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Abstract. a fall (also referred to as a tumble) is the most common type of accident at steel construction (SC) sites. To 
reduce the risk of falls, current site safety management relies mainly on checklist evaluations. however, current on-
site inspection is conducted under passive supervision, which fails to provide early warning to occupational accidents. 
To overcome the limitations of the traditional approach, this paper presents the development of a fall risk assessment 
model for SC projects by establishing a Bayesian network (Bn) based on fault tree (FT) transformation. The model can 
enhance site safety management through an improved understanding of the probability of fall risks obtained from the 
analysis of the causes of falls and their relationships in the Bn. In practice, based on the analysis of fall risks and safety 
factors, proper preventive safety management strategies can be established to reduce the occurrences of fall accidents 
at SC sites.
Keywords: Bayesian network, fault tree, steel construction, fall risks.

Introduction

Steel structures are commonly used in high-rise build-
ings. however, falls are the most frequent occupational 
accidents at steel construction (SC) project sites because 
of work at height. In Taiwan, the percentage of fall acci-
dents at SC project sites rose to 67% over the past decade 
(2000–2010). Fall accidents at SC sites occur frequently 
because of unqualified safety equipment and unsafe work-
er behavior, particularly for steel member-lifting work. 
Construction companies implement every possible safety 
measure to prevent occupational accidents. The current 
method for implementing on-site safety management is 
to conduct regular safety inspections using a checklist of 
unsafe equipment and unsafe worker behaviors. however, 
current on-site inspection is conducted under passive su-
pervision, which fails to provide early warning regard-
ing occupational accidents. Several effective approaches 
have recently been developed to define the relationship 
among safety variables so that preventive safety measures 
could be proposed. Structural equation models (SeM) and 
Bns are typical examples of these approaches (Kao et al. 
2009; Martin et al. 2008; Paul, Maiti 2007).

Bns can be used to identify the most important 
causes of site accidents and determine the relationships 
among these causes to enable defining early and preven-
tive safety measures. Because of the constraint of data 
availability, the construction of a practical Bn is generally  
based on the experiences of domain experts. however, it 

is difficult to establish mutual relationship among nodes 
in the network by directly incorporating the views of ex-
perts. It may be more effective to build Bn through FT 
transformation (Franke et al. 2009; Xiao et al. 2008).

The remainder of this paper is organized as follows: 
Section 1 reviews state of art on safety risk assessment 
methods and Bns; Section 2 provides descriptions of the 
basic concepts of FTs and Bns, as well as the Bn devel-
opment process. a multi-state FT provided the fundamen-
tal frameworks to develop the Bn through FT transforma-
tion. Section 3 introduces the development of a Bn-based 
fall risk assessment model for SC building projects. Sec-
tion 4 details the validation of the model against six SC 
building projects; and lastly, conclusions are provided.

1. Literature survey

Several risk assessment methods have been used for safe-
ty risk assessment at construction sites, such as fault tree 
analysis (FTa), failure mode and effect criticality analy-
sis (FMeCa), and the decision tree (hartford, Baecher 
2004; Kales 2006). Basic probabilities and Boolean oper-
ations are used in FTa algorithms. To simplify FT opera-
tions using Boolean logic, events in an FT are generally 
assumed to be mutually independent. however, a number 
of safety factors (such as the interaction between unsafe 
behaviors and unsafe environments and their effect on 
accidents) can be highly coupled. Such mutual dependen-
cies are not effectively addressed by classical approaches.  
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To overcome the constraint of classical safety assess-
ment, in recent years, Bns have become popular tools 
for safety risk assessments based on uncertain causal re-
lationships between multidimensional parameters. Martin 
et al. (2008) used a Bn to analyze workplace accidents 
caused by falls from considerable heights. Bedford and 
gelder (2003) assessed the safety of third parties during 
construction in multiple spaces using Bns. Matias et al. 
(2007) indicated that, in addition to their excellent pre-
dictive capacity, Bns have a satisfactory interpretative 
capacity regarding workplace accidents.

