






Journal of Civil Engineering and Management, 2015, 21(3): 356–375 369

Table 5. ZigBee Node behaviour characteristics

Behaviour Usage

Low power Typical usage as “sleepy” device. 1 sec network (firmware, part of the ZigBee stack implementation) 
based polling for good performance.

Standby Reduced network polling, sets attached devices to a disabled state to reduce power consumption, 
removes listen, etc. 

Sleep-and-listen

Deep sleep only woken by external event e.g. PIR activity. Very low power as radio and polling, timers 
etc. are deactivated. The agent will only use this mode if there is hardware connected, it is feasible that 
an associated event will occur and it is acceptable to have the node unavailable for an interval. The agent 
adequately configures any devices used to detect the wake up event. High level goals and historical 
leases are taken into account as well as the wake up constraints before setting this behaviour. The agents 
typically check for previous events and linked activity to assert that the node will become available when 
pursuing such event based goals. By querying the ontology events capable of generating wake up events 
can be counted.

Empty
A behaviour that does nothing. The other behaviours repeat failed steps until success, such as would 
occur due to transmission failure (NACK) or timeout (not present), so the empty behaviour should be 
assigned to those nodes that are not available, to eliminate unnecessary radio traffic.

Power definable Typically the agent could set “awake” mode so that the node can act as a router. Agents do not currently 
use this mode directly, but it is used as a super class for other behaviours.

On-board timer 
power mode control

An on board timer controlled power definable useful for USB connected host that is power critical. Not 
currently used by agents but used for testing.

A number of behaviours for assignment to sensor 
nodes are implemented and their characteristics are out-
lined in Table 5.

5.1. ZigBee network communication test

During development of the ZigBee network interface, 
some unit testing was carried out by hard coding a few 
dialogs (replies to some implemented commands) to 
substitute the serial interface. After integration to the 
serial library, a terminal program into which responses 
were manually typed was then used initially before test-
ing with the ZigBee serial hardware interface. However 
timing constraints, and the level of detail required to 
formulate meaningful responses, limited the practical 
usefulness of the terminal program to simple scenarios. 

Fig. 5. Some system infrastructure executables

The user interfaces for the ZigBee network (shown in 
Fig. 5) are primarily for status display and a facility to 
assign “behaviours” to sensor nodes was implemented 
for testing purposes. In Figure 5, “sensor node” screen-
shot shows data collecting information – reading in data 
through digital I/O etc.; the “ZigBee network interface” 
shows the communication between different sensors. The 
arrows represent communication channels and indicate 
the direction of the flow of data. Those behaviours con-
sist of some configuration commands and the issuing of 
some write commands that enabled visual diagnostics 
(the development kit units have LED status indicators 
on some of the channels). For the next integration stage, 
a utility agent was developed to, in a controlled and pre-
dictable way, request leases, read and log data. 
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Regarding the ZigBee interface’s operation with the 
rest of the infrastructure, including the registration of its 
sensors and the updating of data, the same interfaces as 
those used as by the wired network are employed and 
such testing of the associated functionally was covered, 
so no further testing was required in that area, apart from 
the simple testing of additional façades in some cases. 
The ZigBee interface’s implementation is primarily event 
driven and includes several multi-threaded mechanisms 
for processing serial data, issuing commands and syn-
chronising wireless node proxy objects. The mechanisms 
interact and so during testing, the settings for various 
triggering mechanisms, timeouts for synchronisation 
objects and for other behaviours such as the default acti-
vation of the timeout invocation for the handling of error 
states were revised to give the desired overall behaviour 
under different scenarios.

The sensor manager interface implemented for reg-
istration and updating by device interfaces typically real-
ise the application of the façade pattern (Gamma et al. 
1995), exemplified by a restricted set of high level meth-
ods using types supported by the IDL to Java mappings. 
While the IIOP.Net libraries allow the custom specifica-
tion of language construct mappings, the primitive built-
in types were adequate for use in the façade definition 
e.g. substitution of simple array for complex collection 

types used internally. A simple type used in the façade 
for which custom implementation was required was the 
date type, which handles daylight saving time and time 
zone. Regarding the call semantics across the remoting 
channels, the original implementation was kept as sim-
ple as possible by using a combination of pass by value 
and reference, and the use of uni-directional implemen-
tations where possible, avoiding the requirement for the 
client to register a listener sink for call-back implemen-
tations. The sensor manager specifically, apart from the 
façade interface, hosts other interfaces suitable for use 
within the infrastructure layer and for an ASP based web 
monitor. Figure 6 below shows some selected ZigBee 
network interface class hierarchies, including behaviours, 
node types etc.

