better 
results. All R values are in the acceptable range.

It is also noted that RB1 and FF1 (indicated in bold 
letters in Table 2 and Table 3) are the baseline models 
which embody all of the input factors. Our results did not 
show a major difference in MAPE values for the baseline 
models constructed by the two techniques. However, one 
can argue that the models with higher (1-MAPE) values 
compared to the baseline models are the ones to be recom-
mended for use because they improve on forecasting pow-
er. From this viewpoint, the RBNN technique provides an 
advantage over FFNN by availing a larger number of mod-
els (obtained by subtracting selected input factors from a 
given model) that are better than the baseline model.

  
(7)

 

 
 ( 8 )

  (9)
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On the other hand, results given in Tables 2 and 3 
reveal that there are six models having common sets of 
inputs and excluding certain common factors. An exam-
ple is model number RB24 where daily unit cost of crew 
labour (UP) is omitted. The low MAPE value implies 
that UP has less influence on productivity compared to 
the other input factors of the model. This is true for FF 
24, but at a lower accuracy level. The results for the other 
three pairs of models (FF 30 and RB30, FF31 and RB31, 
FF19 and RB19) also indicate that the omitted factors 
(OT, BR, W and AC) have minor effects on the out-

Table 2. Productivity modeling results for FFNN

Model 
no. Inputs Omitted 

input

Testing 
results

MAPE,  
% R

FF19
SL, UL, UP, A, EX1, 
EX2, EX3, WD, WH,  

OT, BR, WT, MT
W,AC 12.366 0.858

FF31
SL, UL, UP, A, EX1, 

EX2, EX3, W, WD, WH, 
BR, AC, WT, MT

OT 13.225 0.859

FF30
SL, UL, UP, A, EX1, 

EX2, EX3, W, WD, WH, 
OT, AC, WT, MT

BR 13.756 0.791

FF1

SL, UL, UP, A, EX1,  
EX2, EX3, W, WD,  
WH, OT, BR, AC,  

WT, MT

– 14.319 0.861

FF29
SL, UL, UP, A, W,  
WD, WH, OT, BR,  

AC, WT, MT

EX1, 
EX2, 
EX3

14.359 0.799

FF23
UP, A, EX1, EX2,  

EX3, W, WD, WH, OT, 
BR, AC, WT, MT

SL, UL 14.441 0.765

FF20

SL, UL, UP, A, EX1,  
EX2, EX3, W, WD,  

WH, OT, BR,  
WT, MT

AC 14.477 0.769

FF24

SL, UL, A, EX1,  
EX2, EX3, W, WD,  
WH, OT, BR, AC,  

WT, MT

UP 14.942 0.778

FF18
SL, UL, UP, A, EX1, 

W, WD, WH, OT,  
BR, WT, MT

EX2, 
EX3,AC 15.125 0.773

FF17
SL, UL, UP, A, EX1,  
EX2, EX3, W, WD,  
OT, AC, WT, MT

WH, BR 15.204 0.786

FF28

SL, UL, UP, EX2,  
EX3, W, WD, WH,  

OT, BR, AC,  
WT, MT

A,EX1 15.538 0.799

Mean value 14.341 0.803

put (crew productivity value) of the respective models. 
 In  addition, in model number FF19, where wage (W) and 
accommodation (AC) are omitted, it is seen that these 
factors have less influence on productivity than the other 
input factors.

Further data analysis encompassed comparisons be-
tween the observed and estimated productivity values for 
baseline models FF1 and RB1, and the results from the 
testing phases of the analyses are plotted in Figures 3, 4, 
5 and 6. It can be clearly discerned from Figure 3 that 
there are varying degrees of disagreements between the 