In general, expert knowledge is used to develop Bns 
that describe problems with the causal relationships be-
tween nodes and their conditional probabilities. The direct 
construction of a Bn is more applicable to simple prob-
lems; however, it is difficult to directly develop complex 
Bns. Some scholars have proposed several systematic 
approaches to Bn construction through FT transforma-
tion. The main techniques make use of 「OR gate」 and 
「anD gate」 logic and then transform into a Bn to per-
form probabilistic analyses of event occurrences (Franke 
et al. 2009; Marsh, Bearfield 2007; Xiao et al. 2008). Sev-
eral prior studies regarded events and logic gates in FT as 
nodes in BN; however, these two have differing definitions 
and purposes. Logic gates are used mostly to describe the 
relationship between events in a sequence; it is meaning-
less to convert logic gates into physical Bn nodes. There-
fore, we combined FTa and a Bn to develop a more rea-
sonable transformation process from FT to Bn. a fall risk 
assessment model for SC projects was established based 
on the transformation procedures proposed in this study.

2. Methods and process

The construction of a Bn can be complex, and its net-
work structure is problem-specific. It is preferable to first 
construct a Bn hierarchy by following the concept of 
FTa and subsequently transform basic FT into Bn frame-
work. Finally, meaningful supplementary links among 
Bn nodes and a conditional probability table (CPT) can 
be introduced by incorporating expert experiences. FTa, 
Bn, and the transformation processes are explained in 
detail in the following subsections.

2.1. Fault tree analysis (FTA)
FTA first identifies a particular undesired event as a top 
event. The construction of an FT proceeds in a top-down 
manner. It starts from the events and proceeds to their 
causes until the basic components are obtained. The rela-
tionships between events and causes are defined and rep-
resented using 「anD」or 「OR」 logic gates (Franke 
et al. 2009; graves et al. 2007; Xiao et al. 2008). Be-
cause FTa qualitatively or quantitatively analyzes the 
defects and weaknesses of a system, FTa is widely used 
for reliability and security testing and fault diagnoses 
in decision-making models (Lindhea et al. 2009; Kales 
2006; O’Connor, Kleyner 2002).

The events of the conventional FTa methodology 
are regarded as statistically independent; however, this 

may be unsuitable for real-world cases. a number of 
variables in complex problems are interrelated. Because 
FTa cannot demonstrate complex causal relationships, 
probabilistic network approaches (such as Bns) can be 
used to solve this problem.

2.2. Bayesian network (BN)
Combined with probability theory and graph theory, 
Bns consist of nodes, joints among nodes, and CPTs. 
a Bn is a probabilistic graphical model that represents 
a set of random variables and their conditional depend-
encies through a directed acyclic graph. Over the past  
25 years, Bns have emerged as a practically feasible form 
of knowledge representation. Compared to other learn-
ing models, Bns have several advantages: 1) transparent  
representation of causal relationships among variables 
from various sources (such as expert knowledge, empiri-
cal data, output from other models); 2) management of 
incomplete data sets; and 3) efficient updating when new 
knowledge or evidence is available. Bns have higher ef-
ficiency and accuracy in uncertain inferences, especially 
for complex systems with highly correlated elements, 
such as disease diagnosis assistance, industrial design, 
financial investment, ecology, failed machine system, file 
filtering, graphical interpretation, and factory planning 
under uncertain conditions (Doguc, Ramirez-Marquez 
2009; Marquez et al. 2010; Stewart-Koster et al. 2010).

Three Bn construction approaches are generally 
used: 1) learning from a large amount of training data;  
2) based on the experience of domain experts; and 3) hy-
brid. The second approach is generally used for practical 
Bn construction because of the constraint of data availa-
bility. However, it is generally difficult to establish mutual 
relationships among nodes in the network based only on 
the knowledge of engineers and experts. Therefore, several 
transformation processes from FT to Bn have been pro-
posed (Franke et al. 2009; Xiao et al. 2008). The classical 
transformation of logic gates from FT into Bn is gener-
ally one-to-one; that is, logic gates in an FT are converted 
into corresponding physical nodes in the Bn. however, 
the meanings of an event node in Bn differ from those of 
a logic gate in an FT. an event node is used to represent 
a variable in the problem domain, whereas a logic gate is 
used to describe the logical relationship between nodes. 
For the transformation from FT to Bn, the event nodes and 
the logic gates must be managed separately. In the trans-
formation process of logic gates, the CPT in Bn, which 
corresponds to logic gates, must be analyzed under two 
states or multiple states by using the probability values.