The sensors currently connected include tempera-
ture, motion detection (PIR), proximity switches on doors 
and windows, and ambient light. Most sensors and actua-
tors are hosted by ZigBee wireless platforms. Actuators 
are supported both in hardware and software but currently 
are only used to control sensor power. The classes captur-
ing sensor history, which realise persistence, were gener-
ated from a case tool and employ the NHibernate (Maulo 
2006) object relation mapping framework, so therefore 
benefit from database performance enhancement deliv-
ered by those libraries. As well as the use of the façade 

Fig. 6. Selected ZigBee network interface class hierarchies
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pattern, the infrastructure layer employs further design 
patterns (Gamma et al. 1995), including: subject/observer, 
state, singleton, factory, proxy and smart pointer.

Due to the early development of the infrastructure 
layer, before development of the client (agent) layer 
and before any ontology development, some sensor 
and actuator hardware interface implementations use 
an XML configuration file. The situation allowed some 
easy immediate testing implemented in local procedures. 
While the configurations only contain a very minimal 
description of connected hardware, the information is 
replicated in the sensors ontology. Currently the sensor 
node agent is able to read the configuration from the sen-
sor manager interface (hosted by the sensor node exe-
cutable with which devices register) and partially verify 
consistency with the sensor ontology from that. The issue 
arises from the relatively simple XML configuration file 
content which is adequate to describe connected wired 
sensors, but is inadequate to fully describe the wireless 
sensor network, nor would the latter be desirable. Thus 
currently consistency between the XML files and the 
ontology has to be manually checked. A readily imple-
mented solution is for any (trusted) client agent to write 
the configuration subset extracted from the sensors ontol-
ogy to the infrastructure sensor node which would then 
update its XML based persistent configuration. For the 
same reason the infrastructure also contains some (class) 
modelling of sensor and actuator devices which creates 
a small degree of redundancy with the sensors ontology. 
The sensor and actuator classes however remain fairly 
abstract.

5.2. Tests for sensor node, digital input/output and 
thermometer modules
The unit and integration testing of the wired network 
supporting modules together with the sensor node exe-
cutable, was completed using routine software engineer-
ing practices. The testing involved debugging software 
implementations employing the NHibernate object 
relational mapping libraries in conjunction with an 
SQL database, Microsoft .Net Remoting technologies, 
National Instruments USB driver libraries and a RS232 
serial library.

Test cases were derived from the use cases for the 
system. After the initial debugging, the testing effort 
focussed on ensuring the delivery of good performance 
in terms of preserving all detected environment events 
while still delivering low processor usage. Where asyn-
chronous notification of new data was not available, poll-
ing was required, but the overhead is very modest and as 
data through puts are also modest, no specific difficul-
ties were encountered in that area. The implementation 
of pulse timing of the (wired) devices connected to the 
National Instruments interfaces, for example, was eas-
ily realised. That implementation includes “light weight” 
mechanisms to detect changes at a relatively fast poll-
ing rate (a 500 millisecond interval), and upon detecting 

changes, the interfaces are then queried to resolve those 
devices having new states and their associated values.

The initial testing revealed that the customised set-
tings for the configuration of the .Net Remoting channels 
were adequate. Primarily those customisations relate to 
the “lifetime” specification of server side objects, typi-
cally activated as singletons that realise the primary 
interfaces.

Further testing relating to the sensor node execut-
able revealed some degradation in update performance 
of an early implementation when tables grew to include 
a relatively large (>5k) number of entries. The sensor 
node design includes object-relational mapping (ORM) 
derived classes to implement the data histories and orig-
inally those objects were manipulated directly in syn-
chronous client .Net Remoting associated threads. As a 
solution the sensor histories were buffered and the ORM 
objects synchronised with the database in a separate 
thread. A 3 hour buffer for historical data for each device 
allowed fast update from sensor interfaces and fast query 
from agents. In practice data is only rarely requested 
from outside that time interval, but for the servicing of 
requests where older data is required, some custom SQL 
statements were added within the NHibernate framework 
to further improve performance over the default (frame-
work’s) implementation.

5.3. Sensor role allocation
In order to improve the operation in terms of the effec-
tiveness of (resource utilising) plans to deliver its 
designed result, the selection of sensor role allocation 
was re-evaluated, and extra selection criteria were added 
where possible. More specifically, where multiple leases 
are requested, which is typical, the ordering of those 
requested were reviewed to identify any benefits from 
early availability of specific device roles. For exam-
ple, in the determine occupancy plan, the capture of the 
motion of persons moving away from zone entrances 
immediately following entry, can deliver early plan sub 
conclusions. In that example, such detection capabil-
ity is delivered by motion sensors near boundaries. The 
order of lease request would not affect the immediacy of 
sensor availability but other factors can. However, the 
evaluation of preference can incur additional overhead. 
For example, wired device leases are always executed 
by the sensor node agent immediately, due to their typi-
cally always active configuration. The overall net benefit 
of added sensor selection criteria is therefore not clear 
without further investigation. Another example relates to 
wireless network devices. Those leases for sensors that 
are hosted by nodes already in a suitable configuration 
are advanced to the “granted” state almost immediately. 
In order to avoid the scenario where an agent may wait 
for a particular lease/role to become active instead of 
employing an alternative sensor in that role that would 
be ready almost immediately, it can use the existing lease 
query dialog to identify “ready” potential alternatives.
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5.4. Tests for agents 
The artefacts involved in testing of agents, moving from 
the narrowest scope to the widest were:

