

Journal of Civil Engineering and Management, 2015, 21(3): 356–375 369

Table 5. ZigBee Node behaviour characteristics

Behaviour Usage

Low power Typical usage as “sleepy” device. 1 sec network (firmware, part of the ZigBee stack implementation)
based polling for good performance.

Standby Reduced network polling, sets attached devices to a disabled state to reduce power consumption,
removes listen, etc.

Sleep-and-listen

Deep sleep only woken by external event e.g. PIR activity. Very low power as radio and polling, timers
etc. are deactivated. The agent will only use this mode if there is hardware connected, it is feasible that
an associated event will occur and it is acceptable to have the node unavailable for an interval. The agent
adequately configures any devices used to detect the wake up event. High level goals and historical
leases are taken into account as well as the wake up constraints before setting this behaviour. The agents
typically check for previous events and linked activity to assert that the node will become available when
pursuing such event based goals. By querying the ontology events capable of generating wake up events
can be counted.

Empty
A behaviour that does nothing. The other behaviours repeat failed steps until success, such as would
occur due to transmission failure (NACK) or timeout (not present), so the empty behaviour should be
assigned to those nodes that are not available, to eliminate unnecessary radio traffic.

Power definable Typically the agent could set “awake” mode so that the node can act as a router. Agents do not currently
use this mode directly, but it is used as a super class for other behaviours.

On-board timer
power mode control

An on board timer controlled power definable useful for USB connected host that is power critical. Not
currently used by agents but used for testing.

A number of behaviours for assignment to sensor
nodes are implemented and their characteristics are out-
lined in Table 5.

5.1. ZigBee network communication test

During development of the ZigBee network interface,
some unit testing was carried out by hard coding a few
dialogs (replies to some implemented commands) to
substitute the serial interface. After integration to the
serial library, a terminal program into which responses
were manually typed was then used initially before test-
ing with the ZigBee serial hardware interface. However
timing constraints, and the level of detail required to
formulate meaningful responses, limited the practical
usefulness of the terminal program to simple scenarios.

Fig. 5. Some system infrastructure executables

The user interfaces for the ZigBee network (shown in
Fig. 5) are primarily for status display and a facility to
assign “behaviours” to sensor nodes was implemented
for testing purposes. In Figure 5, “sensor node” screen-
shot shows data collecting information – reading in data
through digital I/O etc.; the “ZigBee network interface”
shows the communication between different sensors. The
arrows represent communication channels and indicate
the direction of the flow of data. Those behaviours con-
sist of some configuration commands and the issuing of
some write commands that enabled visual diagnostics
(the development kit units have LED status indicators
on some of the channels). For the next integration stage,
a utility agent was developed to, in a controlled and pre-
dictable way, request leases, read and log data.

370 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

Regarding the ZigBee interface’s operation with the
rest of the infrastructure, including the registration of its
sensors and the updating of data, the same interfaces as
those used as by the wired network are employed and
such testing of the associated functionally was covered,
so no further testing was required in that area, apart from
the simple testing of additional façades in some cases.
The ZigBee interface’s implementation is primarily event
driven and includes several multi-threaded mechanisms
for processing serial data, issuing commands and syn-
chronising wireless node proxy objects. The mechanisms
interact and so during testing, the settings for various
triggering mechanisms, timeouts for synchronisation
objects and for other behaviours such as the default acti-
vation of the timeout invocation for the handling of error
states were revised to give the desired overall behaviour
under different scenarios.

The sensor manager interface implemented for reg-
istration and updating by device interfaces typically real-
ise the application of the façade pattern (Gamma et al.
1995), exemplified by a restricted set of high level meth-
ods using types supported by the IDL to Java mappings.
While the IIOP.Net libraries allow the custom specifica-
tion of language construct mappings, the primitive built-
in types were adequate for use in the façade definition
e.g. substitution of simple array for complex collection

types used internally. A simple type used in the façade
for which custom implementation was required was the
date type, which handles daylight saving time and time
zone. Regarding the call semantics across the remoting
channels, the original implementation was kept as sim-
ple as possible by using a combination of pass by value
and reference, and the use of uni-directional implemen-
tations where possible, avoiding the requirement for the
client to register a listener sink for call-back implemen-
tations. The sensor manager specifically, apart from the
façade interface, hosts other interfaces suitable for use
within the infrastructure layer and for an ASP based web
monitor. Figure 6 below shows some selected ZigBee
network interface class hierarchies, including behaviours,
node types etc.

