JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT

ISSN 1392-3730/elSSN 1822-3605
2015 Volume 21(3): 356-375
doi:10.3846/13923730.2014.890645

AN INTEGRATED FRAMEWORK UTILISING SOFTWARE AGENT
REASONING AND ONTOLOGY MODELS FOR SENSOR BASED BUILDING
MONITORING

Michael DIBLEY, Haijiang LI, Yacine REZGUI, John MILES
BRE Institute of Sustainable Engineering, Cardiff University, UK

Received 02 May 2012; accepted 21 Dec 2012

Abstract. Smart building monitoring demands a new software infrastructure that can elaborate building domain knowl-
edge in order to provide advanced and intelligent functionalities. Conventional facility management (FM) software
tools lack semantically rich components, and that limits the capability of supporting software for automatic information
sharing, resource negotiation and to assist in timely decision making. Recent hardware innovation on compact ZigBee
sensor devices, software developments on ontology and intelligent software agent paradigms provide a good opportunity
to develop tools that can further improve current FM practices. This paper introduces an integrated framework which
includes a ZigBee based sensor network and underlying multi-agent software (MAS) components. Several different
types of sensors were integrated with the ZigBee host devices to produce compact multi-functional sensor units. The
MAS framework incorporates the belief-desire-intention (BDI) abstraction with ontology support (provided via explicit
knowledge bases). The different software agent types have been developed to work with sensor hardware to conduct
resource negotiation, to optimize battery utilization, to monitor building space in a non-intrusive way and to reason
about its usage through real time ontology model queries. The deployed sensor network shows promising intelligent
characteristics, and it has been applied in several on-going research projects as an underlying decision making service.
More applications and larger deployments have been planned for future work.

Keywords: multi-agent system (MAS), belief-desire-intention (BDI), ontology, building management system (BMS),

domain knowledge, ZigBee sensor unit.

Introduction

Contemporary buildings are becoming more complex
with the increasing demands for integrating more func-
tionality into buildings. Alongside the normal building
services such as water, electricity, safety, security and
heating, ventilation, and air conditioning (HVAC), etc.
systems, functionality such as building space usage mon-
itoring becomes one of the core concerns (motivated by
low carbon footprint and other requirements) for mod-
ern building management. Because of the involvement
of human behaviours, the non-intrusive sensor based
monitoring approach becomes particularly useful and
more amenable than the use of video cameras. Problems
arise in the process of sensor data collection and trans-
mission, human and building interactivity, relevant fac-
tors’ sensitivity analysis for decision making, and so on.
Smart monitoring of buildings demands a new software
infrastructure that can elaborate building domain knowl-
edge in order to provide advanced and intelligent func-
tionalities. The conventional facility management (FM)
software tools lack such semantically rich components,
and that limits the capability of software for supporting

automatic information sharing, resources negotiation and
in the timely assistance of decision making.

Ontology provides a way to convert human knowl-
edge to explicit and hence computer understandable
domain knowledge. With the appropriate implementa-
tion scheme, some of the low level FM tasks can thus be
conducted automatically by software components with
certain level of intelligence by elaborating those explicit
domain knowledge models (Li et al. 2010; Rezgui, Miles
2011; Dibley et al. 2012). In the context of AEC/FM
domain, at present there are a large amount of taxonomy
resources, so there is a need for the purpose of practi-
cal use to go through the plethora of existing taxono-
mies and ontological resources and constructs to find a
feasible development route that can take full use of the
existing resources while remaining simple and straight
forward. Software agents constituting a multi-agent sys-
tem (MAS) relate to that in the sense that they can uti-
lise knowledge bases (KBs) (encompassing domain and
some general knowledge in a formal representation, and
inference “machinery”) in order to render themselves
intelligent. Specifically agents can use the services of
KBs in order to direct their behaviour for the purpose

Corresponding author: Haijiang Li
E-mail: lih@Cardiff.ac.uk

356 Copyright © 2015 Vilnius Gediminas Technical University (VGTU) Press

www.tandfonline.com/tcem

Taylor &Francis
Taylor & Francis Group

Journal of Civil Engineering and Management, 2015, 21(3): 356375 357

of pursuing their goals. The knowledge requirement of
the KBs’ content to support specialised behaviour is thus
specific to agent types. A multi-agent framework includ-
ing different types of agents (supported by ontology),
targeting specific functionalities, is therefore needed to
provide the expected better FM solutions.

This paper introduces an integrated framework
(named OntoFM) that includes a ZigBee sensor net-
work and some underlying multi-agent software com-
ponents. The intended research target is to show that
the application of software agency based on the belief-
desire-intention (BDI) (Rao, Georgeff 1995) formalism,
supported with semantic knowledge bases that are syn-
chronised in near real time to the environment, delivers
several benefits in the realisation of a software system
to support facility management. The rest of the paper is
organized as follows. First, relevant theory and develop-
ment resources have been reviewed. This is followed by
the integrated system design and implementation meth-
odology, where a multi-layered systematic architecture
is explained. The detailed implementation process is
introduced next, including ZigBee sensor unit assembly,
ontology development, multi-agent framework imple-
mentation and system integration. The next section out-
lines the system deployment and evaluation. Due to the
lack of the standard evaluation process for such a FM
oriented integrated system development, a use case and
scenario based system evaluation procedure has been
devised. The testing process has been conducted repeat-
edly, and the preliminary test results were used for next
stage improvements to further refine the hardware design
and software developments. Finally, the conclusion and
discussion are given.

1. Ontological development resources and MAS
applications

The relevant ontological development resources and
MAS applications in AEC/FM domain are briefly
reviewed first in this section, followed by a description
of MAS development methodologies that inspired the
development work. Finally applications of MAS in the
ACE/FM domain are outlined.

1.1. Ontological resources for the FM domain

A wide range of resources containing high implicit or
explicit semantic content exists that is applicable to the
OntoFM. Resources include descriptions of high level
abstract (common sense) concepts, and domain descrip-
tions in: engineering, mathematical, physical contexts, as
well as product and simple process models. The resources
vary in type, amount of detail and level of abstraction, and
by virtue of the language used, vary in expressiveness (and
“ontological precision” (Guarino 2006)) and consequent
succinctness. The ontological precision increases progres-
sively from knowledge captured in a systematic list, taxon-
omy, object oriented design to axiomatic theory (Guarino
2006). Commonly, the level of abstraction with respect to

dependence on purpose and domain can be aligned with
one of three layers from: so called upper level, domain
or application. The upper layer captures the most general
and reusable terms, including common sense concepts.
The lower levels specialise the concepts above. Layer-
ing facilitates interoperability by ensuring consistency
between domains. There are several well-known upper
ontologies and the Suggested Upper Merged Ontology —
SUMO (Pease 2008) is one example. SUMO describes
fundamental concepts in first order logic, is highly axi-
omised and includes 1000 terms, 4000 axioms, 750 rules.
It is an IEEE initiative, an open standard and is mapped to
the WordNet lexicon (Crawley et al. 2008). A high level
distinction in SUMO entities object and process derived
from physical entity can be aligned with the “endurants
and occurrents” classifications by Fielding et al. (2004).
Endurants and occurrents refer to an entity’s existence
relationship with time and never form part of relationships
with each other. Fielding et al. (2004) also define top level
classes that capture dependency and scope.

At the same upper layer of abstraction as SUMO are
the Top Level Ontologies of Universals and Particulars,
developed by Guarino and Welty (Gomez-Pérez et al.
2004). The Universals Ontology has been derived from
the philosophical considerations: rigidity, identity and
dependency — meta properties used in Ontoclean (Guarino,
Welty 2009). The formulation of the Individuals Ontol-
ogy is structured on the base concepts of abstract,
concrete and relation (Gomez-Pérez et al. 2004). The
PhysSys (Borst 1997) ontology set defines abstract reus-
able ontologies for: mereology, topology, systems theory,
component, physical and process. It utilises the EngMath
ontology (Gruber, Olsen 1994) for mathematical KR,
holistically realising “... three conceptual viewpoints:
technical components, physical processes and mathemat-
ical relations” (Borst 1997). Specifically EngMath facili-
tates ontological mathematical modelling in engineering
using Ontolingua, providing ... conceptual foundations
for scalar, vector and tensor quantities as well as func-
tions of quantities, and units of measure” (Gémez-Pérez
et al. 2004). Based on aspects of SensorML, OntoSen-
sor (Russomanno et al. 2005) is an OWL-DL ontology
that includes a few concept-to-concept links to SUMO.
It was developed for the purpose of data fusion and the
modelling effort focuses on the sensor data rather than
the associated processes (Preece et al. 2007).

1.2. MAS development methodologies

Several conventional Multi-Agent System (MAS) devel-
opment methodologies have been presented over recent
years showing various characteristics including their
lifecycle coverage, level of guidance detail, provision
of guidelines and heuristics, pattern provision, resem-
blance to conventional software engineering methodolo-
gies, availability of supporting tool and any provision or
re-use of existing notation. The nature of development
methodologies for formal (in a mathematical sense)

358

MASs where the system specification captured in a logi-
cal representation can often be directly executed, is dif-
ferent to that for conventional systems. In such systems
agents are typically theorem provers, where goals and
beliefs etc. are derived from the logical representation of
the specification. Little or no refinement, as seen in the
analysis and design phases in traditional software engi-
neering is therefore needed.

Methodologies for MAS take primarily one of two
forms, either adapting objected oriented or knowledge
engineering methodologies. Each has its advantages.
Using object oriented methodologies as a basis has the
advantage of familiarity for programmers and the poten-
tial to reuse a range of notations (with modified seman-
tics where necessary) and tools. Although there are major
distinctions between agents and objects, some common-
alities can be drawn. Agents can be regarded as objects
that are loosely coupled and “active”, that communicate
asynchronously using a high level language. The chal-
lenge in adapting existing object methodologies is to

Table 1. Selected MAS development methodologies

M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

conceptually model the autonomous/non-passive nature
of agents. Interactions and collaboration should also be
addressed (Iglesias ef al. 1999). Like objects, agents have
a stable identity and are cohesive, but their environment
and collaboration involvement (even in closed systems)
is dynamic, which is not usually the case with object
systems. Alternatively, knowledge engineering method-
ologies have been used as a starting point. As agents
are often knowledge consumers, knowledge engineering
practices assist with that aspect. However, any basis for
modelling the behavioural aspects of agents as autono-
mous entities (with motivational, means-end solving
etc characteristics), or their distribution, is beyond the
scope of knowledge engineering methodologies. Sev-
eral researchers have reported the use of the European
standard knowledge engineering methodology Common
KADS (Schreiber ef al. 1994). Some methodologies are
presented in Table 1.