2.3. Conversion from FT to BN
The proposed conversion process was divided into two 
parts: framework conversion and CPT calculation. The 
basic steps for framework conversion are as follows:  
1) direct transformation from the events and the vertical links 
in FT to the nodes and the fundamental links in Bn (logic  
gates are excluded); and 2) insertion of supplementary links 
using knowledge of experts and engineers. Furthermore,  
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the CPT calculation was performed based on the logic 
gates among nodes. each step is detailed as follows.

2.3.1. Framework conversion
The proposed method of conversion from FT to Bn is a 
modification of techniques from previous studies (Franke 
et al. 2009; Xiao et al. 2008). In summary, the conversion 
process of Bn structure from FT is shown in Figure 1.  
The top events, intermediate events, and basic events in 
the FT were directly mapped into the nodes in the Bn. 
The overlapping nodes were combined into a single node. 
The arrows among the BN nodes follow the definition of 
event relationships in the FT. Furthermore, a number of 
supplementary arrows were inserted into the fundamental 
Bn structure based on expert opinions.

2.3.2. CPT calculation
The CPT structure becomes complex when a node in 
a Bn has several parent nodes, or when each parent 
node and child node has several states. In addition, the 
CPT values are generally defined by experts based on 
their experiences. The elicited probability values may 
be inconsistent, especially under a complex CPT condi-
tion. agenaRisk (2012) software was used to alleviate 
these difficulties. The probability values in the CPT can 
be calculated quickly using the parameters defined in 
the software and the weights among nodes defined by  
experts.

The definition of the expression function in AgenaRisk 
(2012) is crucial to define CPTs. Two main logic gates in an 
FT (AND and OR) are defined as follows: in the selection 
of the expression function items, the minimum is selected if  
the corresponding logic gate in the FT is「anD」, where-
as the maximum is selected if the logic gate is「OR」.  
Through deduction, the fault probabilities of the top event 
in FTa and the Bn can be proven to be identical.

after the selection of the expression functions in 
AgenaRisk (2012) is defined based on the logic gates in 
the FT, the weights are determined and inputted through 
the opinion poll of experts based on the contribution of 
parent nodes to children nodes. The weight score ranged 
from 1 to 5. a weight score of 1 indicates the lowest effect  
of one parent node on the child node, and a weight 
score of 5 indicates the highest effect. Once the data are  

entered into agenaRisk (2012), all CPTs in the Bn can 
be quickly calculated. Furthermore, all posterior prob-
abilities of the top event and all intermediate nodes in the 
Bn can be inferred using agenaRisk (2012).

3. BN-based fall risk evaluation of steel  
construction projects

a Bn-based fall risk evaluation model for SC building 
projects was developed based on the proposed Bn con-
struction process. To obtain reliable knowledge and data, 
22 specialists with an average of 18 years of work experi-
ence were interviewed for the construction of the model. 
Furthermore, the correctness of the model was validated 
against six steel building projects. Finally, the sensitive 
causes affecting fall risks were assessed and discussed us-
ing sensitivity analysis. The details of the model develop-
ment are presented in the following subsection.

3.1. Construction of FT framework
Based on the domino theory of safety management  
(Jitwasinkul, hadikusumo 2011; Lingard,  Rowlinson 
2005), the causes of fall accidents at SC projects can 
be classified into accident locations (such as beams, col-
umns, and steel decks), indirect causes (such as unsafe 
behavior, unsafe equipment, and unsafe environments), 
and root causes (such as improper safety plans and poor 
safety management).