–– Methods, typically implemented as common state-
less methods manifested as static methods of “util-
ity” classes for use by any agent type. They primarily 
realised miscellaneous functionality such as the cus-
tom object serialisation for use in a few messages 
(cf. the semantic language SL), sunset/sunrise time 
related functionality etc. Such functionality was eas-
ily tested using test “harnesses” for unit testing.

–– Classes. The agents’ plan implementations and com-
mon classes are implemented following the object 
oriented paradigm. Typical classes support IFC 
model interaction, sensor and building ontology 
manipulation and update, and the motion and entry 
exit tracker implementations. Again testing at this 
scope was easily completed with the creation of test 
harnesses. The testing of plans holistically is cov-
ered in the following scopes.

–– Simple goal and corresponding single (candidate) 
plan implementation which can be triggered by 
the BDI architecture based mechanisms e.g. due to 
events (user defined and message events), and belief 
changes. Testing at this scope additionally includes 
plans that are triggered by a simple trigger match for 
sub goals dispatched in plan implementations. The 
motivation for implementation of the latter as goals 
cf. methods is the lifecycle control support by vir-
tue of its hierarchy, as well as the other BDI mani-
festation “flags” that allow the specification of goal 
behaviour. Testing was typically completed by “hard 
coding” the dispatch of those goals to be tested after 
the creation of an appropriate context.

–– Goal/plan implementations involving BDI manifes-
tations that include (non simple) trigger and precon-
ditions specifications in Java, belief state and belief 
change triggering, goal retry criteria, context and 
drop conditions, and the JADEX support for goal 
deliberation such as cardinality control and inhibit 

specification. Some of that testing required the hard 
coding of some of the conditions to create appropri-
ate contexts while other scenarios were created with 
support from other assemblies. Examples are the 
sensor node agent type’s management of its infra-
structure connections as well as its management of 
sensor leases and ZigBee nodes.

–– Goals involving more complex deliberation such as 
the zone agent type’s evaluate occupancy high level 
goal. The test deployment at the domestic flat was 
a convenient environment for the purpose of initial 
testing, involving in some cases the hard coding of 
contexts and goal dispatch.

–– Complete agent types, the primary types being the 
zone and sensor node agent types. The testing at this 
scope was completed in the same way as immedi-
ately above.
The software units mentioned above could typically 

be meaningfully tested using a single stepping debug-
ger, unlike the more complex assemblies involving BDI 
manifested behaviour and asynchronous messaging. The 
assemblies were tested using scenarios derived from the 
agent responsibilities. The utility agent was also used to 
test modules of other agents’ functionality before integra-
tion into the target agent type/s. One such test involved 
the evaluation of the zone agent type’s lease management 
facility which was extended in later tests to include the 
subscription to sensors and the reading of values, incor-
porating the later integration testing of the infrastructure. 
The “hard wiring” during testing in order to create con-
trolled contexts included the fixing of any deliberation to 
“force” the desired scenario (thus removing temporally 
some aspects of pro-activeness of the agent for the pre-
dictable and convenient activation of scenarios). Mes-
sage exchange scenarios such as the request and reply 
of some agent attitudes including beliefs, e.g. zone char-
acterisations, were tested in isolation before integration 
into assemblies. The details of selected tests for the sen-
sor node agent type are shown in Table 6. The number 
of scenarios for each test (for the sensor node type) was 

Table 6. Some sensor node agent type tests

Functionality High level details Test case/s – selected 
illustrative example/s Result/see also

Manage leases, resolve supplier of 
resource (device, device cluster etc). 
efficient re-use of leases, modifying 
existing where feasible (eliminate 
unnecessary node reconfiguration)

Requests by client agents. The nature of 
requested the leases includes requests for 
new leases, those that can extend existing 
ones, and requests for unavailable devices

Activity log Working as expected 

Manage ZigBee nodes’ power 
state, evaluate configuration, issues 
configuration commands, maintain 
nodes

Target node available

Target node unavailable but becomes  
available (temporarily power off some nodes)

Node becomes unavailable then available, 
hosting resources with active leases

As above

Log showing leave 
state transitions

As above

Working as expected

Working as expected

Manage power states of sensors As above As above Working as expected
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less numerous in comparisons to the zone agent. Testing 
with the sensor node agent in the university deployment 
handled higher data throughput so that agent was used in 
order to derive conclusive results for tests.