The sensors currently connected include tempera-
ture, motion detection (PIR), proximity switches on doors
and windows, and ambient light. Most sensors and actua-
tors are hosted by ZigBee wireless platforms. Actuators
are supported both in hardware and software but currently
are only used to control sensor power. The classes captur-
ing sensor history, which realise persistence, were gener-
ated from a case tool and employ the NHibernate (Maulo
2006) object relation mapping framework, so therefore
benefit from database performance enhancement deliv-
ered by those libraries. As well as the use of the façade

Fig. 6. Selected ZigBee network interface class hierarchies

Journal of Civil Engineering and Management, 2015, 21(3): 356–375 371

pattern, the infrastructure layer employs further design
patterns (Gamma et al. 1995), including: subject/observer,
state, singleton, factory, proxy and smart pointer.

Due to the early development of the infrastructure
layer, before development of the client (agent) layer
and before any ontology development, some sensor
and actuator hardware interface implementations use
an XML configuration file. The situation allowed some
easy immediate testing implemented in local procedures.
While the configurations only contain a very minimal
description of connected hardware, the information is
replicated in the sensors ontology. Currently the sensor
node agent is able to read the configuration from the sen-
sor manager interface (hosted by the sensor node exe-
cutable with which devices register) and partially verify
consistency with the sensor ontology from that. The issue
arises from the relatively simple XML configuration file
content which is adequate to describe connected wired
sensors, but is inadequate to fully describe the wireless
sensor network, nor would the latter be desirable. Thus
currently consistency between the XML files and the
ontology has to be manually checked. A readily imple-
mented solution is for any (trusted) client agent to write
the configuration subset extracted from the sensors ontol-
ogy to the infrastructure sensor node which would then
update its XML based persistent configuration. For the
same reason the infrastructure also contains some (class)
modelling of sensor and actuator devices which creates
a small degree of redundancy with the sensors ontology.
The sensor and actuator classes however remain fairly
abstract.

5.2. Tests for sensor node, digital input/output and
thermometer modules
The unit and integration testing of the wired network
supporting modules together with the sensor node exe-
cutable, was completed using routine software engineer-
ing practices. The testing involved debugging software
implementations employing the NHibernate object
relational mapping libraries in conjunction with an
SQL database, Microsoft .Net Remoting technologies,
National Instruments USB driver libraries and a RS232
serial library.

Test cases were derived from the use cases for the
system. After the initial debugging, the testing effort
focussed on ensuring the delivery of good performance
in terms of preserving all detected environment events
while still delivering low processor usage. Where asyn-
chronous notification of new data was not available, poll-
ing was required, but the overhead is very modest and as
data through puts are also modest, no specific difficul-
ties were encountered in that area. The implementation
of pulse timing of the (wired) devices connected to the
National Instruments interfaces, for example, was eas-
ily realised. That implementation includes “light weight”
mechanisms to detect changes at a relatively fast poll-
ing rate (a 500 millisecond interval), and upon detecting

changes, the interfaces are then queried to resolve those
devices having new states and their associated values.

The initial testing revealed that the customised set-
tings for the configuration of the .Net Remoting channels
were adequate. Primarily those customisations relate to
the “lifetime” specification of server side objects, typi-
cally activated as singletons that realise the primary
interfaces.

Further testing relating to the sensor node execut-
able revealed some degradation in update performance
of an early implementation when tables grew to include
a relatively large (>5k) number of entries. The sensor
node design includes object-relational mapping (ORM)
derived classes to implement the data histories and orig-
inally those objects were manipulated directly in syn-
chronous client .Net Remoting associated threads. As a
solution the sensor histories were buffered and the ORM
objects synchronised with the database in a separate
thread. A 3 hour buffer for historical data for each device
allowed fast update from sensor interfaces and fast query
from agents. In practice data is only rarely requested
from outside that time interval, but for the servicing of
requests where older data is required, some custom SQL
statements were added within the NHibernate framework
to further improve performance over the default (frame-
work’s) implementation.