The reviewed methodologies resemble conventional
software development methodologies in their structuring

Name Notable features Summary
Multiagent Targets closed, static (agent lifecycle and inter- Analysis consists of goal and use case identification,
Systems relationships) systems having 10 or less agent and generation of sequence diagrams, then role
Engineering types. A goal hierarchy diagram captures the system identification and allocation to parallel tasks (tasks
Methodology | specification. Wide use of UML diagramming (but detail how goals are reached). In design, agent types
(MaSE) sometimes different semantics e.g. class relationships | are generated from roles with regard to concurrency,
(Wood, represents high level communication) and automatic interactions are then detailed and agent architecture
DeLoach code generation with an accompanying tool. BDI devised. For agent types and their interactions,
2000) supported in the last phase of agent architecture deployment diagrams are produced.
selection.
Gaia Targets “coarse grained computational agents” Analysis and design phases generate a range of
(Wooldridge that have static/predictable inter-relationships and models. For the former: roles and interaction
et al. 2000) service provision. Suites systems types that aim to models, and agent (types), services and acquaintance
improve some collective utility cf. guarantee the best (communication between agents) models for the
solution. Covers analysis and design. Central is the latter.
identification of roles and related “... responsibilities,
permissions, activities, and protocols” and their (role)
interaction (Wooldridge et al. 2000).
“Nikraz” Design phase specifically supports JADE. Testing Primarily analysis, design and implementation/

(Nikraz et al.
2006)

not covered. Simple structure diagrams that show
goal composition are prepared during analysis, later
elaborated in implementation (parameterised for
re-use, and structured for appropriate commitment),
and again used later in the lifecycle to drive plan
implementation.

testing phase. Analysis identifies candidate agent
types, allocates responsibilities to the types, identifies
collaborators, elaborates details and identifies
deployment environment for each type. In design

the agent types reviewed with a view to deployment
(messaging overhead etc) and interactions are
elaborated. Next non agent interactions are detailed
together with the supporting ontology. JADE
infrastructure resources are integrated.

Prometheus Detailed guidance at each phase, comprehensive A three phase methodology: (1) System specification

(Winikoff, coverage from specification to detailed design, and identifies system goals and use cases, (2) architectural

Padgham some support from a freely available tool. Supports design identifies agent types and use case scenarios

2004) agents based on “goals and plans” (Winikoff, which are elaborated into agent interactions, and
Padgham 2004). (3) detailed design elaborates the agent types internal

architecture (Padgham, Winikoff 2004).

Tropos Mental attitudes (including BDI) supported from Six phases: early and late requirements analysis,

(Bresciani analysis onwards. Development support for (macro) architectural design, detailed design,

et al. 2004) requirements to implementation. UML class uses with | implementation.

a meta model definition. Pattern application in (macro)
architectural design.

Journal of Civil Engineering and Management, 2015, 21(3): 356375 359

into analysis and development phases, and to some extent
in some of the content of those phases. The agent (micro)
architecture and societal architecture development is sup-
ported by varying degrees. The BDI model is directly
supported by most and while it is supported from the
outset by Tropos, any overall advantage remains to be
quantified. The use of UML notation is common. Some
methodologies are more suited to particular MAS char-
acteristics, while other distinguishing factors are the inte-
gration of tools and direct support for existing run-time
frameworks at the implementation stage. Aspects of a
particular methodology could easily be modified in most
cases if more suitable techniques were not identified. No
research on comparison metrics for multi-agent system
development methodologies has been found.

1.3. MAS applications in AEC/FM domain

The widest application of agency in the AEC/FM domain
is for the support of collaborative processes including
concurrent engineering, management of supply chains,
project scheduling and control, and e-commerce (Ren,
Anumba 2004). These processes exist in AEC/FM, and
require support, as a result of the distributed and dis-
jointed nature of the AEC/FM sector in terms of organi-
sation, project execution, decentralised control, authority
and information and heterogeneous tools, working prac-
tices and information representations (Rueppel, Lange
2006). The scope of the support includes the application
of standards and legal requirements, information retrieval
and accommodation of time differences or preferences
for different working hours (as proxy for the “missing”
participant).

Examples in the area of concurrent engineering
are the realisation of collaborative design frameworks
such as, for example, for assisting the activity of fire
protection engineering and for facilitating collaborative
concurrent structural design processes. To support col-
laborative working in concurrent structural design Bilek
and Hartmann (2006) utilise a multi-agent collaborative
framework (constituting a middle “tier”) that mediates
between the individuals involved in the project effort
and the resources on which the project depends. The
resources with which the agents interact include product
models as well as software tools, databases and other
supporting resources. Agents are grouped according to
the facility they provide such as workflow and coordi-
nation agents, product model agents, expertise agents,
software wrapper agents. Workflow agents and coor-
dination agents for example use resources in the layer
below such as Petri nets (to model resource sharing,
concurrency and time dependant activities) to achieve
their goals.

Another application of agent frameworks is model-
ling the social behaviour of humans in building egress
(Pan et al. 2005). The authors of that research state their
belief that such systems are “particularly suitable for

simulating individual cognitive processes and behaviour
and for exploring emergent phenomena such as social
or collective behaviours®. Typifying the agent paradigm,
the agents represent humans and are able to perceive
their environment (doors, exit signs, other people, obsta-
cles such as furniture), have ability to make choices and
exhibit social behaviour, and are able to perform actions
(walk, run, turn). In a simulation of the agents exiting
from a building in an emergency situation, the authors
report: “competitive behaviour, queuing behaviour and
herding behaviour (is modelled) through simulating the
behaviour of human agents at microscopic level”. The
results assist in facility design and management and
checking conformance to regulations. Further examples
in AEC/FM where agency has been exploited include
monitoring and planning for construction sites (Zhang
et al. 2009), and a sensor based security system for intel-
ligent buildings (Luo ef al. 2003). Research relating to
agency in intelligent building in general is discussed in
the next subsection.

2. System design and development rationale

In the context of the OntoFM, the following requirements
have been concluded:

- An architecture that is practically implementable
and deployable in “real” applications, with a good
degree of framework support. MAS support includ-
ing transport, hosting and lifecycle control.

- An internal agent architecture to support the realisa-
tion of pro-active rational agents including a moti-
vational aspect, deliberative aspect and a procedural
action element. Typically most solutions are close to
the intuitive theories of BDI.

- Viable integration with the OWL knowledge
sources.

- A publically available framework implementation.
Figure 1 below shows an integrated architecture for

the developed OntoFM framework. In short, the infra-
structure layer is managed by software agents (serving
as an intermediate layer), and the upper layer includes
different user applications. Infrastructure layer includes
sensor hardware (wired and wireless), and the interface
software executables working for data collection and
transmission, and different information resources, such
as database, ontologies, building information models, etc.
Through the middle agent layer, the low level resources
will be well matched with the requirements coming from
application layer.

2.1. MAS framework selection

The JADE MAS infrastructure framework is widely
reported as forming the basis of many published work
in the domain, and meets all the requirements of the
OntoFM. The framework provides support for agent
infrastructure implementation incorporating FIPA mes-
saging, agent hosting, lifecycle control, and other

360 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

ﬁneg otiations

multi-agent system

BDI reasoning;
Rules sets;

Computing
Facilities

Maintenance

Fig. 1. Multi layered system architecture

infrastructure services such as agent location. Library
support for FIPA-agent communication language (ACL)
conformant messaging is provided for message construc-
tion and transport, but no semantics are forced. Depend-
ing on the application the programmer can implement the
level of compliance that is appropriate.

The two most favoured internal architecture solutions,
both JADE based, were JADEX and PRACTIONIST.
Both support deliberation and means-end reason-
ing roles derived from theories of practical reasoning,
both are publically available and well documented. The
PRACTIONIST framework though is published as a
“release candidate” with the statement that it has not
been extensively tested. The PRACTIONIST framework
is attractive however due to its goal centric implementa-
tion and some support for reasoning about various atti-
tudes, incorporating the modal representation of beliefs.
However in the Onto FM, most of the agents’ knowledge
of the world is captured in OWL ontologies or is closely
integrated, and consist of fairly complex representations,
and so for a meaningful exploitation of PRACTIONIST’s
internal mechanisms, a fairly extensive mapping effort
would be required. Thus although the rationality of a
PRACTIONIST agent is more transparent, in a practical
application, JADEX was preferred due to its fairly open
plan mechanism that allowed the addition of some cus-
tomisations that add further transparent rationality. The
decision was made to utilise the same internal architec-
ture for all the main agent types in the OntoFM. However
future agents that are integrated into the OntoFM may
favour a different architecture choice. Potentially finer
grained agent types that do not use OWL KBs would be
better suited to PRACTIONIST implementations, but a
more complete evaluation is left to further work.

In the JADEX framework, agent behaviour is
defined with the specification of belief conditions, pre-
conditions on sub goals and plans, and post-conditions
(the post-condition is the intention in the case of plans).
Behaviour can be further defined with other facilities
including activation and inhibit conditions formulated as

Building ontology;
Sensor ontology;
Other resources

Building

Management
System

Building
Management
Helpdesk

Java statements and belief states, event triggering, retry
goal criteria, plan exclusion criteria, and goal and plan
failure actions. Agent behaviour can thus potentially be
achieved in a number of different ways and hence early in
the implementation stage of the methodology. Addition-
ally JADEX provides a number of modularised capabili-
ties which encapsulate agent behaviour (fully configured
cohesive goals, plans etc. targeting well known scenar-
ios) such as commonly used functionality e.g. registering
an agent with yellow pages facility and protocol imple-
mentations such as contract-net.

The implementation of agents in JADEX comprises
of definitions in a configuration file having a framework
provided universal schema to help maintain static agent
configuration integrity, together with supporting plan
implementations written in Java. The implementation task
in the methodology targets the identification and definition
of agent specific goals, sub goals, plans and all associ-
ated parameters including trigger conditions such as events
and belief states. Contrasting a JADEX implemented agent
with that implemented in JADE directly, JADEX combines
its rule engine and the aforementioned agent definition to
substitute a JADE “behaviour”. The (forward chaining)
rule engine uses an efficient pattern matching algorithm, to
realise both means-end reasoning and (goal) deliberation.

2.2. Agent communication

Regarding agent communication, the JADE Semantics
Addin (JSA) framework was not adopted, primarily
because as the OntoFM system is closed and dialogue
is uniform so the flexibility delivered by that framework
implementation is not required. Moreover conformance
to protocols that deal with more uniform dialogue does
not require much coding overhead in JADEX, and as
a result, message content is simplified. While the sup-
port of different sub systems in agents is feasible, the
use of JSA would add complexity which is not required
in a closed system. The architecture of JSA is closely
integrated with semantics of speech acts, so no techni-
cal integration issues would have been expected. The

Journal of Civil Engineering and Management, 2015, 21(3): 356375 361

semantic language SL was selected for use in agents’
message content for the following reasons:

- A library is available for construction and parsing
of SL statements.

