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Abstract. Recent development in data processing systems had directed study and research of engineering towards the 
creation of intelligent systems to evolve models for a wide range of engineering problems.  In this respect, several mod-
eling techniques have been created to simulate various civil engineering systems. This study aims to review the studies 
on support vector machines (SVM) in structural engineering and investigate the usability of this machine learning based 
approach by providing three case studies focusing on structural engineering problems. Firstly, the concept of SVM is ex-
plained and then, the recent studies on the application of SVM in structural engineering are summarized and discussed. 
Next, we performed three case studies using the experimental studies provided. Applicability of SVM in structural engi-
neering is confirmed by these case studies. The results showed that SVM is superior to various other learning techniques 
considering the generalization capability of produced model.
Keywords:  support vector machines, statistical learning, structural engineering, ultimate load capacity, FRP reinforce-
ment, SFRC corbels, haunched beams.

Introduction

Recent advance in data modeling technology has drawn 
great attention from various engineering practices. As a 
result, empirical data modeling is becoming more signifi-
cant to researchers and engineers in practice. Thus, a pro-
cess of data training is used to create a model of a system 
for the purpose of obtaining predictions for the cases that 
are yet to be observed. The model performance, there-
fore, is largely dependent on the quantity and the ac-
curacy of experimental findings used for training the 
model. Being a new modeling technique, support vector 
machines approach (SVM) is one of those methods that 
can be implemented to predict test results. 

In structural engineering, empirical data modeling is 
of great concern as it helps researchers and engineers to 
predict test results. That is, this research attempts to in-
vestigate the applicability of this novel approach to struc-
tural engineering problems. This paper has five parts. 
First, it explains the historical development and the key 
principals of support vector machines (SVM). Then, the 
applications of SVM on various structural engineering 
problems are reviewed. Next, three case studies are per-
formed to confirm the performance of SVM. The paper 
concludes with a discussion of provided case studies’ re-

sults and applicability of this new approach on structural 
engineering problems.

1. Support vector machines as a modeling tool

SVMs were first formulated and presented by Boser, 
Guyon and Vapnik (Boser et al. 1992), and were pre-
sented for the first time at the Computational Learning 
Theory (COLT) conference in 1992. Main characteristics 
of the approach were already available in the literature 
and were applied in machine learning like large margin 
hyper planes in the input space since the 1960s (Cris-
tianini, Shawe-Taylor 2000).

After being presented, many researchers have pro-
cessed both the algorithmic and theoretical analysis of 
these systems, producing in just a few years what is ef-
ficiently a novel research path in its own right, merg-
ing subjects of scientific research areas such as statis-
tics, optimization, functional analysis as well as machine 
learning. A few years later, Cortes and Vapnik (1995) 
presented the soft margin classifier. The algorithm was 
expanded to the regression case in 1995 (Vapnik 2000).

Besides its solid numerical basis in statistical learn-
ing theory, support vector machines have showed ex-
tremely competing performance in several applications, 
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e.g., face recognition, text mining, bioinformatics and im-
age processing. This fact has proven that SVMs are one 
of the state-of-the-art approaches for data mining and ma-
chine learning, together with some other soft computing 
methods, e.g. fuzzy systems and neural networks (Wang 
2005).

Being a controlled learning technique, the SVM 
yields input-output mapping functions from a set of la-
beled training data. Either a regression or a classification 
function, i.e. the category of the input data can be the 
mapping function. Nonlinear kernel functions, for clas-
sification, are frequently applied to convert input data to 
a high-dimensional feature space. By this way, the input 
data become more separable in comparison to the exact 
input space. Creation of maximum-margin hyper planes is 
then performed (Wang 2005).

By solving the optimization, the parametric quantities 
of the maximum-margin hyper plane are derived. There 
exist numerous specific algorithmic rules for the purpose 
of rapidly solving the QP problem that originates from 
SVMs, generally dependent on heuristic rules to break the 
problem down into smaller, more controllable portions. 
Piatt’s SMO algorithm is a typical technique for solving 
the QP problem. This algorithm breaks the problem down 
into 2D sub-problems for the purpose of analytical analy-
sis. Thus, the need for a numerical optimization algorithm, 
i.e. conjugate gradient method is eliminated. 

The model then developed depending on solely a 
subset of the training data adjacent to the class bounda-
ries. Likewise, the model created by Support Vector Re-
gression neglects any training data that is adequately close 
to the model prediction. It is supposed that the SVMs are 
likewise belonging to “kernel techniques” (Wang 2005).

The development order of SVMs has been reverse 
to the evolution of NNs. SVMs were developed from the 
sound theory to the application and tests, while the NNs 
were accompanied by trial-and-error path, from imple-
mentations and considerable experimentation to the the-
ory. Surprisingly, SVMs has not been widely appreciated 
at the beginning despite its very strong theoretical back-
ground. Nowadays, it is obvious that SVMs demonstrate 
better (or comparable) performance than neural networks 
and other statistical models, on solving the real world 
problems (Huang et al. 2006).

1.1. Support vector classification
SVMs are quite useful for data classification purposes. 
The classification process starts with separating data into 
training and testing sets. Each data row in training set 
includes a target value and several “attributes”. The main 
purpose of SVM is to create a model which predicts the 
target values of the test data by using given attributes (Hsu 
et al. 2003). The kernel functions used for data classifica-
tion are as follows:

– Linear:  

  K x x x xi j i
T

j( , ) = ; 

– Polynomial:  

  K x x x x ri j i
T

j
d( , ) ( ) ,= + >γ γ 0 ;

– Radial Basis Function (RBF):  

  K x x x xi j i
T

j( , ) exp( ),= − >γ γ
2

0 ;

– Sigmoid:  

  K x x x x ri j i
T

j( , ) tanh( ).= +γ

where g, d and r are kernel parameters. 
Normally, the procedure of SVM includes:  

1. Data transformation to the format of SVM package;  
2. Trying g a few kernels and parameters on a random 

basis;
3. Testing the model. 