5.3. Sensor role allocation
In order to improve the operation in terms of the effec-
tiveness of (resource utilising) plans to deliver its
designed result, the selection of sensor role allocation
was re-evaluated, and extra selection criteria were added
where possible. More specifically, where multiple leases
are requested, which is typical, the ordering of those
requested were reviewed to identify any benefits from
early availability of specific device roles. For exam-
ple, in the determine occupancy plan, the capture of the
motion of persons moving away from zone entrances
immediately following entry, can deliver early plan sub
conclusions. In that example, such detection capabil-
ity is delivered by motion sensors near boundaries. The
order of lease request would not affect the immediacy of
sensor availability but other factors can. However, the
evaluation of preference can incur additional overhead.
For example, wired device leases are always executed
by the sensor node agent immediately, due to their typi-
cally always active configuration. The overall net benefit
of added sensor selection criteria is therefore not clear
without further investigation. Another example relates to
wireless network devices. Those leases for sensors that
are hosted by nodes already in a suitable configuration
are advanced to the “granted” state almost immediately.
In order to avoid the scenario where an agent may wait
for a particular lease/role to become active instead of
employing an alternative sensor in that role that would
be ready almost immediately, it can use the existing lease
query dialog to identify “ready” potential alternatives.

372 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

5.4. Tests for agents
The artefacts involved in testing of agents, moving from
the narrowest scope to the widest were:

–– Methods, typically implemented as common state-
less methods manifested as static methods of “util-
ity” classes for use by any agent type. They primarily
realised miscellaneous functionality such as the cus-
tom object serialisation for use in a few messages
(cf. the semantic language SL), sunset/sunrise time
related functionality etc. Such functionality was eas-
ily tested using test “harnesses” for unit testing.

–– Classes. The agents’ plan implementations and com-
mon classes are implemented following the object
oriented paradigm. Typical classes support IFC
model interaction, sensor and building ontology
manipulation and update, and the motion and entry
exit tracker implementations. Again testing at this
scope was easily completed with the creation of test
harnesses. The testing of plans holistically is cov-
ered in the following scopes.

–– Simple goal and corresponding single (candidate)
plan implementation which can be triggered by
the BDI architecture based mechanisms e.g. due to
events (user defined and message events), and belief
changes. Testing at this scope additionally includes
plans that are triggered by a simple trigger match for
sub goals dispatched in plan implementations. The
motivation for implementation of the latter as goals
cf. methods is the lifecycle control support by vir-
tue of its hierarchy, as well as the other BDI mani-
festation “flags” that allow the specification of goal
behaviour. Testing was typically completed by “hard
coding” the dispatch of those goals to be tested after
the creation of an appropriate context.

–– Goal/plan implementations involving BDI manifes-
tations that include (non simple) trigger and precon-
ditions specifications in Java, belief state and belief
change triggering, goal retry criteria, context and
drop conditions, and the JADEX support for goal
deliberation such as cardinality control and inhibit

specification. Some of that testing required the hard
coding of some of the conditions to create appropri-
ate contexts while other scenarios were created with
support from other assemblies. Examples are the
sensor node agent type’s management of its infra-
structure connections as well as its management of
sensor leases and ZigBee nodes.

–– Goals involving more complex deliberation such as
the zone agent type’s evaluate occupancy high level
goal. The test deployment at the domestic flat was
a convenient environment for the purpose of initial
testing, involving in some cases the hard coding of
contexts and goal dispatch.

–– Complete agent types, the primary types being the
zone and sensor node agent types. The testing at this
scope was completed in the same way as immedi-
ately above.
The software units mentioned above could typically

be meaningfully tested using a single stepping debug-
ger, unlike the more complex assemblies involving BDI
manifested behaviour and asynchronous messaging. The
assemblies were tested using scenarios derived from the
agent responsibilities. The utility agent was also used to
test modules of other agents’ functionality before integra-
tion into the target agent type/s. One such test involved
the evaluation of the zone agent type’s lease management
facility which was extended in later tests to include the
subscription to sensors and the reading of values, incor-
porating the later integration testing of the infrastructure.
The “hard wiring” during testing in order to create con-
trolled contexts included the fixing of any deliberation to
“force” the desired scenario (thus removing temporally
some aspects of pro-activeness of the agent for the pre-
dictable and convenient activation of scenarios). Mes-
sage exchange scenarios such as the request and reply
of some agent attitudes including beliefs, e.g. zone char-
acterisations, were tested in isolation before integration
into assemblies. The details of selected tests for the sen-
sor node agent type are shown in Table 6. The number
of scenarios for each test (for the sensor node type) was

Table 6. Some sensor node agent type tests

Functionality High level details Test case/s – selected
illustrative example/s Result/see also