— The schema allows the capture of nested and up to
very expressive statements (the expressivity of a state-
ment is the (semantic) “power”/richness captured,
dependant on the constructs that it uses e.g. proposi-
tional forms are less expressive than first order predi-
cate and modal logic forms). Complex grounded and
ungrounded expressions (specifically Content Ele-
ment instances) can be created describing objects and
sets of objects (using single first order predicates or
identifying referential expressions), and formulas can
be combined, modified or quantified in those expres-
sions using the defined connectives and modifiers
(and, equiv, implies, not, exists). Formulas can also be
combined with modal operators capturing attitudes:
believes, uncertain, intends and action operators.

— The use of SL s a contents language is a FIPA standard
in contrast to for example OWL. Although that con-
sideration is less relevant for internal agent dialog, SL
expressions can be readily consumed by external tools.
From the FIPA ACL content reference model, the

classes predicate, concept and occasionally agent action
were elaborated with Java based ontologies by constructs
that typically map corresponding OntoFM ontology con-
structs (including reification in the case of object or data
properties), to capture a (simplified) sub-set of those
ontologies that is adequate for dialog, and to capture the
required agent actions. Specifically the simplified classes
contain a reference to the corresponding ontology class
URI. The requirement for the creation of the Java based
ontology described could be considered a disadvantage
due to the (limited) redundancy rendered, but without
the FIPA SL schema a similar model would have been
required, probably expressed in OWL ontology. While a
restricted subset of the SL vocabulary’s semantics for the
OntoFM application could have been selected and defined
in such ontology, custom implementation would still
have been needed to process the statements in messages.
The selected semantics supported would necessarily be
restricted by the lower expressivity of OWL, as well as
just providing support for those semantics required for
the immediate application. Moreover it was considered
undesirable to require all agents to be OWL based.

The Java ontology defined for the purpose of SL
message content (and for some limited belief base com-
ponents, typically for the purpose of buffering mecha-
nisms) has a narrow scope and limited expressivity.
While most OWL constructs can be mapped to the object
oriented domain such as Java, the ontology was restricted
to a few constructs so that the re-expression of knowl-
edge remains holistically relatively straight forward. The
Jastor project libraries (Szekely, Betz 2009) can be used
to generate Java ontologies from OWL in the form of
Java Beans classes, and while there are fundamental

differences between semantics of the OWL KR and its
corresponding Java representation, the agents’ usage does
not impinge on those areas. An example is the difference
in the semantics of the definition of necessary and suf-
ficient conditions including a role restriction for exam-
ple, where in OWL any individual with a definition that
matches the former will be inferred to be a member of
that class, in contrast to a typical mapped Java imple-
mentation (including Jastor’s), where the Java implemen-
tation just upholds the constraint corresponding to the
role restriction (Kalyanpur et al. 2004).

2.3. Building information model

Due to the complexity of generating and maintaining a
realistic ontological building representation, and moreover
for the frameworks’ application as a user friendly tool, the
use of a manually generated building representation was
not considered feasible. Thus a requirement for agents to
interpret a building model was added. An increasingly
well supported (by modelling tools) open standard is the
IFC (Industrial Foundation Classes) schema, and a com-
prehensive and popular modelling tool supporting that
schema via export and import is Autodesk Revit Archi-
tecture. Thus good building modelling integration in the
OntoFM was rendered by its adoption of the IFC as the
primary “import” format for building models.

The library Openlfc Java Toolbox (Tulke, Tauscher
2009) is a facility that allows programmatic access to
IFC models. The library allows the reading and writing
of STEP (Standard for the Exchange of Product model
data) physical files containing IFC schemas, via an object
oriented representation of IFC entities, as well as provid-
ing some data management functionality. The Java classes
are a close mapping of the basic EXPRESS entities and
attributes of the IFC schema, so the developer requires
experience of the IFC in order to use the library. The tool
kit captures a binding between the EXPRESS schema lan-
guage (Schenck, Wilson 1994) and Java which has less
expressivity and different constructs, so a simple complete
mapping is not always possible. For example EXPRESS
includes local (to entities) and global rules, and derived
attributes. However it was found in practice that no infor-
mation was missing when working with Openlfc Java
Toolbox, so the difficulties in the mapping do not cur-
rently affect the representation, at least in this instance.
An alternative to the tool box library is the direct use of
the STEP SDALI (Standard Data Access Interface), but the
former is significantly simpler for the programmer to use.

The building model is accessed by agents to elaborate
semantic knowledge bases and to resolve geometric que-
ries that are beyond the scope of semantic representation.

2.4. Implementation languages

Primarily implementation language selection decisions
were derived from any constraints for compatibility
with the APIs and implementation languages of selected

362 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

frameworks, together with a legacy constraint stated by a
sponsor at the project outset that the infrastructure should
be implemented with Microsoft products. The constraint
was so that any implementation would be directly com-
patible with the sponsor’s existing products. Fortunately
that was favorable regarding the interfacing to some
hardware, especially the National Instruments USB
device interfaces, as the interface library provision is
only available on the Microsoft.Net platform. The deci-
sion to implement the upper agent layer using Java was
determined by the very good support for both MAS and
OWL ontology interfacing and KB support (specifically
reasoners) by that language. Moreover the provisions are
only available in that language. To facilitate communi-
cation between the two different language based virtual
machine types hosted by the layers, an interface provision
was thus required. The open source project [IOP.Net is a
Remoting channel implementation that is customised to
use the IIOP protocol, it hosts a CORBA Object request
broker (ORB), and performs translation between the .Net
and CORBA type systems. Using Java’s RMI/IIOP facil-
ity, an object based interface can thus be realized. Addi-
tionally the library also supplies an executable to process
the meta data contained in .Net assemblies in order to
generate Interface Definition Language (IDL) files. The
IDL files can then be used with the Java IDL compiler
(“idlj) to generate Java language bindings. Regarding
the use of Java libraries in the .Net environment, the free
software IKVM offers the potential ability to translate
Java byte code into the .Net Intermediate Language (IL).

Jena was successfully converted but the relatively high
number of dependencies of the Jena framework meant
that a high overhead in terms of configuration and run
time support was required.

3. Ontology design and development

Several ontology development methodologies have been
published and this section summaries their salient defining
characteristics. Those characteristics are listed in Table 2.
The motivation is to identify the most appropriate in the
context of the OntoFM, or to inform the development of
a custom methodology. The developed OntoFM ontolo-
gies are introduced as well in this section (more ontology
development details included in Dibley ez al. (2012).

On comparing the published methodologies, there is
a variation in scope and level of specification of the pro-
cesses described. As expected the main focus of most is
authoring, but some also cover, to various extents, lifecy-
cle management and development support activities such
as knowledge acquisition, evaluation, integration, merg-
ing and alignment, and configuration management. The
methodologies also exhibit varying application independ-
ence e.g. Cyc (application dependant), SENSUS (interme-
diate dependence), and On-To-Knowledge Methodology
(OTKM) (independent) (Gomez-Pérez et al. 2004).

Regarding Neon, a specific feature is its support for
the development of contextualised networked ontolo-
gies. Various Meta Object Facilities (based Meta models)
are defined including those that allow the specification

Table 2. Defining characteristics of selected ontology development methodologies

Name

Defining feature/s

Neon

Complete and detailed support (“step by step” guidance) for reusing existing resources in

9 scenarios e.g. starting with taxonomy, semantic, from “scratch”. Familiar alignment with
familiar software engineering paradigms. Various granularities of reuse are supported: whole
ontology reuse, ontology module reuse, reuse of individual ontology statements, and reuse
of ontology design patterns. Supports “contextualised networked” ontology development

with the specification of Meta Object Facility based meta models, covering ontologies, rules,
mapping and modularisation.

Methontology
(Fernandez-Lopez et al. 1997)

One of the most comprehensive and is typical in that it has distinct phases aligned with
software engineering methodologies. Those phases are: specification, conceptualization and
formalisation (conversion of the conceptual model into a formal model [formal up to the
formality of the KR, not necessarily in a mathematical sense]), implementation (transforming
the formal model into a representation with a KR language).

Cyc (Gomez-Pérez et al. 2004)

Customises and extends an existing, extensive high level ontology. New ontologies are
specialised from an extensive existing ontology, with tool support.

SENSUS (Swartout et al. 1997)

Customises and extends an existing, extensive high level ontology.

On-To-Knowledge
Methodology (OTKM)
(Sure et al. 2004)

After capture of requirements, a semi formal ontology is created which is later formalised
into the target ontology. Evaluation of that ontology from different perspectives then follows.
A maintenance phase is specified. Refinement, evaluation and maintenance phases can iterate.

Uschold and King methodology
(Uschold, King 1995)

Employs process stages: purpose identification, building (capture, coding, integrating),
evaluation and documentation.

Griininger and Fox
methodology (Griininger,
Fox 1995)

The Griininger and Fox methodology introduce formality after the scope of the ontology
has been identified. The scope is derived from informal usage scenarios and “competency
questions”. “The competency questions and their answers are then used to extract the main
concepts and their properties, relations and formal axioms”.

Journal of Civil Engineering and Management, 2015, 21(3): 356375 363

of ontology mapping and modularisation. Specifically
regarding modularisation, the OWL specification only
provides limited support for modularisation via its defi-
nitions of owl:imports semantics. Making no (Meta
level) distinction between “native” and imported entities,
the nominated ontology is simply included as a whole.
Neon’s modularisation facility in contrast permits partial
importing. Also facilitated by the modularisation facility
is an information hiding provision which, similarly to that
in object oriented (OO) engineering, allows the specifica-
tion of reusable “interfaces”. The technique allows, for
example, parts of an ontology to be developed (evolve)
“behind” that interface without requiring changes in the
interface clients, thus leading to easier maintenance of
deployed systems. A benefit of partial importing is that
its application could be an alternative to ontology prun-
ing for specific applications, for the purpose of attaining
performance improvements in ontology classification and
realisation for example, again easing maintenance.
Regarding ontology design, most methodologies
include strategies to identify concepts and to derive a tax-
onomy, and here the approach varies between top down,
bottom up or middle out (Gomez-Pérez et al. 2004). With
a top down strategy, where the most abstract entities are
identified first, the level of abstraction can be introduced in
a consistent way but the structure may suffer from unnec-
essary abstraction, and commonality may be dispersed if
the abstraction of artificial entities is too fine. The con-
verse, bottom up, where the most concrete entities are
identified first results in very high detail in the taxonomy.
Often many entity layers are not needed and common
characteristics can reside in multiple entities which can
in turn lead to inconsistency. A “middle out” approach is
a compromise; identifying the core entities first and then
abstracting and specialising them as needed leads to less
redundancy and better structure. A number of authors have
presented comparison criteria for ontology methodology
comparison. Fernandez Lopez (1999) presents nine crite-
ria including the level of specification, level of application
dependence, concept identification techniques, comparison
with the IEEE standard for software lifecycle processes,
link to any KR formalisms, as well as others. Gomez-
Pérez et al. (2004) elaborate on some of these categories.