Hsu et al. (2003) proposed a new SVM procedure as 
explained below:

1. Data transformation to the format of SVM package;  
2. Application of simple scaling on data;
3. Consider RBF kernel function;
4. Obtain the values for parameters C and g by using 

cross-validation; 
5. Use obtained C and g parameters to train the whole 

training set; 
6. Testing the model.

1.2. Support vector regression
SVM were initially evolved for solving the classification 
problems. However, researchers started utilizing SVM to 
solve regression problems by preserving the entire maxi-
mal margin algorithm. A function named as-insensitive 
loss function that neglects errors that are inside a definite 
distance of the exact value is able to supervise a paramet-
ric quantity that is equal to the margin parameter for sepa-
rating hyper planes. In SVR (support vector regression), 
for a given set of training data, the main goal to obtain 
a function that has maximum difference from the exact 
found targets for all the training data, and at the same time 
is at most flat, i.e. we do not focus on errors as long as 
they are less than, but any deviation larger than a certain 
amount is not acceptable (Chen et al. 2004). The (linear) – 
insensitive loss function L(x, y, f) is described as:

 L x y f y f x
if y f x

y f x otherwise
ε

ε

ε
ε

( , , ) ( )
( )

( )
= − =

− ≤
− −



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

0
,   

(1)
where f is a real-valued function on a x and the quadratic 
ε-insensitive loss is defined by:

  L x y f y f x2
2ε
ε( , , ) ( ) .= −  (2)

Figure 1 illustrates the form of linear and quadratic 
ε-insensitive loss function for zero and non-zero ε.

The loss function L(y,f (x,ω)) determines the perfor-
mance of accuracy. Performing linear regression in the 
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high-dimension feature space by the use of ε-insensitive 
loss function, SVM attempts to decrease model complex-
ity by performing the minimization of ω 2 .  By introduc-
ing (non-negative) slack variables ξ ξj i i n, , ..* =1 :

  

L y f x y f x

L x y f y f x

( , ( , )) ( )

( , , ) ( )

;ω ε

ε
ε

= −

= −

2

2
2

 
(3)

to determine the deviation of training data outside ε –
zone. Following formulation is utilized for the minimiza-
tion of SVM regression:

1
2

12

1
ω ξ ξ ξ ξ+ =+

=
∑c i ni i j i
i

n
( ) subject to , , .. ;* *  (4)

 ξ ξj i i n, , .. .* =1  (5)

The solution of this optimization problem can be found by 
transforming it into the dual problem:

  

f x K x x

C C

j i j
i

n

i j

sv

( ) ( ) ( , ) subject to

, ,

*

*

= −

≤ ≤ ≤ ≤
=
∑ α α

α α
1

0 0  
(6)

where nsv is the number of support vectors (SVs) and 
K(xj, x) is a kernel function. Generalization capability (ac-
curacy of estimation) of SVM is dependent on a proper 
setting of meta-parameters C, ε and the kernel parameters. 
Current software applications usually allow users to de-
fine meta-parameters of SVM regression (Cherkassky, Ma 
2002).

Parameter C controls the exchange between the mod-
el complexity as well as the degree to which deviations 
larger than ε are tolerated in optimization formulation. 
Parameter ε describes the width of ε – insensitive zone, 
which is utilized to fit the training data. The number of 
SVs used to create the regression function can be affected 
by the value of ε. The fewer SVs are obtained by choos-
ing the bigger ε. On the other hand, greater ε -insensitive 
values cause more ‘flat’ predictions. Although in different 
ways, both C and ε values affect model complexity (flat-
ness) (Cherkassky, Ma 2002). 

There are numerous kernel functions for machine 
learning. In this study, four different kernel functions 
namely as linear, polynomial, radial basis and sigmoid 
functions are used: 

 – Linear kernel function:

 K x x x xi i( , ) ;=  (6a)

 – Polynomial kernel function:

  K x x x xi i
d( , ) ( ( )) ;= +1  (6b)

 – Radial basis function:

 K x x
x x x x

i
i i( , ) exp

( )( )
;= −

− −



2 2σ

 (6c)

 – Sigmoid kernel function:

  K x x x xi i( , ) tanh( ( )),= +1  (6d)

where xi and x are the training and test patterns, respec-
tively, σ is the global basis function width and d is an 
input vector dimension.

Wu et al. (2012) studied the hybrid kernel function, 
which is a combination two kernel functions namely as 
linear kernel and local kernel function (RBF). The results 
of SVM models, which are created using hybrid kernel 
function, perform better than those created using ordinary 
functions. 

2. Review of SVM applications in structural  
engineering

2.1. Modeling the material properties of concrete  
using SVM
Cement concrete is one of the most popular materials 
used in structural engineering. Modeling and predicting 
the concrete parameters has been a difficult task since the 
concrete contains several compounds namely as cement, 
sand, aggregate, water and admixtures and because of the 
nonlinearity between the relationships of these dependent 
and independent compounds. Support vector machines are 
one of the computational tools that attempt to solve these 
complex real life problems. The fallowing parts give detailed 
review of literature concerning the application of SVM in 
modeling the parameters of various types of concrete.

2.1.1. Applications in modeling the strength of concrete
Concrete strength is a substantial characteristic as it has a 
strong relationship with the quality and strength of overall 
structure. Several researchers implemented support vec-
tor machines approach in prediction of concrete strength 
successfully. Shengguo and Junbo (2007) used two types 
of kernel functions and found that the predictions of de-
veloped SVM model match fairly well with those of ex-
periments. 

Fig. 1. The form of linear and quadratic ε-insensitive loss 
function for zero and non-zero ε
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Xu et al. (2008) established a SVM-based math-
ematical model to investigate the relation between the 
strength and physical quantities that they obtained from 
nondestructive testing. They discovered that this method 
has advantages such as less computational time and high 
precision in predictions. This new method can be used for 
concrete strength conversion for nondestructive examina-
tions. 

High temperature causes serious damage in concrete 
structure. The nonlinearity of the relationship between 
material properties of concrete and fire exposure induces 
the difficulty of correct estimation of exposed tempera-
ture. Chen et al. (2009) produced a SVM model that is 
fairly feasible in predicting the exposed temperature val-
ues and they also underlined the importance of the num-
bers of effective parameters.