Manage leases, resolve supplier of
resource (device, device cluster etc).
efficient re-use of leases, modifying
existing where feasible (eliminate
unnecessary node reconfiguration)

Requests by client agents. The nature of
requested the leases includes requests for
new leases, those that can extend existing
ones, and requests for unavailable devices

Activity log Working as expected

Manage ZigBee nodes’ power
state, evaluate configuration, issues
configuration commands, maintain
nodes

Target node available

Target node unavailable but becomes
available (temporarily power off some nodes)

Node becomes unavailable then available,
hosting resources with active leases

As above

Log showing leave
state transitions

As above

Working as expected

Working as expected

Manage power states of sensors As above As above Working as expected

Journal of Civil Engineering and Management, 2015, 21(3): 356–375 373

less numerous in comparisons to the zone agent. Testing
with the sensor node agent in the university deployment
handled higher data throughput so that agent was used in
order to derive conclusive results for tests.

The integration testing was performed from several
formulations. Initially controlled testing took the form
of “staging” scenarios where a person moved between
different rooms with different building interactions e.g.
unlocking a door, pausing before opening the door, acti-
vating a light switch to render a slow exit, perform an
uninterrupted exit etc. Controlled behaviour varied from
entering an office and taking different routes to desks/
seating causing the activation of different sensors. Addi-
tionally scenarios such as initiating internal movement
while another person exited the room were tested. Per-
mutations using various openings where they existed and
activity were formulated and tested. Test were formulated
on a “glass box” basis in order to identify worst case
scenarios e.g. activity near an opening while a person
entered or exited through that opening. In contrast uncon-
trolled test cases where the environment was observed
and recorded were also carried out. Recording consisted
of marking on paper the tracks of persons through the
observed zones with approximate timestamps. Most
effort to date has been on the former controlled test sce-
narios. In all cases the agent activity logs were inspected
to determine the success.

Conclusions and discussion

This paper explains an integrated framework that demon-
strates the use of semantic modelling, together with the
application of the BDI model of agency and the imple-
mentation of an infrastructure incorporating sensor hard-
ware that has enabled the aims of the system to be met.
The upholding of rationality by the intelligent pro-active
agents in the upper layer in a way that is transparent and
explicit is a key feature. Additionally the solution needed
to be practically executable and meet realistic performance
constraints. Agents’ behaviour is closely integrated with
their beliefs and those beliefs include historical records
about the outcomes of past behaviour (as well as others
about the environment). Those beliefs, realising experi-
ence, contribute towards directing future behaviour. Spe-
cifically deliberation takes account of past behavioural
outcomes so, for example, where options exist, earlier
action that failed is not continually repeated. The appli-
cation of inferences to support BDI agent behaviour is
wide (for example, agent deliberation – goal feasibly,
goal selection; means/end reasoning – sensor assignment,
identification of sets of alternatives sensor roles and pref-
erence, configuration of hardware, control of hardware).
The requirement to minimise resource utilisation adds
significant complexity in terms of algorithmic plan imple-
mentation cf. always “on” data mining approach, but the
application of intelligent management gives the advan-
tage of more sustainable hardware units that are easily
deployed. The system derives significant behaviour from

executing reasoning with semantic knowledge but some
behaviour remains captured implicitly in algorithmic
implementations in plans.

Moreover, the semantics captured in the ontologies
in the OntoFM ontology are shared and reused consist-
ently both internally within agents and for well-defined
communications between agents. Additionally explicit
semantic definitions addresses one of the aims of the
system, namely to facilitate well defined communication
between agents and external tools. The knowledge can
be readily consumed by tools in different disciplines and
even at different lifecycle stages, where terminology and
semantics could vary. Furthermore the ontological knowl-
edge sources in OntoFM have been typically derived from
existing published consensus of knowledge, ensuring high
quality. The main resources used are the OntoSensor
ontology (in turn is derived from the SensorML schema)
which formed the basis of the sensors ontology, and the
IFC schema inspired the building ontology. At a domain
independent level, theories of mereology and topology
have been incorporated into further smaller system ontol-
ogies for common usage. The formal KR additionally
brings, as mentioned above, the benefit of consistency
checking in the models, both at design time and in the
dynamic assertion of individuals at run time.