3.1. Common ontology design principles

In the area of fundamental formulation, Fielding et al.
(2004) identify the classifications of “endurants and
occurrents”, “dependent and independent” and “univer-
sals and particulars”. Endurants and occurrents refer to
the temporal existence of an entity and never form part
of relationships with each other (Fielding et al. 2004). In
SUMO the separate high level entities object and pro-
cess reflect the temporal distinction for example. The
authors’ dependency classifications describe the necessity
for existence of membership of a whole e.g. the concept
of door function relies on a door and other entities. The
criteria of universalness make the distinction between

type or class and individual or instance. Those classifi-
cations and associated properties were taken into account
throughout the ontology implementation.

Another general ontology design consideration was
that of semantic closure, arising as by default OWL
semantics adopts the open world assumption (OWA). The
assumption though suits the nature of the domain and the
KR used to model it. The relatively high KR expressiv-
ity allows rich semantic expression, so a complete model
may be unnecessary, or it may be impractical or impos-
sible to capture. The application of the OWA means that
incomplete knowledge can still be consistent. However
there are areas which in contrast are complete and so
explicit closure with appropriate axioms can give addi-
tional useful inference e.g. the sensor ontology states that
an enabled and fully functional passive infra-red (PIR)
sensor signal indicates movement, so closure indicates
no movement. However closure is not appropriate in the
relation between movement and occupancy i.e. a room
can be occupied even if no movement is detected. An
alternative approach to implementation without using
closure statements is via Pellet’s integrity constraints
where axioms can be nominated as having closed world
assumption (CWA) based semantics and thus interpreted
as such by the reasoner, for example using annotation.

A further consideration in modelling OWL ontolo-
gies is the lack of the unique names assumption (UNA).
While Pellet has an option to assert the UNA via the
API, for compatibility with Protégé tools and general
reasoner compatibility, design time and run time ontol-
ogy updating by agents add ow!.different From properties
(or the construct owl:All Different for a set of pair wise
different) for appropriate individuals. Missing statements
relating to UNA and OWA have a significant negative
impact on the ontologies, particularly where modelling
involves statements with universal role restrictions. How-
ever other model statements can lead to the desired inter-
mediate (different from) inferences, e.g. individuals can
be inferred as different through their inclusion in roles
having functional properties.

3.2. Ontology interaction support libraries

Jena is an ontology application programming interface
(API). The API presents Java classes representing the
ontology language constructs, together with classes to
facilitate model reading and specification, thus allowing
object oriented program development supporting OWL
ontology manipulation. It was selected due to its support
for OWL (and OWL2 with some extensions), its support
for the query language SPARQL, and its integration with
the Pellet reasoner providing abstract interfaces. Addi-
tionally, Jena has a number of built-in reasoners capa-
ble of delivering RDFS inference among others, which
found useful application. Another popular API, namely
the Manchester OWLAPI (Hamscher et al. 2000) has a
number of advantages including its support of a range of
syntaxes, its integration with a number of reasoners, and

364 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

its interfaces for explanations. However it does not cur-
rently support SPARQL queries.

The Pellet reasoner was adopted for its support of
OWL2 reasoning, SPARQL query support, comprehen-
sive SWRL rule support (when combined with Jena’s
ARQ query engine), and its support of explanations. An
anticipated application of rules was, for example, as a
convenient way to apply temporal constraints. The Pel-
let reasoner provides coverage of nearly all the SWRL
operators (“built-ins”) that support manipulation of a
range of Extensible Mark-up Language (XML) schema
data types in rules, and that coverage is adequate for the
expected potential scope of use. Due to the emergence of
the semantic web, the support for semantic KBs is good,
particularly using the OWL KR (Bergman 2010) Support
is provided by editing tools and reasoners. Additionally a
range of work on ontology development methodologies
has been published (Gomez-Pérez et al. 2004).

3.3. OntoFM ontologies design hierarchy

Figure 2 shows the developed ontologies in OntoFM and
their relationships, and how agent, sensor hardware and
ontologies work together to achieve the research targets.
The sensor infrastructure supplies hardware interfaces
and access to those resources which is scalable to several
hundred units with a throughput of up to 1 Hz.

The application of ontology to the OntoFM offers
several benefits to the system:

- The use of ontology allows the reuse of domain
dependent and independent knowledge.

- The externalization of knowledge means that the
exchange of statements is accurately defined. That
delivers benefits internally within the agent layer
but is particularly useful for interfacing to intelli-
gent external tools.

- The capture of knowledge of the complex domains
can be represented very concisely such that a large

proportion is inferred, and thus is easier to maintain.

- The semantics of the OWL knowledge representation
(KR) used allows complex knowledge modeling but
without necessarily “full” definitions, for example role
restrictions define some facts about relationships but
lack detail about the types and numbers of the fillers.
That modeling suits the nature of the complex domain
where such complete knowledge is not known at mod-
eling design time, or it can change. Moreover the state-
ments, appropriately formulated, remain consistent.

- The formal representation allows consistency check-
ing, which in a complex model is very beneficial in
the identification of model authoring errors, or at
run time during KB updating.

During development the ontology set has undergone
several fairly extensive evolutions, but very little soft-
ware needed to be altered to accommodate these changes,
while the programmatic exploitation of the improved
model was achieved with the simple addition of Java
code. While accurate and philosophically sound modeling
was a main concern in the authoring of ontologies, the
need for practical simplicity and appropriate reasoner out-
put was recognized. The scope of semantic expression did
not include numerically based domains e.g. geometry that
would have delivered little or no benefit by capture in an
ontology. Instead, alternative mechanisms are used where
appropriate so for example in the case of building geome-
try, some ontology entities cross-reference a semantically
compatible representation in contained in the IFC model,
and that representation is processed numerically.

4. Agent reasoning implementation

Five primary agent types have been developed: Zone
Agent, Sensor Node Agent, Yellow Pages Agent, Utility
Agent and Facility Manager Agent. Through elaborating
the domain beliefs, the zone agent is used to generate
zone centric knowledge which relies on the intelligent

SensorML

Fig. 2. OntoFM ontology development architecture

—

Sl run time KB queries
Facilities

framework

Journal of Civil Engineering and Management, 2015, 21(3): 356375 365

selection and utilisation of sensor resources (facilitated by
the knowledge base and building model). The sensor node
agent is used to work with sensor (wired and wireless)
related tasks, including resources provision, sensor con-
figuration, minimizing power consumption, etc. The yel-
low pages Agent is used to serve as a central registration
server, any agent needs to register itself first in order to
get the relevant resources/information. Finally the utility
agent is mainly used for analysis of performance of goals
followed by other agents and for data logging and the
facility manager agent is used to issue goals. The imple-
mentation of sensor node agent type is explained (as an
example) in detail below due to its comprehensiveness.

4.1. Sensor node agent type implementation

The primary goal of the sensor node agent type is to
deliver resource provision in terms of monitoring data to
other agents that request it, while managing efficiently
that provision, especially in the case of finite resources.
The battery powered wireless sensor units managed by
the sensor node agent have a finite power source and
the system (but primarily this agent and benevolent cli-
ents) aims to maximise the interval between those battery
replacements. The device lease class plays a central role
in dialog between agents relating to resource provision.
A summary of selected high level goals for Sensor Node
Agent type is given in Table 3.

4.1.1. Use of ontologies

The sensor node agent type makes extensive use of the
sensor node ontology to support means-end reasoning

Table 3. Sensor node high level agent goals summary

and some deliberation. Similarly to the zone agent type,
the sensor node agent creates and configures a number of
different KBs for use in different reasoning applications.
The use of RDFS inference offers much shorter infer-
ence delivery for event identification, relying on limited
expressivity compared to the application of full OWL
inference rules. A Pellet inference supported KB is also
configured and is widely used for general full expres-
sivity reasoning. Typical applications of inference are
to analyse the connection of a given device in order to
determine the handling of lease requests, to evaluate the
power mode for the host node, and to elaborate sensor
clusters to find connected channels and devices. Addi-
tionally the connection topology is analysed for other
characteristics such as connection to a mains electri-
cal outlet (thus not battery powered) and other queries
involving the T box, or to determine if a device is wired
or wireless. The use of abstraction describing sensor type
and characteristics is not so extensively used as clients
typically request specific sensor individuals, i.e. that role
is usually completed by client agents.

4.1.2. Service provision

In support of the sensor node agent type’s primary goal
to deliver requested sensor provision, the agent performs
several other high level goals in support of that. Those
goals involve finding infrastructure resources, identifying
the resources available (in order to “advertise” to other
agents), as well as managing those resources efficiently.
Although the infrastructure components have default
behaviour, the lack of intelligence in that layer means

Goal Responsibility

Notes

Initialise Read configuration file

Configure agent identity, provide message routing info

Manage infrastructure Discover infrastructure nodes

node connections

Periodically poll the known endpoints for new resource
availability. Maintain “active nodes” list

Extract sensor events

Poll active endpoints for (infrastructure) events

) Register services with YP
Advertise sensors

Retrieve resource list

Manage clients requests, general requests

Listen for subscriptions, sensor lease

Interpret SL message

Subscribe client

maintain lease subscriptions lookup table

Register with Yellow Pages (YP),
Advertise resources in YP agent

Register agent type, associated zone identifier, hosted
devices, with the YP agent. Refresh on any change

Describe resources/sensors

Elaborate descriptions using the sensor ontology for rapid
data response from clients. Triggered on addition of new

Collaboration knowledge of devices
Service requests Reply to dgta requests after verifying lease status. Request
data from infrastructure (sensor read)
Notify subscribers Formulate SL message and notify lease holder of new data
Negotiation Manage sensor leases

. Configure wireless nodes, configure
Wireless network g > g

management .
power settings

individual sensor channels and manage

Serve sensor lease requests with wireless sensor node
availability, minimise power consumption of nodes.
Manage networks (configure nodes and sensors)

Manage wired networks | Monitor sensor availability

Grant leases for available devices

366 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

that the sensor agent has a central role even when no
resources are requested by clients, particularly regard-
ing the wireless hosted resources. The implementation of
simple default behaviours in the wireless network was a
necessary design decision made in order to reduce redun-
dancy and possible conflict.

Effective sensor node agent behaviour relies on the
sensor ontology KBs in order to direct actions in the
plans (means-end reasoning), as well as on the algorith-
mic implementation of plans. The dialog over resources
is based on a sensor lease class which facilitates requests
and allows verification of status. The lease lifecycle is
dependent on the wireless network status and success
of the sensor node agent’s actions. In general node and
device configurations are not executed immediately. The
sensor node agent can modify the lease interval requested,
and is able to select the device that fulfils the lease from
a number of alternative devices the requestor has nomi-
nated. Alternative selections are granted depending on
availability of the device and its host.