An example of strength prediction is provided by the 
study of Hai-xia (2010) who implemented support vector 
machines approach to predict the strength of high strength 
concrete. They compared the SVM results to those of ac-
tual experiments as well as regression, back-propagation 
(BP) network and radial basis function (RBF) network. 
They also emphasized the capability of SVM in prediction 
of concrete strength.   

Prediction of elastic modulus is also a significant 
property as it is used to calculate deformation of struc-
tures. As an example of this, Yan and Shi (2010) proposed 
a SVM model in order to investigate the applicability of 
support vector machines in predicting elastic modulus of 
normal and high strength concrete. They also performed a 
comparison of SVM results and other proposed models as 
well as experimental outcomes. They concluded that the 
performance and generalization capability of SVM model 
are superior to those of other models. 

Bin et al. (2011) produced a model to estimate the 
concrete compressive strength of two sets cubic samples 
one of which contains fly ash whereas the other contains 
fly ash with slag ash admixtures. It is stated that the model 
performed better prediction accuracy than the linear re-
gression method and is more stable than the BP artificial 
neural network. 

Integrated approaches are also effective when pre-
dicting concrete properties. An example of this is pro-
vided by the work of Gilan et al. (2011) who predicted 
the concrete compressive strength with support vector re-
gression by adopting evolutionary fuzzy function. They 
compared the robustness and the generalization capabil-
ity of evolutionary fuzzy function with support vector re-
gression (EFF-SVR) model with some existing modeling 
approaches such as adaptive neural-fuzzy inference sys-
tem (ANFIS), fuzzy function with least squared estima-
tion (FF-LSE), artificial neural network and improved 
FF-LSE. The results indicated the better performance and 
capability of EFF-SVR model.  

Modeling of reinforced and prestressed concrete 
deep beams is presented by Pal and Deswal (2011) who 
implemented SVM to predict the shear strength. For com-

parison, they also applied a back-propagation neural net-
work and three empirical equations for deep beams. The 
results revealed that the SVM model performs better and 
the parametric studies exhibit the importance of effective 
parameters such as concrete strength and ratio of shear 
span to effective depth of beam on strength prediction. 

Wang et al. (2011) proposed a model based on SVM 
in order to forecast the concrete strength and feasibility. 
The results suggested that SVM is a better approach to 
express the relationship between concrete strength and ef-
fective factors.  

Sriraam et al. (2012) employed the SVM for inves-
tigating the feasibility of using granite fines as a replace-
ment for river-bad sand in concrete. Results indicated that 
the implementation of SVM induces high performance in 
predicting the concrete strength.  

The use of robust models is required for estimating 
the compressive strength of no-slump concrete whose 
properties and constituents are reasonably sensitive. Sob-
hani et al. (2013) developed a SVM model to predict the 
compressive strength of no-slump concrete and compared 
results with optimized neural network (ANN) model. It is 
stated that although both models exhibited high accuracy 
in prediction and generalization capability, SVM was very 
rapid comparing to ANN models. 

Sun et al. (2013) implemented least squares support 
vector machine (LS-SVM) for predicting the strengths of 
concrete specimens with high volume fly ash admixture. 
They stated that LS-SVM model could avoid the draw-
backs of neural networks (ANN) namely as over-training 
and weak generalization capability.  

The relationship between the tensile strength and the 
compressive strength is studied by Yan et al. (2013) who 
produced a SVM model using the experimental data avail-
able in literature. The results are compared to those from 
experimental studies and are found to be in a good agree-
ment. The results are compared to outcomes of empirical 
design equations and various models. It is stated that the 
SVM has a strong potential for estimating the splitting 
tensile strength from compressive strength. 

Another example for modeling the concrete strength 
is the study of Yang and Dong (2013), they employed 
SVM to investigate the feasibility of this approach. The 
results are compared to those of generalized regression 
neural network method. 

Yuvaraj et al. (2013) developed a fracture mechan-
ics based SVM model to estimate the features of high 
strength and ultra-high strength concrete beams. The 
model attempted to predict the values of fracture energy, 
critical stress intensity factor, critical crack tip opening 
displacement and failure loads. The results obtained from 
produced models were in a good agreement with those of 
the experimental values. 

2.1.2. Predicting the concrete corrosion 
Durability of structures is of great concern in structural 
engineering and is affected significantly by the corrosion 
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of concrete and reinforcing steel. In this regard, predicting 
the corrosion severity becomes a substantial phenomenon 
for the researchers. 

An example to prediction of corrosion severity is 
provided by Shujian et al. (2007) who implemented sup-
port vector machines as a classifier of corrosion severity. 
It is stated by the researchers that the method has advan-
tage of high accuracy in classification. 

Zhang and Song (2012) conducted a test of fly ash 
concrete specimens in sulfuric acid and modeled the re-
sults by means of support vector machines approach. 
Comparing the results with measured values, it is implied 
that this new method of computation has capability to pre-
dict the sulfuric acid corrosion of concrete. 

The mechanical properties of corroded reinforced 
concrete are investigated by Yang et al. (2014) who con-
ducted tests on specimens under repeated loads. Using 
support vector machines, the deflection and maximum 
crack width parameters are predicted and compared to 
those of test results. A high prediction accuracy of the 
model is observed. 

2.1.3. Applications in modeling self-compacting concrete 
(SCC) properties
Self-compacting concrete (SCC) is a type of concrete that 
requires no mechanical compaction and is able to take 
the shape of the formwork without vibrators. This feature 
makes it popular as it reduces labor costs significantly and 
accelerates the construction progress. Following studies 
performs the estimation of SCC material properties. 

Siddique (2008) investigated the potential of SVM 
approach in predicting the compressive strength and 
slump flow of self-compacting concrete. The results are 
compared with those of back propagation neural network 
model and it is observed that the SVM has a greater per-
formance both for compressive strength and slump flow 
prediction. 

A predictive model based on SVM is constructed by 
Cao et al. (2013) in order to predict the elastic modulus of 
self-compacting concrete. Through the analysis and com-
parison with test results, it is proved that this modeling 
technique is useful and powerful.  