Falls can basically occur at three main locations 
(T): 1) steel beam construction areas (g1); 2) steel col-
umn construction areas (g2); and 3) deck construction 
areas (g3). using steel beam erection as an example, 
the circumstances surrounding work tasks that can trig-
ger a fall accident were analyzed in detail based on ex-
pert interviews and literature reviews. The three main 
tasks that can lead to a fall are as follows: 1) hoisting 
SC beams; 2) beam installation and permanent fixa-
tion; and 3) limb discordance in operation. If neces-
sary, these tasks can be divided into detailed subtasks. 
Furthermore, the indirect causes that may trigger a fall 
accident during steel beam erection were sequentially 
analyzed.

Finally, the four root causes that result in occupa-
tional accidents are insufficient safety training, poor site 
environment management, improper health and safety 
planning, and inadequate safety and health management. 
Based on occupational accident records, safety theories, 
and expert interviews, the interaction of these root causes 
and the indirect causes was identified to form the overall 
FT. The completed FTs of falls at SC project sites are 
shown in Figures 2–4.

3.2. Construction of BN from FT and CPT  
calculations
Based on the transformation process described in Section 2,  
all FT diagrams were transformed to the Bn. The complete  
Bn framework is shown in Figure 5. agenaRisk (2012) 
was used to calculate a CPT based on the constructed Fig. 1. Transformation flow chart from FT to BN
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Fig. 2. FT of falling accidents at beam erection of SC projects
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Fig. 3. FT of falling accidents at column erection of SC projects

Bn framework. Questionnaires were designed to collect 
information on the relative weights of parent nodes to 
their child nodes. In total, 22 experts were invited to as-
sess 136 questions based on their practical experiences, 
and their answers were statistically analyzed. The CPTs 
for all arcs in the Bn were calculated using the input 
data.

3.3. Assessment of prior probabilities
Four crucial root causes were defined in the model. A safe-
ty performance evaluation table was established to assess  
the prior probabilities of these causes. If more items are 
marked based on the site investigation, the higher prob-
ability of poor performance of the root cause would be 
subjectively evaluated. By inputting prior probabilities 
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into the Bn, fall risks at SC building project sites and 
their significant causes can be identified using this model.

4. Model validation and sensitivity analysis
4.1. Model validation
The proposed Bn model was validated using the results 
of actual safety inspection records of six SC building 
projects and the posterior probabilities of the top node in 
the Bn. The basic information of these SC projects and 
a summary of their actual safety inspection records are 
shown in Table 1. using the safety performance evaluation  

tables, the prior probabilities of four root causes at the six 
projects were subjectively assessed and entered into age-
naRisk (2012) to determine the posterior probabilities of 
the nodes in the Bn. Table 1 shows a comparison of the 
analytical results of the Bn model with actual safety in-
spection records. a higher posterior probability indicates 
greater risk. however, a lower real assessment value in-
dicates inferior site safety management. as shown in the 
table, the ranks of posterior probabilities from the Bn 
model are highly consistent with those of safety perfor-
mances obtained from the actual records. Only Projects 
3 and 4 differed slightly.

Fig. 4. FT of falling accidents at deck installation of SC projects
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The error rate was further analyzed based on the stand-
ardized root mean square error (sRMSe), which is generally 

defined as 

The assessed value (0.3381) was less than the threshold  
value (0.4) (hengl et al. 2004). Moreover, the rank  

result of Bn analysis was statistically identical to that 
of actual safety records based on the Wilcoxon rank-
sum test. The actual appraisal and validation of these 
six SC projects showed that the proposed Bn-based 
fall risk evaluation model is accurate and effective, and 
can be used as a tool for fall risk assessments of SC  
projects.