The agent manages some meta data relating to
devices and their activation. For example a device acti-
vation history is maintained that is used to implement
signal conditioning to suppress spurious transient signal
generation that are characteristic of some sensor types
when they are first powered on, particularly PIR devices.
For that purpose “suppress” intervals (derived from data-
sheets) are mapped to abstract types. Other Meta data is
managed for wireless network nodes.

4.1.3. Device leases

The device lease class when used as the content of SL
expressions in inter-agent messages plays a central role
in realising resource negotiation and verification of sta-
tus. The lease resolutions and states are:

- Resolutions: None, Initialised, Pending, Granted,

Delayed, Denied — determined by device availability;

- States: Active, Inactive — set by the start and end
times.

In the case that a given requested device is attached
to a node that is available in the network, follow-
ing successful node and device configuration of wire-
less devices or without further action for some wired
devices, the requested lease will be assigned the granted
resolution. If the node is not available or the configu-
ration fails for another reason, the lease is assigned as
delayed. The resolution is also assigned as delayed if
Meta data is held stating the node is currently unavail-
able, and in that circumstance the configuration action
is not attempted. Those leases with a start time later
than the current time are assigned the pending resolu-
tion. If the host is not recognised, the lease is set to the
denied state.

Regarding the setting of the duration of leases
requested, typically very short leases are used to “sam-
ple”/read a value, while longer durations are used to
“subscribe” to, and thus receive asynchronous notifi-
cation of events such as motion and switch activation.

Regarding the timing of issuing lease requests, client
agents that employ scheduled reading can request leases
in advance to allow lead time for activation. Another
temporal consideration regarding leases on a shorter time
scale is that some sensors require an interval for circuit
for stabilisation as mentioned above in connection with
signal conditioning. As an example a device that has a
relatively long stabilisation time is the “Napion” motion
sensor range at 30 seconds.

4.1.4. Device management

In order to deliver the best timely responses to new leases,
the sensor node agent attempts to action newly requested
pending leases immediately. Some leases can be granted
without further action as mentioned, such as those for
wired devices, or those leases which are requested for
sub intervals of those already active. Next, if a compat-
ible active lease exists the agent extends it. If the lease
requested is for a wireless hosted device then the agent
then initiates wireless network management.

Regarding the management of wireless networked
resources, the agent has the role of assigning behaviours
defined in the infrastructure implementation to wireless
nodes, and configuring the devices attached to the hosts
appropriately. Those devices are both actuators and sen-
sors; the actuators control the power to sensors. The node
behaviours are mapped to certain sensor KB inferences
and so when appropriate, i.e. it is inferred that a request
for a new resource requires a different node behaviour
to the existing one, that node behaviour set command is
issued before the device configurations are issued. Those
node behaviours assign configurations for ZigBee node
devices such as its radio components, timers, and timer
activation of preset actions for example for network man-
agement, resulting in characteristics such as power con-
sumed, sensor availability, and sensor availability “lead
time”. The target host node availability is dependent on
its current configuration (behaviour), or there may be
other reasons for its unavailability such as an expired
power source.

From the range of node behaviours available, the
sleep-and-listen mode is very desirable for assignment to
nodes that have no active leases for hosted devices, but
it is not commonly used. One reason for not using that
mode extensively is due to lead times in availability, par-
ticularly where there is little redundancy in device roles
from the client agent perspective, and given that typically
clients assign and change roles in a very dynamic fashion.
The purpose of the device Meta data though is to track
the configuration of nodes, exemplified by the case where
a node is not available to retrieve its status. Another fac-
tor is that before activation of the sleep-and-listen mode,
the agent has to ensure that as well as a feasible electrical
configuration for waking the device is available and that
there is also a feasible physical scenario. An undesirable
situation is if a node was put into this power mode and
the wake up scenario was rarely encountered e.g. motion
detection in a rarely assessed room.

Journal of Civil Engineering and Management, 2015, 21(3): 356375 367

In contrast to “on demand” node management, the
agent performs routine network management where
devices with associated expired leases are powered off,
and host nodes are put into a standby mode when pos-
sible. The power modes standby and low power are the
most commonly used modes.

4.2. Agent messaging

The implementation pattern for message listening by
agents is division by (Java based) ontology, where each
ontology has a corresponding plan handler. Thus listening
plans are implemented for devices, zones and the most
general event based messaging. The implementation is a
fairly wide category approach to reduce the overhead of
defining multiple finely grained message handling events,
while also deriving some structuring from the ability of
the JADEX’s internal search/match implementation for
Agent Communication Language (ACL) message pro-
cessing. The framework uses search matching on ACL
Meta data, and here with suitable plan implementation,
the ontology identifier is an adequate discriminator. The
relevant plan then further discriminates on the seman-
tic language SL content in most cases, typically using
run time class checking after de-serialising the SL state-
ment. Specifically in the case of an Identifying Referen-
tial Expressions or action expressions for example, the
agents determine the type of the received message act
depending on the run time class of the extracted primary
predicate (in practice the predicate name is a constant so
is checked instead in some cases).

The message handling plan is responsible for mes-
sage interpretation and propagation, which typically
involves the request for an action, belief or intentional
attitudes (externalised intentions, in the form of commit-
ments, describe goal entailed resource use and duration
for example), or for the updating of beliefs. All action
requests are honoured and all notifications are trusted.
Most (about 85%) message encoding uses the SL, but
where the expressivity of SL is not necessary, some
implementations (for ease of implementation) use a cus-
tom binary encoding based on standard Java serialisa-
tion. Most message content cross-references ontology
URIs and typically, new concepts introduced by the (Java
based) communications ontologies are reifications of
relationships made by the agent, adding further proper-
ties about its beliefs. For example a concept called zone
characterisation adds a timestamp value and the agent’s
identifier. The JADEX framework provides implementa-
tions of several FIPA defined interaction protocols such
as contract net and auction variants. However, the IFMS
interaction, while observing FIPA messaging semantics,
remains relatively simple, so no such provision is uti-
lised. The setting of timeout values for messaging related
activity had to consider the dynamic behaviour of agents.
Synchronous queries involving reasoning can take sev-
eral seconds so relatively large timeouts are required.
Further refinements of settings were completed during
deployment testing.

4.3. Performance consideration

For performance considerations, in some plans buffering
is occasionally used. The buffering is of some infrastruc-
ture related knowledge, e.g. location information, and
some ontology derived knowledge. However the use of
buffering was only used where strictly necessary, due to
the synchronisation requirement and overhead in mainte-
nance introduced. Buffering of semi-static and short lived
data, such as conclusions from complex ontology queries
and infrastructure related knowledge, did significantly
improve performance in specific situations, particularly
location finding related interactions with the yellow
pages agent. Those situations typically involve agent’s
participation in inter-agent dialog. Implementations were
usually the result of unit or integration testing conclu-
sions. In contrast to the development of the infrastruc-
ture, the application of patterns in the design of agents
was very limited. The implementation of agents using
the predefined internal agent architecture, and integra-
tion with JADE MAS framework, meant that design and
implementation is typically at a higher level of abstrac-
tion than infrastructure design and it is at the more fun-
damental level that those patterns find application.

The development of the infrastructure layer and to
some extent the agent layer were developed by following
conventional object oriented development, using selected
Unified Process workflows. The process is characterized
by use case driven, iterative and incremental development
as well as “architecture centric” (Jacobson et al. 1999). The
iterative and incremental nature allowed in particular the
dynamic system behavior to be investigated and evaluated,
principally from a realistic system deployment, from which
observations were feed back into analysis and design. A
case tool, namely Visual Paradigm was central to the devel-
opment, especially the early iterations. The case tool pro-
vides code generation and class diagram creation but no C#
“round trip” engineering in the version used, which hin-
dered, in the case of infrastructure development, the ease
of maintaining the model in the later development stages.

5. ZigBee sensor network deployment
and reasoning evaluation

Two deployments were used to test and evaluate the sys-
tem. The first was a small domestic flat (Fig. 3 (a)), which
was primarily used for initial development and early test-
ing, while the second deployment is a large meeting area
for students in a university building, together with several
adjacent offices (Fig. 3 (b)). The first deployment uses up
to 5 wireless nodes and a few wired devices. In the second
deployment, there are 10 wireless units and a small set of
wired sensors. The type of sensors attached to the wireless
devices varies but includes ambient light level sensing, one
or two motion sensors and a temperature sensor (Fig. 3 (c)).
The selection criteria of sensor hardware were primar-
ily sensing capabilities that match indoor environmental
conditions and very low power consumption. In addition
some platforms host proximity sensors attached to doors.

368 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

The testing hardware uses several PCs to host the infra-
structure modules, agent platform and agent executables. A
National Instruments digital input/output unit and a ZigBee
network controller are connected via USB. The sensor
hardware deployment (for a flat) is outlined in Table 4. An
excerpt of a rendered IFC model (for university open area)

Table 4. Domestic flat sensor hardware outline

is shown in Figure 3 (d) embedded with a real deployment
photo. The large arrows in (d) point to disks in the ceiling
region that represent sensors, sensor clusters or a wire-
less node with sensors attached. Figure 4 shows a wireless
sensor system deployment diagram supporting a range of
sensors on an ETRX357x platform.

Room

Sensor deployment explanation

“highest” sensing capabilities

Kitchen

Wireless unit providing coverage of the living room/kitchen
doorway and interior, temp and lux monitoring

Opening monitor counting, environment

Living_room

Wireless unit providing coverage of the living_room/hallway
entrance and interior, temp and lux monitoring

Opening monitor counting, environment

Hallway Two wired motion sensors

Continuous motion

‘é/

bedroom

(c) ZigBee sensor unit

Fig. 3. ZigBee sensor units and network deployment

Humidity sensor

Computing
Facilities

Fig. 4. An example of a wireless sensor network deployment

lU SB/Ethernet

Dataset

(d) Virtual environment for a university open area

Remote

Client
ends

Intefjnet

Journal of Civil Engineering and Management, 2015, 21(3): 356375 369

Table 5. ZigBee Node behaviour characteristics

Behaviour Usage

Typical usage as “sleepy” device. 1 sec network (firmware, part of the ZigBee stack implementation)
Low power .

based polling for good performance.
Standby Reduced network polling, sets attached devices to a disabled state to reduce power consumption,

removes listen, etc.