Another example of the prediction of SCC properties 
is the work of Aiyer et al. (2014) who examined the capa-
bility of least squares support vector machines (LS-SVM) 
for predicting the compressive strength of self-compacting 
concrete. The results indicated that the LS-SVM model 
performed better than ANN. 

2.1.4. SVM for structural reliability

The uncertainties related to material characteristics and 
geometry conditions commonly exist in structural engi-
neering. These uncertainties can impact the design perfor-
mance significantly and result in serious complications. In 
this regard, structural reliability analyses are performed to 
detect the effect level. 

Li and Lu (2007) proposed two SVM-based ap-
proaches for structural reliability analysis. The approxi-
mation of implicit performance function is provided by 
the implementation of SVM. Comparisons among the pro-
posed reliability analysis and classical ones implied that 
the SVM method has capability both in performance func-
tion and failure probabilities. 

2.1.5. Applications in prediction of concrete carbonation

Although it is not as much as corrosion, concrete carbona-
tion is also a serious threat for structural durability. Thus, 
the estimation of carbonation level is of significant impor-
tance structural engineering practice. 

As an example to this, Zhitao et al. (2008) employed 
SVM to forecast concrete carbonation level. The compari-
son of results with those of BP network suggested that 
SVM method could perform much better and could be a 
useful reference for application in different engineering 
disciplines. 

The carbonation depth of prestressed concrete is in-
vestigated by Can (2009) who constructed a SVM model 
to perform the analysis. Two different kernel functions 
namely as wavelet kernel function and radial kernel func-
tion are used in SVM analysis. Xiang (2009) also studied 
the prediction of carbonation depth in concrete by means 
SVM. The results are compared to those from neural net-
work modeling and it is observed that the SVM has higher 
accuracy and generalization capability.  

2.2. Damage identification 
Damage assessment has drawn a great attention from 
several engineering practitioners in recent years (Zhang 
et al. 2010a). SVM is a newly emerging method in dam-
age identification and classification of the structures. 

C.-C. Liu and J. Liu (2010) constructed a SVM 
based model for damage identification of a long-span arch 
bridge considering the variation ratio of curvature mode. 
The precision of the used model is verified by comparing 
the results with those from RBF neural network. 

Another example of damage identification is the study 
of Tesfamariam and Liu (2010) who conducted eight differ-
ent statistical damage classification methods one of which 
is support vector machines. It is observed that the perfor-
mance of SVM model was one of the best among others. 

Zhang et al. (2010a) stated, in their paper, that the 
performance of SVM in predicting the grouting quality of 
grouted beams is quite accurate in comparison to ANN’s. 
They obtained the experimental results after nondestruc-
tive tests they conducted for grouting quality. 

A SVM-based model for pattern identification of 
structural damage is presented by Zhang et al. (2010b) 
who performed the analyses by using wavelet kernel 
function of SVM. It is found that SVM model is able to 
overcome the problem of other traditional methods that 
are insensitive to natural frequencies and other dynamic 
parameters. 
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Gao et al. (2012) utilized least squares support vec-
tor machines (LS-SVM) for damage diagnosis of concrete 
girder in order to determine damage degree and location. 
Kernel parameters are optimized to improve the generali-
zation capability of the model. High identification preci-
sion by LS-SVM model is observed. 

Another example of damage identification in concrete 
samples is provided by Xie et al. (2013) who employed 
the SVM approach to predict the location of voids based 
on ground penetrating radar (GPR) technique. The study 
showed that the SVM exhibits promising performance in 
the GPR identification of voids in concrete.  

Zhu and Hao (2007) employed wavelet support vec-
tor machines for structural health monitoring. The re-
sponse signals of a structure under impact load are col-
lected and turned into wavelet packet components. Then, 
the energies of these components are calculated as fea-
ture vectors. SVM is utilized for training and classification 
based on these feature vectors. It is stated that the method 
can be used reliably for damage monitoring. 

Zhang et al. (2006) showed the ability of support 
vector regression based approach for structural health 
monitoring of large-scale structures. According to au-
thors, SVM can reduce the computation time and give 
accurate results. Also, an on-line SVR-based identifica-
tion approach is presented to identify nonlinear structural 
parameters (Zhang, Sato 2006). 

Satpal et al. (2013), in their study, investigated the 
effectiveness of SVM in health monitoring of beam-like 
structures. The results indicated the high performance of 
SVM without considering the health state of data used. 
Cheng and Hoang (2014c) utilized LS-SVM method for 
the purpose of risk score inference for bridge mainte-
nance. The findings demonstrated that the method is suc-
cessful also for decision-making purposes.  

2.3. Miscellaneous applications of SVM in structural 
engineering
Yinfeng et al. (2008) proposed a SVM-based two-stage 
method to estimate and simulate the nonlinear dynamic 
response of structures. SVM is used during the second 
stage wherein the predicted linear responses and excita-
tion is employed to approximate nonlinear mapping. The 
results demonstrated that the method can be used conveni-
ently to predict the nonlinear structural response. 

Samui and Kim (2012) developed SVM to identify 
the fracture parameters, critical stress intensity factor and 
the critical crack tip opening displacement of concrete. 
The results of the model are compared with ANN model 
and other empirical equations. It is concluded that SVM is a 
robust technique to predict fracture parameters of concrete.  

In order to estimate the tangential displacement of a 
concrete dam, Ranković et al. (2014) presented a model 
based on support vector machines. The model is created 
using the data collected during fourteen years. The com-
parison of SVM results with experimental data confirmed 
the high performance capability of SVM approach.   

Kromanis and Kripakaran (2014) investigated the 
structural performance monitoring of bridges that are sub-
jected to thermal factors. They proposed a model based on 
SVM to predict the relationship between temperature dis-
tribution and structural response. The study confirmed the 
accuracy of this novel application. Also, SVM is applied 
to several other civil engineering disciplines successfully 
(Cheng, Hoang 2014a, b; Chou et al. 2013; Erdis 2013).