A further area that could add extra flexibility to
agents is the use of XQuery and XPath (Herman 2008)
facilities applied to the dynamic analysis of ontologies.
XQuery is a query language for XML while XPath is the
syntax for specifying a path to a set of nodes in an XML
tree structure. Therefore the facility could be usefully
employed to query OWL ontologies where such function-
ality is not supported by SPARQL. A specific example
for use in the OntoFM ontology could be for examining
routes between zones when analysing the movement of
people in buildings. Similarly in the analysis of the Zig-
Bee network mesh, for example, counting “hops” between
an end device and a controller would be a useful appli-
cation. Another area of future work is to improve agent
learning capability. It is expected that the main benefit
would be in the enablement of further inferences by the
ontology in contrast to the intrinsic informational value
in the learned statements themselves. The creation of
temporal relationships between ontologically described
events that the agent generates is a starting point, but oth-
ers may be relevant depending on the context. Another
learning scenario is detecting changes in inference due to
the addition of new individuals. So it may be the case, for
example, that an ontology update triggers a more specific
inference for a zone individual. A change listener could be
configured, via the Jena API, to listen for all triples added
or removed so this is one approach that could be used,
with filtering for those related to individuals of interest.

Acknowledgements

The authors would like to thank the EPSRC-CASE PhD
sponsorship.

374 M. Dibley et al. An integrated framework utilising software agent reasoning and ontology models ...

References
Bergman, M. 2010. Listing of 185 ontology building tools.

Adaptive information, adaptive innovation, adaptive
infrastructure [online], [cited 15 May 2012]. Available
from Internet:

http://www.mkbergman.com/904/listing-of-185-ontology-
building-tools
Bilek, J.; Hartmann, D. 2006. Agent based collaborative frame-

work for concurrent structural design processes, in Joint
International Conference on Computing and Decision
Making in Civil and Building Engineering, 14–16 June
2006, Montréal, Canada, 918–929.

Borst, W. N. 1997. Construction of engineering ontologies for
knowledge sharing and reuse. Holland: University of
Twente. 227 p.

Bresciani, P.; Perini, A.; Giorgini, P.; Giunchiglia, F.; Mylopoulos, J.
2004. Tropos: an agent-oriented software development
methodology, Autonomous Agents and Multi-Agent
Sytems 8(3): 203–236.
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef

Crawley, D.; Hand, J.; Kummert, M.; Griffith, B. 2008.
Contrasting the capabilities of building energy performance
simulation programs, Building and Environment 43(4):
661–673. http://dx.doi.org/10.1016/j.buildenv.2006.10.027

Dibley, M.; Li, H.; Rezgui, Y.; Miles, J. 2012. An ontology
framework for intelligent sensor-based building monitor-
ing, Automation in Construction 28: 1–14.
http://dx.doi.org/10.1016/j.autcon.2012.05.018

Fernandez-Lopez, M.; Gomez-Perez, A.; Juristo, N. 1997.
METHONTOLOGY: from ontological art towards onto-
logical engineering, in Proceedings of the AAAI97 Spring
Symposium, 24–26 March 1997, Stanford, USA, 33–40.

Fernández López, M. 1999. Overview of methodologies for
building ontologies, in Proceedings of the IJCAI-99
workshop on Ontologies and Problem-Solving Methods
(KRR5), 1991, Stockholm, Sweden, 4.1–4.13.

Fielding, J.; Simon, J.; Ceusters, W.; Smith, B. 2004. Ontolog-
ical theory for ontological engineering: biomedical sys-
tems information integration, in Proceedings of the Ninth
International Conference on the Principles of Knowledge
Representation and Reasoning (KR2004), 2004, Whistler,
BC, USA, 114–120.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. 1995. Design
patterns: Elements of reusable object-oriented software.
Reading, MA: Addison-Wesley. 416 p.

Gómez-Pérez, A.; Fernandez-Lopez, M.; Corcho, O. 2004.
Ontological engineering: with examples from the areas
of knowledge management, e-commerce and the semantic
web. Springer. 420 p.

Gruber, T.; Olsen, G. 1994. An ontology for engineering math-
ematics, in Fourth International Conference on Princi-
ples of Knowledge Representation and Reasoning, 1994,
Gustav Stresemann Institut, Bonn, Germany. Morgan
Kaufmann. 18 p.

Grüninger, M.; Fox, M. 1995. Methodology for the design and
evaluation of ontologies, in Proceedings of the Workshop
on Basic Ontological Issues in Knowledge Sharing held in
conjunction with IJCAI-95, 1995, Montreal, Canada. 10 p.