Sleep-and-listen

Deep sleep only woken by external event e.g. PIR activity. Very low power as radio and polling, timers
etc. are deactivated. The agent will only use this mode if there is hardware connected, it is feasible that
an associated event will occur and it is acceptable to have the node unavailable for an interval. The agent
adequately configures any devices used to detect the wake up event. High level goals and historical
leases are taken into account as well as the wake up constraints before setting this behaviour. The agents
typically check for previous events and linked activity to assert that the node will become available when
pursuing such event based goals. By querying the ontology events capable of generating wake up events

can be counted.

A behaviour that does nothing. The other behaviours repeat failed steps until success, such as would

Empty

occur due to transmission failure (NACK) or timeout (not present), so the empty behaviour should be

assigned to those nodes that are not available, to eliminate unnecessary radio traffic.

Power definable

Typically the agent could set “awake” mode so that the node can act as a router. Agents do not currently

use this mode directly, but it is used as a super class for other behaviours.

On-board timer
power mode control

An on board timer controlled power definable useful for USB connected host that is power critical. Not
currently used by agents but used for testing.

A number of behaviours for assignment to sensor
nodes are implemented and their characteristics are out-
lined in Table 5.

5.1. ZigBee network communication test

During development of the ZigBee network interface,
some unit testing was carried out by hard coding a few
dialogs (replies to some implemented commands) to
substitute the serial interface. After integration to the
serial library, a terminal program into which responses
were manually typed was then used initially before test-
ing with the ZigBee serial hardware interface. However
timing constraints, and the level of detail required to
formulate meaningful responses, limited the practical
usefulness of the terminal program to simple scenarios.

Sensornode

00000000

Digital 1/O

Fig. 5. Some system infrastructure executables

The user interfaces for the ZigBee network (shown in
Fig. 5) are primarily for status display and a facility to
assign “behaviours” to sensor nodes was implemented
for testing purposes. In Figure 5, “sensor node” screen-
shot shows data collecting information — reading in data
through digital I/O etc.; the “ZigBee network interface”
shows the communication between different sensors. The
arrows represent communication channels and indicate
the direction of the flow of data. Those behaviours con-
sist of some configuration commands and the issuing of
some write commands that enabled visual diagnostics
(the development kit units have LED status indicators
on some of the channels). For the next integration stage,
a utility agent was developed to, in a controlled and pre-
dictable way, request leases, read and log data.

ZigBee network interface

Mode Behavious (o same)
select behavaous] 3

m—

Last update 2 v0c 090 clck to fouce update

) pesent
R34 (17,0514 16) 25384 (17.05136) 26384 (17.0613. 321 26384 017

: 1571 17,0127 00 4670 16:37 0o 51

ipe pe. powe: cortroled. |

e o e o, b coreled D(17.051428)1 (170514181001 7.05137)1 017

DEFO000DSDS21) present

emert TMP37 26386 (17.0511.26) 26395 (17.0610,65) 26386 (17.05:10) 10001 (17,0

ype pa. powe: coriroted R D[17.0511 35)1 (170511 260170570751 (1
e v corcbed S 170518 5511 017511 510 (17,0210 791 17 G106

BFO00000FEN) pesert
e TMPS7 | Z5120117.0855.7) 26128 (170655 26) 28129 170654 8912129117
mert O

o be. power corirled 9 LT 6545911 (1706548910 120654 6111 17065451

gonats paposa e oe. 0(17.0655.8)1 (17.06.55.7)0 (17,065

e pe_bowercorheled 0017070411 (1707.03310(17.070361)1 17.07.03810(
e - 5pok type 54, powwes contioled.

(0000F0000053347) px
e 65T 170510371 10001 (17.05 02 421 10001 (16 451339 10001 (1

e b powes c coriled (170503811 (17050371) 01170502811 (17082
5Pk type v, power cont e 551 (1848 TeIO 1 T 1

1000067 0000054507 resrt
160071770535 21 10001 (17063453 10001 (17063464 10001

708383111 17.0535.21)0(17.06:35.03)1 (1706.24 &

4 channelthermometer

370

Regarding the ZigBee interface’s operation with the
rest of the infrastructure, including the registration of its
sensors and the updating of data, the same interfaces as
those used as by the wired network are employed and
such testing of the associated functionally was covered,
so no further testing was required in that area, apart from
the simple testing of additional fagades in some cases.
The ZigBee interface’s implementation is primarily event
driven and includes several multi-threaded mechanisms
for processing serial data, issuing commands and syn-
chronising wireless node proxy objects. The mechanisms
interact and so during testing, the settings for various
triggering mechanisms, timeouts for synchronisation
objects and for other behaviours such as the default acti-
vation of the timeout invocation for the handling of error
states were revised to give the desired overall behaviour
under different scenarios.

The sensor manager interface implemented for reg-
istration and updating by device interfaces typically real-
ise the application of the fagade pattern (Gamma et al.
1995), exemplified by a restricted set of high level meth-
ods using types supported by the IDL to Java mappings.
While the ITOP.Net libraries allow the custom specifica-
tion of language construct mappings, the primitive built-
in types were adequate for use in the facade definition
e.g. substitution of simple array for complex collection

) ISubject
1ZigheeSensorNode

ZigbeeSensorNode (¥
Class

M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

types used internally. A simple type used in the fagade
for which custom implementation was required was the
date type, which handles daylight saving time and time
zone. Regarding the call semantics across the remoting
channels, the original implementation was kept as sim-
ple as possible by using a combination of pass by value
and reference, and the use of uni-directional implemen-
tations where possible, avoiding the requirement for the
client to register a listener sink for call-back implemen-
tations. The sensor manager specifically, apart from the
facade interface, hosts other interfaces suitable for use
within the infrastructure layer and for an ASP based web
monitor. Figure 6 below shows some selected ZigBee
network interface class hierarchies, including behaviours,
node types etc.

The sensors currently connected include tempera-
ture, motion detection (PIR), proximity switches on doors
and windows, and ambient light. Most sensors and actua-
tors are hosted by ZigBee wireless platforms. Actuators
are supported both in hardware and software but currently
are only used to control sensor power. The classes captur-
ing sensor history, which realise persistence, were gener-
ated from a case tool and employ the NHibernate (Maulo
2006) object relation mapping framework, so therefore
benefit from database performance enhancement deliv-
ered by those libraries. As well as the use of the facade

{ Nodelntf
| Abstract Class

|

ZigbeeEndDevice
Class
+ZigbeeSensorNode

ZigbeeCoordinator (¥
Class
ZigbeeSensorNode

63

ZigBeeRouter
Class
+ZigbeeSensorNode

(¥

VirtualUSBSerialNodelntf (&
Class

* Nodelntf

RealZigbeeNode 3

Class
ZigbeeSensorNode

i VZigbeeNodeBe-P-w-a-vio
i Abstract Class

e

ur (¥ |

Fig. 6. Selected ZigBee network interface class hierarchies

DefinableNodePowerBehaviour (¥
" — . Class
VisualTest (¥ ConfigureNode [E3 ZigbeeNodeBehaviour
Standby ® Class Class
Class - ¥ ZigbeeNodeBehaviour ZigbeeNodeBehaviour
-» ZigbeeNodeBehaviour
LowPower & RequestSensorValues (¥ SleepAndListen 63 OnboardTimerControlledMode (¥
Class Class Class Class
- ZigbeeNodeBehaviour # ZigbeeNodeBehaviour ZigbeeNodeBehaviour DefinableNodePowerBehaviour

Journal of Civil Engineering and Management, 2015, 21(3): 356375 371

pattern, the infrastructure layer employs further design
patterns (Gamma et al. 1995), including: subject/observer,
state, singleton, factory, proxy and smart pointer.

Due to the early development of the infrastructure
layer, before development of the client (agent) layer
and before any ontology development, some sensor
and actuator hardware interface implementations use
an XML configuration file. The situation allowed some
easy immediate testing implemented in local procedures.
While the configurations only contain a very minimal
description of connected hardware, the information is
replicated in the sensors ontology. Currently the sensor
node agent is able to read the configuration from the sen-
sor manager interface (hosted by the sensor node exe-
cutable with which devices register) and partially verify
consistency with the sensor ontology from that. The issue
arises from the relatively simple XML configuration file
content which is adequate to describe connected wired
sensors, but is inadequate to fully describe the wireless
sensor network, nor would the latter be desirable. Thus
currently consistency between the XML files and the
ontology has to be manually checked. A readily imple-
mented solution is for any (trusted) client agent to write
the configuration subset extracted from the sensors ontol-
ogy to the infrastructure sensor node which would then
update its XML based persistent configuration. For the
same reason the infrastructure also contains some (class)
modelling of sensor and actuator devices which creates
a small degree of redundancy with the sensors ontology.
The sensor and actuator classes however remain fairly
abstract.

5.2. Tests for sensor node, digital input/output and
thermometer modules

The unit and integration testing of the wired network
supporting modules together with the sensor node exe-
cutable, was completed using routine software engineer-
ing practices. The testing involved debugging software
implementations employing the NHibernate object
relational mapping libraries in conjunction with an
SQL database, Microsoft .Net Remoting technologies,
National Instruments USB driver libraries and a RS232
serial library.

Test cases were derived from the use cases for the
system. After the initial debugging, the testing effort
focussed on ensuring the delivery of good performance
in terms of preserving all detected environment events
while still delivering low processor usage. Where asyn-
chronous notification of new data was not available, poll-
ing was required, but the overhead is very modest and as
data through puts are also modest, no specific difficul-
ties were encountered in that area. The implementation
of pulse timing of the (wired) devices connected to the
National Instruments interfaces, for example, was eas-
ily realised. That implementation includes “light weight”
mechanisms to detect changes at a relatively fast poll-
ing rate (a 500 millisecond interval), and upon detecting

changes, the interfaces are then queried to resolve those
devices having new states and their associated values.

The initial testing revealed that the customised set-
tings for the configuration of the .Net Remoting channels
were adequate. Primarily those customisations relate to
the “lifetime” specification of server side objects, typi-
cally activated as singletons that realise the primary
interfaces.

Further testing relating to the sensor node execut-
able revealed some degradation in update performance
of an early implementation when tables grew to include
a relatively large (>5k) number of entries. The sensor
node design includes object-relational mapping (ORM)
derived classes to implement the data histories and orig-
inally those objects were manipulated directly in syn-
chronous client .Net Remoting associated threads. As a
solution the sensor histories were buffered and the ORM
objects synchronised with the database in a separate
thread. A 3 hour buffer for historical data for each device
allowed fast update from sensor interfaces and fast query
from agents. In practice data is only rarely requested
from outside that time interval, but for the servicing of
requests where older data is required, some custom SQL
statements were added within the NHibernate framework
to further improve performance over the default (frame-
work’s) implementation.