Additionally, other soft computing techniques such 
as ANFIS and ANN are also applied successfully to struc-
tural engineering problems (Amani, Moeini 2012; Cevik 
2011; Cevik et al. 2012; Sonebi, Cevik 2009). The results 
of SVM and ANFIS models are found to be close and 
highly accurate noting that both modeling techniques have 
similar theoretical background.  

3. Case studies

This paper also reports case studies in which we employed 
SVM in three different structural engineering problems 
and discussed the results. Emphasis was placed on verifi-
cation of SVM performance by applying it to three unre-
lated problems wherein different structural members are 
experimented. The first example focuses on the punching 
shear strength of concrete slabs reinforced with fiber-rein-
forced polymer rebars. Secondly, ultimate load capacity of 
steel fiber reinforced concrete (SFRC) corbels is modeled 
by means of SVM. Final example gives insight into SVM-
based modeling of reinforced concrete haunched beams. 

3.1. Punching strength of FRP-reinforced slabs
In recent years, the use of fiber-reinforced polymer (FRP) 
in structures has drawn a great attention of engineers since 
it is a potential replacement of traditional steel and is free 
of corrosion problem. FRPs can be manufactured in dif-
ferent types such as rebar, plates and sheets. The stress-
strain behavior of FRP rebars and traditional steel rebars 
are illustrated in Figure 2. 

There exist several design models and empirical equa-
tions for predicting the punching shear capacity of FRP-re-
inforced two-way slabs as shown in Table 1 (El-Ghandour 
et al. 2003; Hassan et al. 2013; Hussein et al. 2004; Lee 
et al. 2009; Matthys, Taerwe 2000; Nguyen-Minh, Rovňák 

Fig. 2. Stress strain behavior of FRP bars (Matthys, Taerwe 
2000)
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2012; Ospina et al. 2003; Zaghloul 2003; Zhang 2006). 
All of these researchers tested slabs with FRP reinforcing 
bars or two-dimensional grids. All of the slabs had un-
restrained edges and were subjected to a central column 
load. Carbon (CFRP), glass (GFRP) or a hybrid of carbon 
and glass (HFRP) types of fibres were used. 

In this part of the study, we utilized SVM to estimate 
the ultimate punching shear load of FRP-reinforced two-
way slabs. The main focus is to propose a new model 
for predicting the punching shear strength of FRP rein-
forced two-way slabs. The SVM approach is applied to 

the tests of a concrete member reinforced with composite 
fibers for the first time in the literature. Thus, an extensive 
literature review has been conducted on FRP reinforced 
two-way slabs. Experimental database that is utilized for 
performing the support vector machine analysis are given 
in Appendix (Table A.1). The model includes the input 
variables of column section (c), effective flexural depth of 
slab (d), elastic modulus of FRP (Ef), reinforcement ratio 
(ρ), compressive strength of concrete (fc) and the target 
variable as ultimate punching load (P).  

Table 1. Existing formulas for estimation of punching shear resistance of FRP reinforced two-way slabs

Source Formula Remarks
ACI 318-11 (2011)
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A process of model creation (8 models) has been per-
formed by using 2 different SVM types (Nu-SVR and Ep-
silon-SVR) and 4 different SVM kernel functions (Linear, 
Polynomial, Radial basis function, Sigmoid). 80% of the 
database is used as training set and the remaining 20% is 
used for validation in all models. The radial basis function 
(RBF) model is selected for comparison and parametric 
study as it exhibited the best performance among others. 

According to obtained statistical values, SVM model 
has the lowest mean squared error (MSE) value of 485.2 
whereas the closest MSE is that of Theodorakopoulos and 
Swamy (2007) with 2260.9. Additionally, SVM model 
exhibits the highest correlation coefficient (R2) of 0.994. 
Test results versus predicted results of SVM model is 
illustrated in Figure 3. Furthermore, an evaluation pro-
cess has been performed to test the accuracy of proposed 
model by means of numerical results of the same experi-
mental database and empirical equations available in the 
literature. The accuracy of proposed model is found to be 
higher than numerical results and existing analytical equa-
tions and design codes available in the literature. 

A parametric study is performed to test the generali-
zation capability of SVM model. For this, a new dataset 
has been generated for each variable and the ranges of 
those variables were kept more or less in between the min-
imum and maximum of variables in experimental dataset. 
By implementing the generated data to SVM model, main 
effect (Fig. 4) and interaction plots (Fig. 5) of each vari-
able are obtained. The main effect plot is a significant tool 
to display the effect of each variable on punching shear 
capacity. This graphical tool allows viewing the overall 
importance of variable effects on the output and provides 
a general snapshot. On the other hand, the interaction plot 
is an essential tool to observe the effect of each input pa-
rameter in conjunction with other inputs. This tool allows 
viewing the effect of each variable in detail. The same 
parametric dataset, which is used for main effect plot, has 
been utilized in order to obtain interaction plot provided 
in Figure 5.

Main effect (Fig. 4) and interaction plot (Fig. 5) in-
dicate that punching shear capacity of FRP-reinforced 

two-way slabs is influenced significantly by all input pa-
rameters. In particular, c (column section), d (effective 
flexural depth of slab), Ef (elastic modulus of FRP), fc 
(compressive strength of concrete) and ρ (reinforcement 
ratio) have an increasing effect on punching shear load. 

3.2. Ultimate load capacity of Steel Fiber Reinforced 
Concrete (SFRC) corbels
In the second case study, emphasis was placed on the pre-
diction of ultimate load capacity of SFRC corbels. Corbels 
are structural elements primarily used in reinforced con-
crete and precast structures. The main function of corbels 
is to transfer vertical and horizontal loads to the members 
to which they are connected. Corbels can be the overhang-
ing portion of beam with a small span length. Shear span 
to effective depth ratio (a/d) of corbels is less than unity 
(Ersoy et al. 2010).

Use of steel fiber in reinforced concrete corbels pro-
vides considerable advantages. Previous studies related 
with corbels have concluded that reinforced concrete 
corbels which include only steel fibers as secondary re-
inforcement have almost the same load carrying capacity 
with those of horizontal stirrups are used against shear 
failure. 