Table 3. Productivity modeling results for RBNN

Model  
no. Inputs Omitted 

input

Testing
results

MAPE,  
% R

RB24

SL, UL, A, EX1,  
EX2, EX3, W,  
WD, WH, OT,  

BR, AC, WT, MT

UP 10.152 0.928

RB30

SL, UL, UP, A,  
EX1, EX2, EX3,  

W, WD, WH,  
OT, AC, WT, MT

BR 10.384 0.962

RB31

SL, UL, UP, A,  
EX1, EX2, EX3,  

W, WD, WH,  
BR, AC, WT, MT

OT 11.772 0.921

RB25

SL, UL, UP, EX1,  
EX2, EX3, W,  
WD, WH, OT,  

BR, AC, WT, MT

A 14.068 0.880

RB19

SL, UL, UP, A,  
EX1, EX2, EX3,  
WD, WH, OT,  
BR, WT, MT

W, AC 14.228 0.814

RB20

SL, UL, UP, A,  
EX1, EX2, EX3,  
W, WD, WH, OT,  

BR, WT, MT

AC 14.372 0.887

RB1

SL, UL, UP, A,  
EX1, EX2, EX3,  

W, WD, WH, OT,  
BR, AC, WT, MT

– 14.378 0.794

RB33

SL, UL, UP, A,  
EX1, EX2, EX3,  
W, WD, WH, OT,  

BR, AC, WT

MT 14.430 0.778

RB29
SL, UL, UP, A, W,  

WD, WH, OT,  
BR, AC, WT, MT

EX1, 
EX2,  
EX3

14.784 0.828

RB18

SL, UL, UP, A,  
EX1, W, WD,  
WH, OT, BR,  

WT, MT

EX2, 
EX3,  
AC

0.807

Mean value 14.955 0.860
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Fig. 3. The observed and estimated crew productivity for FF1

Fig. 4. A scatter plot of FF1

Fig. 5. The observed and estimated crew productivity for 
baseline model RB1

Fig. 6. A scatter plot of baseline model RB1

model estimates or forecasts and observed productivity 
values for FF1. The figure shows how the differences be-
tween forecasted and observed values are distributed over 
the set of 37 cases included in analysis. In a majority of 
the cases, the model overestimates productivity, although 
the MAPE value is small and within the accepted range. 
Figure 4 is a scatter plot of the same data, aimed at es-
tablishing the line of best fit to the data, indicated by the 
solid line in the figure. The dotted line below is the exact 
line which indicates a perfect fit, i.e. all observed and es-
timated values are equal. The slope of this line gives the 
magnitude of the R value. For the FF1 baseline model, an 
R value of 0.86 indicates a good fit for this model.

The observed and estimated productivity results for 
the baseline model RB1 are plotted in Figure 5. It is seen 
in this the figure that similar to FF1 results illustrated in 
Figure 3, the model estimates are mostly over the ob-
served values of productivity. However, the MAPE value 
is still small. 

A scatter plot for RB1 appears in Figure 6, which 
shows the best fit and exact lines for this model. The 
lines show a tendency to come closer and merge at higher 
observed (and predicted) productivity values, suggesting 
that the model accuracy is better at high productivity lev-
els. A R value of 0.794 is indicative of a good model fit.

Table 4 displays the individual input factors affect-
ing productivity in ranking order based on MAPE results. 
The higher the ranking for a given factor, the lower is 
the influence on model accuracy. Note that whereas the 
ranking numbers are in ascending order for RBNN, the 
FFNN rankings follow the factor rather than following 
any particular order. 

A noteworthy observation from Table 4 is that WT 
and WD have the highest ranks in both RBNN and FFNN, 
which means they yield the highest level of influence on 
model accuracy and predictive power. Interestingly, MT 
surfaces as an important factor in the FNNN case, but not 
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as much for RBNN. Another useful observation that can 
be made from the table relates to the role of experience 
in masonry crew productivity. Three types of experience 
related factor, EX1, EX2 and EX3 were included in the 
study. The results show that experience of crew members 
on the particular site (EX3) has larger influence on pro-
ductivity than the other two types of experience factors.

Conclusions

The accuracy of two different neural network techniques, 
FFNN and RBNN, has been evaluated for the estimation 
of productivity for masonry crews working in building 
construction. A total of 147 cases were used to generate 
the models. Comparison of results between the two tech-
niques indicated that the mean absolute percentage errors 
(MAPE) for the RBNN models were lower than those of 
the FFNN models, indicating a better performance. The 
results suggest that the FFNN and RBNN techniques can 
be successfully used in estimation of crew productivity 
in the construction sector. 

It was additionally established that successful mod-
els could be developed with different combinations of 
input factors, and several of the models which excluded 
one or more input factors turned out to be better than the 
baseline models. It is possible to examine the models in 
more detail by plotting observed and estimated values 
of productivity, which lends itself to comparisons on a 
case by case basis, as well as establishing the lines of 
best fit. When this was done for the baseline models, it 
was found that these models slightly overestimate crew 
productivity, but overall the MAPE values are small and 
in the accepted range.

Research results showed that model accuracy and 
predictive power were not significantly affected by the 
exclusion of UP, BR and OT for RB24, RB30 and RB31 
models. On the other hand, the results showed that when 
WD, WT and WH were excluded, predictive power of 
the corresponding models was affected considerably. 
The information derived from the research presented in 
this paper should be particularly valuable for site man-
agers and project managers, who might like to focus on 
the important productivity factors and not dwell on the 
less important ones in planning project activities. It must 
be kept in mind, however, that the models developed in 
this research are derived from data collected in certain 
geographical regions in Turkey, and they may need to 
be adjusted according to the differences in masonry and 
plastering work practices elsewhere. Yet, the models 
presented here should have additional value in allowing 
future researchers to conduct comparative analysis with 
productivity models based on data from other localities. 
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