5.3. Sensor role allocation

In order to improve the operation in terms of the effec-
tiveness of (resource utilising) plans to deliver its
designed result, the selection of sensor role allocation
was re-evaluated, and extra selection criteria were added
where possible. More specifically, where multiple leases
are requested, which is typical, the ordering of those
requested were reviewed to identify any benefits from
early availability of specific device roles. For exam-
ple, in the determine occupancy plan, the capture of the
motion of persons moving away from zone entrances
immediately following entry, can deliver early plan sub
conclusions. In that example, such detection capabil-
ity is delivered by motion sensors near boundaries. The
order of lease request would not affect the immediacy of
sensor availability but other factors can. However, the
evaluation of preference can incur additional overhead.
For example, wired device leases are always executed
by the sensor node agent immediately, due to their typi-
cally always active configuration. The overall net benefit
of added sensor selection criteria is therefore not clear
without further investigation. Another example relates to
wireless network devices. Those leases for sensors that
are hosted by nodes already in a suitable configuration
are advanced to the “granted” state almost immediately.
In order to avoid the scenario where an agent may wait
for a particular lease/role to become active instead of
employing an alternative sensor in that role that would
be ready almost immediately, it can use the existing lease
query dialog to identify “ready” potential alternatives.

372 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

5.4. Tests for agents

The artefacts involved in testing of agents, moving from
the narrowest scope to the widest were:

- Methods, typically implemented as common state-
less methods manifested as static methods of “util-
ity” classes for use by any agent type. They primarily
realised miscellaneous functionality such as the cus-
tom object serialisation for use in a few messages
(cf. the semantic language SL), sunset/sunrise time
related functionality etc. Such functionality was eas-
ily tested using test “harnesses” for unit testing.

— Classes. The agents’ plan implementations and com-
mon classes are implemented following the object
oriented paradigm. Typical classes support IFC
model interaction, sensor and building ontology
manipulation and update, and the motion and entry
exit tracker implementations. Again testing at this
scope was easily completed with the creation of test
harnesses. The testing of plans holistically is cov-
ered in the following scopes.

- Simple goal and corresponding single (candidate)
plan implementation which can be triggered by
the BDI architecture based mechanisms e.g. due to
events (user defined and message events), and belief
changes. Testing at this scope additionally includes
plans that are triggered by a simple trigger match for
sub goals dispatched in plan implementations. The
motivation for implementation of the latter as goals
cf. methods is the lifecycle control support by vir-
tue of its hierarchy, as well as the other BDI mani-
festation “flags” that allow the specification of goal
behaviour. Testing was typically completed by “hard
coding” the dispatch of those goals to be tested after
the creation of an appropriate context.

- Goal/plan implementations involving BDI manifes-
tations that include (non simple) trigger and precon-
ditions specifications in Java, belief state and belief
change triggering, goal retry criteria, context and
drop conditions, and the JADEX support for goal
deliberation such as cardinality control and inhibit

Table 6. Some sensor node agent type tests

specification. Some of that testing required the hard
coding of some of the conditions to create appropri-
ate contexts while other scenarios were created with
support from other assemblies. Examples are the
sensor node agent type’s management of its infra-
structure connections as well as its management of
sensor leases and ZigBee nodes.

- Goals involving more complex deliberation such as
the zone agent type’s evaluate occupancy high level
goal. The test deployment at the domestic flat was
a convenient environment for the purpose of initial
testing, involving in some cases the hard coding of
contexts and goal dispatch.

- Complete agent types, the primary types being the
zone and sensor node agent types. The testing at this
scope was completed in the same way as immedi-
ately above.

The software units mentioned above could typically
be meaningfully tested using a single stepping debug-
ger, unlike the more complex assemblies involving BDI
manifested behaviour and asynchronous messaging. The
assemblies were tested using scenarios derived from the
agent responsibilities. The utility agent was also used to
test modules of other agents’ functionality before integra-
tion into the target agent type/s. One such test involved
the evaluation of the zone agent type’s lease management
facility which was extended in later tests to include the
subscription to sensors and the reading of values, incor-
porating the later integration testing of the infrastructure.
The “hard wiring” during testing in order to create con-
trolled contexts included the fixing of any deliberation to
“force” the desired scenario (thus removing temporally
some aspects of pro-activeness of the agent for the pre-
dictable and convenient activation of scenarios). Mes-
sage exchange scenarios such as the request and reply
of some agent attitudes including beliefs, e.g. zone char-
acterisations, were tested in isolation before integration
into assemblies. The details of selected tests for the sen-
sor node agent type are shown in Table 6. The number
of scenarios for each test (for the sensor node type) was

Functionality

High level details

Test case/s — selected

illustrative example/s Result/see also

Manage leases, resolve supplier of
resource (device, device cluster etc).
efficient re-use of leases, modifying
existing where feasible (eliminate
unnecessary node reconfiguration)

Requests by client agents. The nature of

requested the leases includes requests for
new leases, those that can extend existing
ones, and requests for unavailable devices

Activity log Working as expected

Target node available
Manage ZigBee nodes’ power
state, evaluate configuration, issues
configuration commands, maintain

Target node unavailable but becomes
available (temporarily power off some nodes)

As above

Log showing leave Working as expected

state transitions Working as expected

nodes Node becomes unavailable then available,
. . X As above
hosting resources with active leases
Manage power states of sensors As above As above Working as expected

Journal of Civil Engineering and Management, 2015, 21(3): 356375 373

less numerous in comparisons to the zone agent. Testing
with the sensor node agent in the university deployment
handled higher data throughput so that agent was used in
order to derive conclusive results for tests.

The integration testing was performed from several
formulations. Initially controlled testing took the form
of “staging” scenarios where a person moved between
different rooms with different building interactions e.g.
unlocking a door, pausing before opening the door, acti-
vating a light switch to render a slow exit, perform an
uninterrupted exit etc. Controlled behaviour varied from
entering an office and taking different routes to desks/
seating causing the activation of different sensors. Addi-
tionally scenarios such as initiating internal movement
while another person exited the room were tested. Per-
mutations using various openings where they existed and
activity were formulated and tested. Test were formulated
on a “glass box” basis in order to identify worst case
scenarios e.g. activity near an opening while a person
entered or exited through that opening. In contrast uncon-
trolled test cases where the environment was observed
and recorded were also carried out. Recording consisted
of marking on paper the tracks of persons through the
observed zones with approximate timestamps. Most
effort to date has been on the former controlled test sce-
narios. In all cases the agent activity logs were inspected
to determine the success.

Conclusions and discussion

This paper explains an integrated framework that demon-
strates the use of semantic modelling, together with the
application of the BDI model of agency and the imple-
mentation of an infrastructure incorporating sensor hard-
ware that has enabled the aims of the system to be met.
The upholding of rationality by the intelligent pro-active
agents in the upper layer in a way that is transparent and
explicit is a key feature. Additionally the solution needed
to be practically executable and meet realistic performance
constraints. Agents’ behaviour is closely integrated with
their beliefs and those beliefs include historical records
about the outcomes of past behaviour (as well as others
about the environment). Those beliefs, realising experi-
ence, contribute towards directing future behaviour. Spe-
cifically deliberation takes account of past behavioural
outcomes so, for example, where options exist, earlier
action that failed is not continually repeated. The appli-
cation of inferences to support BDI agent behaviour is
wide (for example, agent deliberation — goal feasibly,
goal selection; means/end reasoning — sensor assignment,
identification of sets of alternatives sensor roles and pref-
erence, configuration of hardware, control of hardware).
The requirement to minimise resource utilisation adds
significant complexity in terms of algorithmic plan imple-
mentation cf. always “on” data mining approach, but the
application of intelligent management gives the advan-
tage of more sustainable hardware units that are easily
deployed. The system derives significant behaviour from

executing reasoning with semantic knowledge but some
behaviour remains captured implicitly in algorithmic
implementations in plans.

Moreover, the semantics captured in the ontologies
in the OntoFM ontology are shared and reused consist-
ently both internally within agents and for well-defined
communications between agents. Additionally explicit
semantic definitions addresses one of the aims of the
system, namely to facilitate well defined communication
between agents and external tools. The knowledge can
be readily consumed by tools in different disciplines and
even at different lifecycle stages, where terminology and
semantics could vary. Furthermore the ontological knowl-
edge sources in OntoFM have been typically derived from
existing published consensus of knowledge, ensuring high
quality. The main resources used are the OntoSensor
ontology (in turn is derived from the SensorML schema)
which formed the basis of the sensors ontology, and the
IFC schema inspired the building ontology. At a domain
independent level, theories of mereology and topology
have been incorporated into further smaller system ontol-
ogies for common usage. The formal KR additionally
brings, as mentioned above, the benefit of consistency
checking in the models, both at design time and in the
dynamic assertion of individuals at run time.

A further area that could add extra flexibility to
agents is the use of XQuery and XPath (Herman 2008)
facilities applied to the dynamic analysis of ontologies.
XQuery is a query language for XML while XPath is the
syntax for specifying a path to a set of nodes in an XML
tree structure. Therefore the facility could be usefully
employed to query OWL ontologies where such function-
ality is not supported by SPARQL. A specific example
for use in the OntoFM ontology could be for examining
routes between zones when analysing the movement of
people in buildings. Similarly in the analysis of the Zig-
Bee network mesh, for example, counting “hops” between
an end device and a controller would be a useful appli-
cation. Another area of future work is to improve agent
learning capability. It is expected that the main benefit
would be in the enablement of further inferences by the
ontology in contrast to the intrinsic informational value
in the learned statements themselves. The creation of
temporal relationships between ontologically described
events that the agent generates is a starting point, but oth-
ers may be relevant depending on the context. Another
learning scenario is detecting changes in inference due to
the addition of new individuals. So it may be the case, for
example, that an ontology update triggers a more specific
inference for a zone individual. A change listener could be
configured, via the Jena API, to listen for all triples added
or removed so this is one approach that could be used,
with filtering for those related to individuals of interest.

Acknowledgements

The authors would like to thank the EPSRC-CASE PhD
sponsorship.

374 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

References

Bergman, M. 2010. Listing of 185 ontology building tools.
Adaptive information, adaptive innovation, adaptive
infrastructure [online], [cited 15 May 2012]. Available
from Internet:

http://www.mkbergman.com/904/listing-of-185-ontology-

building-tools

Bilek, J.; Hartmann, D. 2006. Agent based collaborative frame-
work for concurrent structural design processes, in Joint
International Conference on Computing and Decision
Making in Civil and Building Engineering, 14-16 June
2006, Montréal, Canada, 918-929.

Borst, W. N. 1997. Construction of engineering ontologies for
knowledge sharing and reuse. Holland: University of
Twente. 227 p.