Guarino, N. 2006. Ontology and terminology – how can for-
mal ontology help concept modeling and terminology?,
in EAFT-NordTerm Workshop on Terminology, Concept
Modeling and Ontology, 2006, Vaasa, Italy. 12 p.

Guarino, N.; Welty, C. 2009. An overview of OntoClean, in
Handbook on ontologies. international handbooks on
information systems.Verlag, Springer, 201–220.

Li, H.; Rezgui, Y.; Miles, J.; Wilson, I. 2010. Low carbon
ontology development using information retrieval tech-
niques, in Proceedings of the 8th European Conference

on Product & Process Modelling, 14–16 September 2010,
Cork, Ireland, 215–221.

Hamscher, V.; Schwiegelshohn, U.; Streit, A.; Yahyapour, R.
2000. Evaluation of job-scheduling strategies for grid
computing, Grid Computing–GRID, 191–202.

Herman, I. 2008. W3C Semantic Web activity, World Wide Web
Consortium. World Wide Web Consortium [online], [cited
12 Oct 2012]. Available from Internet:
http://www.w3.org/standards/semanticweb/.

Iglesias, C.; Garijo, M.; Centeno-Gonzalez, J. 1999. A sur-
vey of agent-oriented methodologies, in Proceedings of
the 5th International Workshop on Intelligent Agents V,
Agent Theories, Architectures, and Languages. London:
Springer-Verlag. 14 p.

Jacobson, I.; Booch, G.; Rumbaugh, J. 1999. The unified soft-
ware development process. Addison-Wesley Professional.
512 p.

Kalyanpur, A.; Pastor, D.; Battle, S.; Padget, J. 2004. Automatic
mapping of OWL ontologies into Java, in Proceedings
of the 16th International Conference on Software Engi-
neering & Knowledge Engineering, 2004, Banff, Alberta,
Canada. 8 p.

Luo, R. C.; Lin, S.; Su, K. 2003. A multiagent multisensor
based security system for intelligent building, in Proceed-
ings of the IEEE Conference on Multisensor Fusion and
Integration for Intelligent Systems, 30 July – 1 August
2003, Tokyo, Japan, 311–316.
http://dx.doi.org/10.1109/MFI-2003.2003.1232676

Maulo, F. 2006. NHibernate for .NET [online], [cited 11 Oct
2012]. Available from Internet:

https://community.jboss.org/wiki/NHibernateForNET?_sscc=t
Nikraz, M.; Caire, G.; Bahri, P. 2006. A methodology for the

analysis and design of multi-agent systems using Java
Agent Development Framework (JADE). Turin: Telecom
Italia Lab. 40 p.

Pan, X.; Han, C.; Law, K. 2005. A multi-agent based simulation
framework for the study of human and social behavior in
egress analysis, in Proceedings of the 2005 International
Conference – Computing in Civil Engineering, 2005, Can-
cun, Mexico, 1–12.

Pease, A. 2008. The suggested upper merged ontology (SUMO) –
Ontology portal [online], [cited 22 Oct 2012]. Available
from Internet: http://www.ontologyportal.org

Preece, A.; Gomez, M.; Mel, G.; Vasconcelos, W.; Sleeman, D.;
Colley, S.; Porta, T. 2007. An ontology-based approach to
sensor-mission assignment, in Proceedings of the Annual
Conference of Interntional Technology Alliance, 2007,
Maryland, USA. 16 p.

Rao, A. S.; Georgeff, M. 1995. Belief, desire, intention (BDI)
agents: from theory to practice, in Proceedings of the
First International Conference on Multiagent Systems
(ICMAS-95), 1995, San Francisco, USA, 312–319.

Ren, Z.; Anumba, C. 2004. Reveiw: multi-agent systems in
construction – state of the art and prospects, Automation
in Construction 13: 421–434.
http://dx.doi.org/10.1016/j.autcon.2003.12.002

Rueppel, U.; Lange, M. 2006. An integrative process model for
cooperation, Journal of Information Technology in Con-
struction 11 (Special Issue: Process Modelling, Process
Management and Collaboration): 509–528.

Russomanno, D. J.; Kothari, C.; Thomas, O. 2005. Building a
sensor ontology: A practical approach leveraging ISO and
Open Geospatial Consortium (OGC) models, in The 2005
International Conference on Artificial Intelligence, 2005,
Las Vegas, Nevada, USA. 7 p.