Fig. 3. Performance of proposed SVM model vs. test results Fig. 4. Main effect trends for the parametric study on punching 
shear capacity

Fig. 5. Interaction effect plot of variables on punching shear 
capacity
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Use of steel fiber facilitates the fabrication of corbels 
because of easier placement of it as compared to place-
ment of horizontal stirrups. Steel fibers allow corbels to 
experience large deflections after achieving ultimate load 
without a dramatic loss in load carrying capacity or dem-
onstrating a sudden and brittle failure (Fattuhi, Hughes 
1989b).

The aim of this study is to present SVM for the pre-
diction and analyses of ultimate load capacity of SFRC 
corbels for the first time in literature. The outcomes of 
the study will enable to understand and model the effects 
of various material and geometry parameters on the ulti-
mate load capacity of SFRC corbels, which has not been 
studied so far.

Previous experimental studies on SFRC corbels
Fattuhi and Hughes studied a series of experiments on 
steel fiber reinforced corbels (Fattuhi 1987, 1990a, b, 
1994b; Fattuhi, Hughes 1989a, b; Hughes, Fattuhi 1989). 
Fattuhi and Hughes investigated effects of steel fiber on 
load carrying capacity of corbels whose test configuration 
is shown in Figure 6. They changed various parameters 
(tensile and compressive strength of concrete, volume 
fraction of steel fiber, shear span, fiber aspect ratio, effec-
tive depth, reinforcement ratio) and observed the mechani-
cal response of SFRC corbels.

Campione, Mendola and Mangiavillano studied the 
flexural behavior of fibrous reinforced corbels experimen-
tally and suggested simple analytical expressions for bear-
ing capacity by considering the shear contribution due to 
steel reinforcements and fibers (Campione et al. 2007).

Fattuhi (1994a) also investigated the mechanical be-
havior of trapezoidal SFRC corbels. High strength steel 
fiber reinforced corbels in trapezoidal form were experi-
mented by Muhammad (1998) under monotonic and cy-
clic loading.

In order to obtain an empirical equation for the pre-
diction of the ultimate load capacity of SFRC corbels 
tested, Fattuhi proposed the following equation (Fattuhi 
1990b):
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where Vn is the nominal strength of a corbel, fct is the ten-
sile strength of concrete, a is the shear span (mm), h is the 
overall depth (mm), fy is yield strength of main reinforce-
ment and fcu is the cubic compressive strength of SFRC, 
d is the effective depth (mm) and ρ is the reinforcement 
ratio (%). 

In this part of the study, the main focus is to compare 
the experimental results of SFRC corbels with the results 
of newly proposed SVM model. The SVM approach is 
applied to the experimental results of SFRC corbels for 
the first time in the literature. An experimental database 
on SFRC corbels has been gathered from the literature 
that is utilized for performing the support vector machine 
modeling (Table A.2). The proposed SVM model includes 
the input variables of cylindrical compressive strength of 
concrete (fc), shear span (a), tensile strength of concrete 
(ft), overall depth (h), steel-concrete strength ratio (fy/fcu), 
effective depth (d) and reinforcement ratio (ρ). Yet, only 
most effective parameters are taken when performing the 
parametric study. 

2 different SVR types (Nu-SVR and Epsilon-SVR) 
and 4 different SVR kernel functions (Linear, Polynomial, 
Radial basis function and Sigmoid) are utilized to create 
SVM models. 80% of the database is used as training set 
and the remaining 20% is used for validation in all mod-
els. The model whose performance is the best among oth-
ers is selected for comparison and parametric study. 

Additionally, an evaluation process has been per-
formed to test the accuracy of proposed model by means 
of numerical results of the same experimental database 
and an empirical equation (Eqn (7)) proposed by Fattuhi 
(1990b). The comparison of SVM and empirical equa-
tion results compared experimental results are shown in 
Table A.2. According to obtained statistical values, SVM 
model has the lowest root mean squared error (RMSE) 
value of 4.735. Additionally, SVM model exhibits the 
highest goodness of fit (R2) by 0.975. Test results versus 
predicted results of SVM model are illustrated in Figure 7. 
The accuracy of proposed model is found to be very high 
and in good agreement with test results. 

Main effect (Fig. 8) and interaction plot (Fig. 9) in-
dicate that ultimate shear load capacity of SFRC corbels 
is influenced by four input parameters namely as com-
pressive strength of concrete (fc), reinforcement ratio (ρ), 
fiber density (vf) and shear span-to-effective depth ratio 
(a/d). The other parameters are not involved in modeling 
because of their low contribution. In particular, compres-
sive strength of concrete (fc), reinforcement ratio (ρ) and 

Test Arrangement: (a) Testing Machine; (b) Spherical Seat;  
(c) Loading Plate; (d) Concrete Specimen; (e) Demec Discs; 

(f) Main Bars; (g) Roller Support 

Fig. 6. Test configuration of corbels experimented by Fattuhi 
and Hughes (Fattuhi 1990b)
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fiber density (vf) have increasing effects on ultimate load 
whereas the increase in shear span-to-effective depth ratio 
(a/d) leads to lower load capacity. 

It is found that the proposed SVM has generaliza-
tion capability for the range of variables in experimen-
tal dataset. It can be observed from the interaction plots 
(Fig. 9) that the shear span-to-effective depth ratio (a/d) 
has a significant inversely proportional effect on ultimate 

load and this effect is pronounced more together with the 
influence of compressive strength (fc). Although the con-
tribution of fiber density (vf)) is rather low in compari-
son with other inputs, the increase rate in fiber density 
is pronounced more with the contribution of shear span-
to-effective depth ratio (a/d) and reinforcement ratio (ρ). 

It can be extracted from the parametric study of 
SFRC corbels that the results of SVM analysis are reliable 
and can be used in design and analysis process. Because 
the outputs of main effects plot and interaction plot are 
consistent with the outputs of experimental and analysis. 
For instance, the most important parameters influencing 
the ultimate load capacity of SFRC corbels are span-to-
effective- depth ratio (a/d) and reinforcement ratio (ρ) and 
effect of steel fiber volume ratio is small when compared 
to these two parameters according to experiments carried 
by Fattuhi and Hughes. The similar situation exists ac-
cording to the main effect and interaction effect graphs 
of SVM analysis.