The integration testing was performed from several 
formulations. Initially controlled testing took the form 
of “staging” scenarios where a person moved between 
different rooms with different building interactions e.g. 
unlocking a door, pausing before opening the door, acti-
vating a light switch to render a slow exit, perform an 
uninterrupted exit etc. Controlled behaviour varied from 
entering an office and taking different routes to desks/
seating causing the activation of different sensors. Addi-
tionally scenarios such as initiating internal movement 
while another person exited the room were tested. Per-
mutations using various openings where they existed and 
activity were formulated and tested. Test were formulated 
on a “glass box” basis in order to identify worst case 
scenarios e.g. activity near an opening while a person 
entered or exited through that opening. In contrast uncon-
trolled test cases where the environment was observed 
and recorded were also carried out. Recording consisted 
of marking on paper the tracks of persons through the 
observed zones with approximate timestamps. Most 
effort to date has been on the former controlled test sce-
narios. In all cases the agent activity logs were inspected 
to determine the success. 

Conclusions and discussion

This paper explains an integrated framework that demon-
strates the use of semantic modelling, together with the 
application of the BDI model of agency and the imple-
mentation of an infrastructure incorporating sensor hard-
ware that has enabled the aims of the system to be met. 
The upholding of rationality by the intelligent pro-active 
agents in the upper layer in a way that is transparent and 
explicit is a key feature. Additionally the solution needed 
to be practically executable and meet realistic performance 
constraints. Agents’ behaviour is closely integrated with 
their beliefs and those beliefs include historical records 
about the outcomes of past behaviour (as well as others 
about the environment). Those beliefs, realising experi-
ence, contribute towards directing future behaviour. Spe-
cifically deliberation takes account of past behavioural 
outcomes so, for example, where options exist, earlier 
action that failed is not continually repeated. The appli-
cation of inferences to support BDI agent behaviour is 
wide (for example, agent deliberation – goal feasibly, 
goal selection; means/end reasoning – sensor assignment, 
identification of sets of alternatives sensor roles and pref-
erence, configuration of hardware, control of hardware). 
The requirement to minimise resource utilisation adds 
significant complexity in terms of algorithmic plan imple-
mentation cf. always “on” data mining approach, but the 
application of intelligent management gives the advan-
tage of more sustainable hardware units that are easily 
deployed. The system derives significant behaviour from 

executing reasoning with semantic knowledge but some 
behaviour remains captured implicitly in algorithmic 
implementations in plans.

Moreover, the semantics captured in the ontologies 
in the OntoFM ontology are shared and reused consist-
ently both internally within agents and for well-defined 
communications between agents. Additionally explicit 
semantic definitions addresses one of the aims of the 
system, namely to facilitate well defined communication 
between agents and external tools. The knowledge can 
be readily consumed by tools in different disciplines and 
even at different lifecycle stages, where terminology and 
semantics could vary. Furthermore the ontological knowl-
edge sources in OntoFM have been typically derived from 
existing published consensus of knowledge, ensuring high 
quality. The main resources used are the OntoSensor 
ontology (in turn is derived from the SensorML schema) 
which formed the basis of the sensors ontology, and the 
IFC schema inspired the building ontology. At a domain 
independent level, theories of mereology and topology 
have been incorporated into further smaller system ontol-
ogies for common usage. The formal KR additionally 
brings, as mentioned above, the benefit of consistency 
checking in the models, both at design time and in the 
dynamic assertion of individuals at run time.

A further area that could add extra flexibility to 
agents is the use of XQuery and XPath (Herman 2008) 
facilities applied to the dynamic analysis of ontologies. 
XQuery is a query language for XML while XPath is the 
syntax for specifying a path to a set of nodes in an XML 
tree structure. Therefore the facility could be usefully 
employed to query OWL ontologies where such function-
ality is not supported by SPARQL. A specific example 
for use in the OntoFM ontology could be for examining 
routes between zones when analysing the movement of 
people in buildings. Similarly in the analysis of the Zig-
Bee network mesh, for example, counting “hops” between 
an end device and a controller would be a useful appli-
cation. Another area of future work is to improve agent 
learning capability. It is expected that the main benefit 
would be in the enablement of further inferences by the 
ontology in contrast to the intrinsic informational value 
in the learned statements themselves. The creation of 
temporal relationships between ontologically described 
events that the agent generates is a starting point, but oth-
ers may be relevant depending on the context. Another 
learning scenario is detecting changes in inference due to 
the addition of new individuals. So it may be the case, for 
example, that an ontology update triggers a more specific 
inference for a zone individual. A change listener could be 
configured, via the Jena API, to listen for all triples added 
or removed so this is one approach that could be used, 
with filtering for those related to individuals of interest. 
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