Bresciani, P.; Perini, A.; Giorgini, P.; Giunchiglia, F.; Mylopoulos, J.
2004. Tropos: an agent-oriented software development
methodology, Autonomous Agents and Multi-Agent
Sytems 8(3): 203-236.
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944..ef

Crawley, D.; Hand, J.; Kummert, M.; Griffith, B. 2008.
Contrasting the capabilities of building energy performance
simulation programs, Building and Environment 43(4):
661-673. http://dx.doi.org/10.1016/j.buildenv.2006.10.027

Dibley, M.; Li, H.; Rezgui, Y.; Miles, J. 2012. An ontology
framework for intelligent sensor-based building monitor-
ing, Automation in Construction 28: 1-14.
http://dx.doi.org/10.1016/j.autcon.2012.05.018

Fernandez-Lopez, M.; Gomez-Perez, A.; Juristo, N. 1997.
METHONTOLOGY: from ontological art towards onto-
logical engineering, in Proceedings of the AAAI97 Spring
Symposium, 24-26 March 1997, Stanford, USA, 33—40.

Fernandez Lopez, M. 1999. Overview of methodologies for
building ontologies, in Proceedings of the IJCAI-99
workshop on Ontologies and Problem-Solving Methods
(KRR5), 1991, Stockholm, Sweden, 4.1-4.13.

Fielding, J.; Simon, J.; Ceusters, W.; Smith, B. 2004. Ontolog-
ical theory for ontological engineering: biomedical sys-
tems information integration, in Proceedings of the Ninth
International Conference on the Principles of Knowledge
Representation and Reasoning (KR2004), 2004, Whistler,
BC, USA, 114-120.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. 1995. Design
patterns: Elements of reusable object-oriented software.
Reading, MA: Addison-Wesley. 416 p.

Gomez-Pérez, A.; Fernandez-Lopez, M.; Corcho, O. 2004.
Ontological engineering: with examples from the areas
of knowledge management, e-commerce and the semantic
web. Springer. 420 p.

Gruber, T.; Olsen, G. 1994. An ontology for engineering math-
ematics, in Fourth International Conference on Princi-
ples of Knowledge Representation and Reasoning, 1994,
Gustav Stresemann Institut, Bonn, Germany. Morgan
Kaufmann. 18 p.

Griininger, M.; Fox, M. 1995. Methodology for the design and
evaluation of ontologies, in Proceedings of the Workshop
on Basic Ontological Issues in Knowledge Sharing held in
conjunction with IJCAI-95, 1995, Montreal, Canada. 10 p.

Guarino, N. 2006. Ontology and terminology — how can for-
mal ontology help concept modeling and terminology?,
in EAFT-NordTerm Workshop on Terminology, Concept
Modeling and Ontology, 2006, Vaasa, Italy. 12 p.

Guarino, N.; Welty, C. 2009. An overview of OntoClean, in
Handbook on ontologies. international handbooks on
information systems.Verlag, Springer, 201-220.

Li, H.; Rezgui, Y.; Miles, J.; Wilson, I. 2010. Low carbon
ontology development using information retrieval tech-
niques, in Proceedings of the 8" European Conference

on Product & Process Modelling, 14-16 September 2010,
Cork, Ireland, 215-221.

Hamscher, V.; Schwiegelshohn, U.; Streit, A.; Yahyapour, R.
2000. Evaluation of job-scheduling strategies for grid
computing, Grid Computing—GRID, 191-202.

Herman, 1. 2008. W3C Semantic Web activity, World Wide Web
Consortium. World Wide Web Consortium [online], [cited
12 Oct 2012]. Available from Internet:
http://www.w3.org/standards/semanticweb/.

Iglesias, C.; Garijo, M.; Centeno-Gonzalez, J. 1999. A sur-
vey of agent-oriented methodologies, in Proceedings of
the 5 International Workshop on Intelligent Agents V,
Agent Theories, Architectures, and Languages. London:
Springer-Verlag. 14 p.

Jacobson, 1.; Booch, G.; Rumbaugh, J. 1999. The unified soft-
ware development process. Addison-Wesley Professional.
512 p.

Kalyanpur, A.; Pastor, D.; Battle, S.; Padget, J. 2004. Automatic
mapping of OWL ontologies into Java, in Proceedings
of the 16" International Conference on Sofiware Engi-
neering & Knowledge Engineering, 2004, Banft, Alberta,
Canada. 8 p.

Luo, R. C.; Lin, S.; Su, K. 2003. A multiagent multisensor
based security system for intelligent building, in Proceed-
ings of the IEEE Conference on Multisensor Fusion and
Integration for Intelligent Systems, 30 July — 1 August
2003, Tokyo, Japan, 311-316.
http://dx.doi.org/10.1109/MFI-2003.2003.1232676

Maulo, F. 2006. NHibernate for .NET [online], [cited 11 Oct
2012]. Available from Internet:

https://community.jboss.org/wiki/NHibernateForNET? sscc=t

Nikraz, M.; Caire, G.; Bahri, P. 2006. A methodology for the
analysis and design of multi-agent systems using Java
Agent Development Framework (JADE). Turin: Telecom
Italia Lab. 40 p.

Pan, X.; Han, C.; Law, K. 2005. A multi-agent based simulation
framework for the study of human and social behavior in
egress analysis, in Proceedings of the 2005 International
Conference — Computing in Civil Engineering, 2005, Can-
cun, Mexico, 1-12.

Pease, A. 2008. The suggested upper merged ontology (SUMO) —
Ontology portal [online], [cited 22 Oct 2012]. Available
from Internet: http://www.ontologyportal.org

Preece, A.; Gomez, M.; Mel, G.; Vasconcelos, W.; Sleeman, D.;
Colley, S.; Porta, T. 2007. An ontology-based approach to
sensor-mission assignment, in Proceedings of the Annual
Conference of Interntional Technology Alliance, 2007,
Maryland, USA. 16 p.

Rao, A. S.; Georgeff, M. 1995. Belief, desire, intention (BDI)
agents: from theory to practice, in Proceedings of the
First International Conference on Multiagent Systems
(ICMAS-95), 1995, San Francisco, USA, 312-319.

Ren, Z.; Anumba, C. 2004. Reveiw: multi-agent systems in
construction — state of the art and prospects, Automation
in Construction 13: 421-434.
http://dx.doi.org/10.1016/j.autcon.2003.12.002

Rueppel, U.; Lange, M. 2006. An integrative process model for
cooperation, Journal of Information Technology in Con-
struction 11 (Special Issue: Process Modelling, Process
Management and Collaboration): 509-528.

Russomanno, D. J.; Kothari, C.; Thomas, O. 2005. Building a
sensor ontology: A practical approach leveraging ISO and
Open Geospatial Consortium (OGC) models, in The 2005
International Conference on Artificial Intelligence, 2005,
Las Vegas, Nevada, USA. 7 p.

Schenck, D. A.; Wilson, P. 1994. Information modeling the
EXPRESS way. Oxford University Press, USA. 416 p.

Schreiber, G.; Wielinga, B.; Hoog, R.; Akkermans, H.; Velde, W.
1994. CommonKADS: a comprehensive methodology for

Journal of Civil Engineering and Management, 2015, 21(3): 356375 375

KBS development, Intelligent Systems and Their Applica-
tions 9(6): 28-37.

Sure, Y.; Staab, S.; Studer, R. 2004. On-to-knowledge meth-
odology (OTKM), in Handbook on ontologies, inter-
national handbooks on information systems. Ontoprise
Gmbh. 17 p.

Swartout, B.; Ramesh, P.; Knight, K.; Russ, T. 1997. Toward
distributed use of large-scale ontologies, in A4A4I Techni-
cal Report SS-97-06, 138—-148.

Szekely, B.; Betz, J. 2009. Jastor — typesafe, ontology driven
RDF access from Java. [online], [cited 11 Oct 2012].
Available from Internet: jastor.sourceforge.net

Tulke, J.; Tauscher, E. 2009. Open industry foundation classes
(IFC) tools [online], [cited 11 Oct 2012]. Available from
Internet:
http://www.openifctools.org/Open_IFC_Tools/Home.html

Uschold, M.; King, M. 1995. Towards a methodology for build-
ing ontologies, in Workshop on Basic Ontological Issues in
Knowledge Sharing, 1995, Montreal, Quebec, Canada. 13 p.

Winikoff, M.; Padgham, L. 2004. The Prometheus meth-
odology, in Methodologies and software engineering
for agent system. multiagent systems, artificial socie-
ties, and simulated organizations, Vol. 11. Springer,
217-234.

Wood, M. E.; DeLoach, S. 2000. An overview of the multiagent
systems engineering methodology, in Agent-Oriented
Sofiware Engineering, Lecture Notes in Computer Sci-
ence, Vol. 1957, 2001. Berlin: Springer Verlag, 207-221.

Wooldridge, M.; Jennings, N.; Kinny, D. 2000. The Gaia
methodology for agent-oriented analysis and design, Auton-
omous Agents and Multi-Agent Systems 3(3): 285-312.
http://dx.doi.org/10.1023/A:1010071910869

Rezgui, Y.; Miles, J. 2011. Harvesting and managing knowl-
edge in construction: from theoretical foundations to busi-
ness applications. London: Spon Press. 232 p.

Zhang, C.; Hammad, A.; Bahnassi, H. 2009. Collaborative
multi-agent systems for construction, Journal of Informa-
tion Technology in Construction 14: 204-228.

Michael DIBLEY. Dr, has recently completed his PhD (An Intelligent System for Facility Management, 2011) in Cardiff Univer-
sity, Engineering School. He now works in BRE Institute of Sustainable Engineering, Engineering School, Cardiff University as a
Research Associate. His research interest relates to sensor development, sensor based building monitoring, ontology development,
and multi-agent system.

Haijiang LI. Dr, a Lecturer (Engineering Informatics & Structural Applications) working in the BRE Institute of Sustainable
Engineering, Engineering School, Cardiff University. His main research interest lies on Advanced and Innovative Computing sup-
ported large scale systems integration and decision making. It covers Building Information Modelling (BIM) based AEC systems
integration, High Performance Computing & Cloud Computing, ontology development and multi-agent systems, intelligent building
monitoring sensor system etc., which have been applied into large scale infrastructure modelling, sustainable design and develop-
ment, adaptable buildings, robust & resilient building design, life cycle infrastructure integration, knowledge management, intelligent
computing for building energy simulation, virtual reality and visualization.

Yacine REZGUI. Prof., the Director of the BRE institute of sustainable engineering. He has successfully completed over 20 national
(TSB/EPSRC, WAG) and European projects. He is currently involved in the FP7-2011-NMP-ENV-ENERGY-ICT-EeB KnowholEM
project (285229) which delivers optimized ontology-based building energy management solutions. His expertise includes ontology
engineering, service-based computing, multi-agent systems, and building energy. He has published extensively in the above areas,
including a newly edited book (Rezgui and Miles, 2011 — Spon).

John MILES. Is a Professor in Engineering Informatics. He was the former institute head, and his expertise lies on conceptual
engineering design, engineering optimization.