3.3. Shear capacity of reinforced concrete haunched 
beams
The third case study focuses on the shear capacity pre-
diction of RC haunched beams. Although reinforced con-
crete (RC) haunched beams are widely used as bridges 
or portal frames and precast roof girders, there is a lack 
of studies in the literature investigating this topic (Nilson 
et al. 2011). Scarce in experimental studies is the main 
impediment to include this topic in details by internation-
al building practice codes. As a result of various experi-
mental studies, it can be concluded that the behavior and 
failure of the RC haunched beams differs as compared 
to prismatic section RC beams. Figure 10 illustrates the 
haunched beams experimented by Debaiky and Elniema 
(1982), Stefanou (1983), Tena-Colunga et al. (2008) and 
Nghiep (2011). 

In this part of the study, SVM approach is imple-
mented to estimate the shear capacity of RC haunched 
beams. For this, experimental data is collected and used 
for modeling by means of SVM. The material parame-
ters that are taken to investigate the behavior of the RC 
haunched beams are shear span-to-critical effective depth 
ratio (a/dcr), haunch slope (tana), flexural reinforcement 
ratio (ρs) and compressive strength of concrete (fc). Char-
acteristics of tested beams and comparison of results are 
summarized in Table A.3. Figure 11 illustrates the test re-
sults versus predicted results of SVM model produced to 
predict the ultimate shear load of RC haunched beams. 

Main effect (Fig. 12) and interaction plot (Fig. 13) 
show that ultimate shear capacity of reinforced concrete 
haunched beams is highly influenced by four particular 
input parameters namely as shear span-to-critical effec-
tive depth ratio (a/dcr), haunch slope (tana), reinforcement 
ratio (ρs) and compressive strength of concrete (fc). The 
other parameters are ignored in modeling because of their 
low contribution. In particular, reinforcement ratio (ρ), 
compressive strength of concrete (fc) and haunch slope 

Fig. 7. Experimented versus predicted shear strengths (in KN)

Fig. 8. Main effect trends for the parametric study on ultimate 
shear force of SFRC corbels

Fig. 9. Interaction effect plot of variables on ultimate shear 
capacity
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(tana) have increasing effects on ultimate load whereas 
the increase in shear span-to-critical effective depth ratio 
(a/dcr) leads to lower shear load capacity. 

Figures 12 and 13 indicate that the proposed SVM 
has generalization capability for the range of variables in 
experimental dataset of haunched beams. The shear span-
to-critical effective depth ratio (a/dcr) has an inversely 
proportional effect on ultimate load and this effect is pro-
nounced more together with the influence of compres-
sive strength (fc). The effect of compressive strength (fc) 
on ultimate load capacity is larger than remaining three 
parameters. Although the contributions of reinforcement 
ratio (ρs) and haunch slope (tana) are rather low, their ef-
fects become significant with the contribution of concrete 
compressive strength (fc). 

Fig. 10. Haunched beams tested by: (a) Debaiky and Elniema (1982); (b) Stefanou (1983); (c) Tena-Colunga et al. (2008); 
(d) Nghiep (2011)

Fig. 11. Experimented versus predicted shear strengths (in KN)

Fig. 12. Main effect trends for the parametric study on ultimate 
shear force of RC haunched beams

Fig. 13. Interaction plots for the parametric study on ultimate 
shear force of RC haunched beams
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4. Advantages of support vector machines

Advantages of support vector machines are as follows:
 – The problems of outliers and noise can be minimized 
by proper setting of C-parameter (Vapnik 2000).

 – Regardless of data distribution (whether it is non-
monoton or non-linearly seperable), SVMs can exhibit 
high performance for classification problems and give 
accurate results (Cristianini, Shawe-Taylor 2000).

 –  Noisy conditions can be dealt with by automatic 
identification and incorporation of support vectors as 
the model minimizes the effect of non-support vec-
tors while training (Han et al. 2007). 

 – Thanks to some key training vectors in the models, 
future predictions can be improved by tracing back 
in the historical modeling events (Han et al. 2007; 
Mukherjee, Vapnik 1999). 

5. Disadvantages of support vector machines

Disadvantages of support vector machines are as follows:
 – The main problem of SVMs is the process of select-
ing the suitable kernel function and hyper parameters 
as it based on trial and error process, which is time-
consuming (Ccoicca 2013; Yu et al. 2006). 

 – Interpretation and understanding of nonlinear SVR 
model behavior can be quite difficult because of the 
fact that the mapping of nonlinear inputs into high 
dimensional feature space involves high complexity. 
Thereby, the training process takes more time com-
paring to those of linear models (Raghavendra, Deka 
2014; Tripathi et al. 2006).  

 – Probabilistic forecasting may not be performed since 
SVMs aim for point predictions (Raghavendra, Deka 
2014). 

 – Since the model is dependent on past data records, 
model extrapolation performance may be unsatisfac-
tory incase the past data are inconsistent (Raghaven-
dra, Deka 2014). 

Conclusions

In this study, the key principles of support vector ma-
chines (SVM) and its applications in structural engineer-
ing have been reviewed. Additionally, its applicability has 
been proved by providing three case studies namely as 
punching shear capacity of FRP-reinforced two-way slabs, 
ultimate shear capacity of SFRC corbels and the load ca-
pacity of haunched beams. 

The first case study has been conducted using 47 ex-
perimental records of the punching shear capacity of FRP-
reinforced two-way slabs. The SVM is found to be robust, 
highly accurate and capable to generalize for predicting 
the punching shear capacity. (R2 = 0.994) The second ex-
ample is performed using 84 experimental data on shear 
capacity of SFRC corbels. This example also confirmed 
the robustness and accuracy as well as generalization ca-
pability of SVM approach with a correlation coefficient of 
R2 = 0.975. In this example, the results are also compared 

to those of an empirical equation provided in the litera-
ture. The third example focuses on the shear capacity of 
reinforced concrete haunched beams. SVM is applied to 
predict the ultimate shear capacity using 47 experimen-
tal records. Also, the prediction performance of SVM is 
found to be high (R2 = 0.997) and the generalization ca-
pability is confirmed. 