Schenck, D. A.; Wilson, P. 1994. Information modeling the
EXPRESS way. Oxford University Press, USA. 416 p.

Schreiber, G.; Wielinga, B.; Hoog, R.; Akkermans, H.; Velde, W.
1994. CommonKADS: a comprehensive methodology for

Journal of Civil Engineering and Management, 2015, 21(3): 356–375 375

KBS development, Intelligent Systems and Their Applica-
tions 9(6): 28–37.

Sure, Y.; Staab, S.; Studer, R. 2004. On-to-knowledge meth-
odology (OTKM), in Handbook on ontologies, inter-
national handbooks on information systems. Ontoprise
Gmbh. 17 p.

Swartout, B.; Ramesh, P.; Knight, K.; Russ, T. 1997. Toward
distributed use of large-scale ontologies, in AAAI Techni-
cal Report SS-97-06, 138–148.

Szekely, B.; Betz, J. 2009. Jastor – typesafe, ontology driven
RDF access from Java. [online], [cited 11 Oct 2012].
Available from Internet: jastor.sourceforge.net

Tulke, J.; Tauscher, E. 2009. Open industry foundation classes
(IFC) tools [online], [cited 11 Oct 2012]. Available from
Internet:

	 http://www.openifctools.org/Open_IFC_Tools/Home.html
Uschold, M.; King, M. 1995. Towards a methodology for build-

ing ontologies, in Workshop on Basic Ontological Issues in
Knowledge Sharing, 1995, Montreal, Quebec, Canada. 13 p.

Winikoff, M.; Padgham, L. 2004. The Prometheus meth-
odology, in Methodologies and software engineering
for agent system. multiagent systems, artificial socie-
ties, and simulated organizations, Vol. 11. Springer,
217–234.

Wood, M. F.; DeLoach, S. 2000. An overview of the multiagent
systems engineering methodology, in Agent-Oriented
Software Engineering, Lecture Notes in Computer Sci-
ence, Vol. 1957, 2001. Berlin: Springer Verlag, 207–221.

Wooldridge, M.; Jennings, N.; Kinny, D. 2000. The Gaia
methodology for agent-oriented analysis and design, Auton-
omous Agents and Multi-Agent Systems 3(3): 285–312.
http://dx.doi.org/10.1023/A:1010071910869

Rezgui, Y.; Miles, J. 2011. Harvesting and managing knowl-
edge in construction: from theoretical foundations to busi-
ness applications. London: Spon Press. 232 p.

Zhang, C.; Hammad, A.; Bahnassi, H. 2009. Collaborative
multi-agent systems for construction, Journal of Informa-
tion Technology in Construction 14: 204–228.

Michael DIBLEY. Dr, has recently completed his PhD (An Intelligent System for Facility Management, 2011) in Cardiff Univer-
sity, Engineering School. He now works in BRE Institute of Sustainable Engineering, Engineering School, Cardiff University as a
Research Associate. His research interest relates to sensor development, sensor based building monitoring, ontology development,
and multi-agent system.

Haijiang LI. Dr, a Lecturer (Engineering Informatics & Structural Applications) working in the BRE Institute of Sustainable
Engineering, Engineering School, Cardiff University. His main research interest lies on Advanced and Innovative Computing sup-
ported large scale systems integration and decision making. It covers Building Information Modelling (BIM) based AEC systems
integration, High Performance Computing & Cloud Computing, ontology development and multi-agent systems, intelligent building
monitoring sensor system etc., which have been applied into large scale infrastructure modelling, sustainable design and develop-
ment, adaptable buildings, robust & resilient building design, life cycle infrastructure integration, knowledge management, intelligent
computing for building energy simulation, virtual reality and visualization.

Yacine REZGUI. Prof., the Director of the BRE institute of sustainable engineering. He has successfully completed over 20 national
(TSB/EPSRC, WAG) and European projects. He is currently involved in the FP7-2011-NMP-ENV-ENERGY-ICT-EeB KnowholEM
project (285229) which delivers optimized ontology-based building energy management solutions. His expertise includes ontology
engineering, service-based computing, multi-agent systems, and building energy. He has published extensively in the above areas,
including a newly edited book (Rezgui and Miles, 2011 – Spon).

John MILES. Is a Professor in Engineering Informatics. He was the former institute head, and his expertise lies on conceptual
engineering design, engineering optimization.