Based on the above-mentioned results, fallowing 
conclusions can be drawn:

 – Support vector machines approach has successfully 
been implemented by several researchers focusing on 
structural engineering problems. 

 – SVM approach is a highly effective machine learning 
method that can be applied to structural engineering 
problems.

 – SVM technique is superior to several other methods 
considering the high generalization capability perfor-
mance.

 – SVM can safely be implemented to wide range of 
structural problems even though the problems are 
highly unrelated. 

 – As the performance of SVM models are largely de-
pendent on the type of kernel function, it is required 
to select the suitable kernel function in order to get 
satisfactory results. 

 – Encouraging performance of SVM method can draw 
attention of researchers and engineers who desire to 
find out the impact rate of inputs on an output of a 
structural engineering problem. 
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Table A.3. Material and geometric properties of analyzed RC haunched beams and comparison models

Source Specimen B (cm) ds (cm) αo ρs* ρv* fc (MPa) fy (MPa) Vexp (kN) Vpred (kN) Vpred/Vexp

Debaiky 
and Elniema 
(1982)

A2 12 11 9.46 0.00198 0.03 20 461 58 58.02 1.00
B3 12 11 9.46 0.00198 0.03 18.6 461 65.5 65.48 1.00
B4 12 11 9.46 0.00198 0.03 21 461 101.5 101.51 1.00
C2 12 11 9.46 0.00198 0.03 28.2 461 72 71.98 1.00
D3 12 11 9.46 0.00396 0.03 29.6 461 69 68.98 1.00
D4 12 11 9.46 0.00419 0.03 27.5 461 58.5 58.49 1.00
F3 12 11 9.46 0.00235 0.019 21.5 461 44 44.01 1.00
F4 12 11 9.46 0.00235 0.024 21 461 45.5 45.51 1.00
A3 12 18.5 4.76 0.00198 0.03 17.8 461 78.5 78.53 1.00
C3 12 18.5 4.76 0.00198 0.03 27.8 461 52 51.96 1.00
A4 12 33.5 –4.76 0.00198 0.03 22 461 51.3 51.30 1.00
C5 12 33.5 –4.76 0.00198 0.03 31.4 461 57.5 57.50 1.00
E2 12 33.5 –4.76 0.00314 0.032 33.5 461 75 75.04 1.00
A5 12 41 –9.46 0.00198 0.03 22.5 461 57 56.99 1.00
B5 12 41 –9.46 0.00198 0.03 20.6 461 78.5 78.48 1.00
C4 12 41 –9.46 0.00198 0.03 31.1 461 61 61.02 1.00
D5 12 41 –9.46 0.00396 0.03 28.9 461 65 65.02 1.00
D6 12 41 –9.46 0.00419 0.03 32.2 461 75 75.02 1.00
E1 12 41 –9.46 0.00314 0.032 34.8 461 95 94.94 1.00
F1 12 41 –9.46 0.00235 0.019 21.1 461 67 66.96 1.00
F2 12 41 –9.46 0.00235 0.024 20.8 461 70.5 70.52 1.00

Tena-Colunga 
et al. (2008)

TASC1-0 22 41 –3.07 – 0.0263 32.1 412 67.5 67.51 1.00
TASC2-0 22 41 –6.12 – 0.0308 29.5 412 60 59.99 1.00
TASC3-0 22 41 –9.13 – 0.0372 23.6 412 37.5 37.53 1.00
TASC4-0 22 41 –12.1 – 0.047 28.1 412 30 30.02 1.00
TASC1-1 22 41 –3.07 0.0025 0.0263 26.9 412 200 200.01 1.00
TASC2-1 22 41 –6.12 0.0025 0.0308 29.2 412 170 170.01 1.00
TASC3-1 22 41 –9.13 0.0025 0.0372 28.8 412 120 119.99 1.00
TASC4-1 22 41 –12.1 0.0025 0.047 21.1 412 80 79.98 1.00

Stefanou 
(1983)

B1-Ib 10 10 13.39 – 0.02 19.9 361 25 24.99 1.00
B2-Ia 10 15 8.13 – 0.013 19.9 361 26.5 26.46 1.00
B2-Ib 10 15 8.13 – 0.02 19.9 361 30 26.46 0.88
B3-Ia 10 10 13.39 – 0.013 15.7 361 27.5 25.02 0.91
B3-Ib 10 10 13.39 – 0.02 15.7 361 25 25.02 1.00

B4-Ia 10 15 8.13 – 0.013 15.7 361 26.5 32.51 1.23
B4-Ib 10 15 8.13 – 0.02 15.7 361 32.5 32.51 1.00

B5- Ias 10 10 13.39 0.0032 0.013 19.9 361 22.5 27.00 1.20
B5-Ibs 10 10 13.39 0.0032 0.02 19.9 361 27 27.00 1.00
B6- Ias 10 15 8.13 0.0032 0.013 19.9 361 29 29.06 1.00

B6-Ibs 10 15 8.13 0.0032 0.02 19.9 361 37.75 29.06 0.77
B7- Ias 10 10 13.39 0.0032 0.013 15.7 361 29 29.00 1.00

B8- Ias 10 15 8.13 0.0032 0.013 15.7 361 27.5 27.52 1.00
Nghiep 
(2011)

2L 20 20 3.95 – 0.0157 49.4 550 75 75.00 1.00
3L 20 15 5.91 – 0.0157 50.2 550 66.5 66.52 1.00
2K 20 24.3 3.95 – 0.0157 54 550 83.5 83.49 1.00
3K 20 20 6.71 – 0.0157 54 550 79.5 79.50 1.00
4K 20 15 10.01 – 0.0157 54 550 85 84.99 1.00

Mean 1.00

Std. Dev. 0.06

CoV 0.06

MSE 3.2

R2 0.997