Fig. 5. Bn of falling accidents at steel construction projects
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4.2. Sensitivity analysis and discussions
Sensitivity analysis was conducted to further examine 
the main factors that affect the occurrence of falls at 
SC project sites. In Bn sensitivity analysis, a single 
target node and one or more sensitivity nodes must be 
selected. Several sensitivity reports can be generated 
using agenaRisk (2012), including sensitivity tables, 
tornado graphs, and receiver operating characteristic 
(ROC) curves. The top sensitivity nodes were selected 
based on the rank of the sensitivity nodes in the tornado 
graph, as shown in Table 2. The main direct cause of 
falls is hoisting steel beams without appropriate safety 
facilities, such as the lack of a safety net, limited con-
struction pedal boards, and a lack of ideal fixed points 
of lifeline and safety belts. Therefore, workers who do 
not focus more are more prone to fall accidents. The 
statistical survey on occupational accidents that occur at 
SC project sites also indicated that hoisting steel beams 
is a crucial stage in SC projects because the occur-

rence of occupational accidents during the steel com-
ponent hoisting and assembling process is the highest 
(39%). The other top three stages in which occupational  
accidents occur at SC building project sites are material- 
lifting works (17%), member-fixing works (15%), and 
member tearing-down (8%).

The most sensitive indirect cause of occupational 
accidents is improper use of personal safeguards. Im-
proper and inadequate use of personal safeguards results 
in laborers working without proper protection, which can 
easily lead to construction accidents. Based on the sta-
tistics of occupational accidents at SC project sites, ap-
proximately half of all occupational accidents that occur 
during the steel component assembly stage are caused 
by improper use of personal safeguards. Finally, the root 
factors include safety and health management and safety 
training, which play a vital role in the mitigation of fall 
occurrence at SC project sites. Recent studies have in-
dicated that the most influential factor in the occurrence 
of accidents is management issues (aksorn, hadikusumo 
2008).

In summary, this model assesses fall risks at SC 
building sites and identifies the causes of fall accidents 
through sensitivity analysis. Based on the analysis, pro-
ject managers can propose preventive safety measures 
to reduce the occurrence of falls. Moreover, the fall risk 
assessment and sensitivity analysis allow project manag-
ers to allocate resources toward the critical safety causes 
early, to substantially mitigate fall risks.

Conclusion and future developments

This study developed an effective process to build a Bn-
based fall risk evaluation model for SC building projects. 
The inference results of the Bn were validated against 
six SC building projects in Taiwan. an analysis and  
comparison indicated that the Bn analysis results are con-
sistent with actual safety records, showing that the trans-
formation process from an FT to a Bn can effectively  
establish a realistic and accurate fall risk evaluation  
model. Therefore, based on the model assessment and 
sensitivity analysis, site project managers can prepare 
preventive safety measures and allocate resources in ad-
vance to substantially reduce fall risk at sites.

Table 2. Top sensitivity factors of fall risk at SC projects

no. Level Top three sensitive factors

1 g Falling caused by steel column construction  
(g2)

2 F
Falling while beam Installation and fix (F3)
Falling while deck construction (F6)
Falling while column installation (F4)

3 e

Improper usage of protective equipment 
(e7)
Temporary fixing error (E3)
Steel components collision while lifting 
(e1)

4 D
unequipped personal safeguard (D13)
Ineffective protective equipment (D12)
Crane operation error (D1)

5 C
not hook to safety belt (C6)
error indication (C1)
Unqualified safety nets (C7)

6 B

Failure to comply with the code of practice 
(B17)
no personal protective equipment (B18)
Poor control process (B1)

7 a Poor safety and health management (a4)
Insufficient safety training (A1)

Table 1. Comparison between Bn and real site assessment

Project 
no. Building type Total floor 

area (M2)
Weight of 
steel (T)

Floor 
(superstructure/

substructure)

Fall risk (%) 
from Bn

Risk rank 
by Bn

Real site 
assessment

1 Residence 59,900 11,200 41/6 46.5 5 5 (85.64)

2 Residence 30,444 8,200 38/1 86.4 1 1 (82.00)

3 Residence 32,465 6,150 23/5 46.2 6 6 (86.22)

4 Residence 21,530 3,600 23/6 47.9 4 3 (85.31)

5 Residence 25,960 3,132 21/3 59.2 2 2 (84.67)

6 Training center 9,000 1,200 6/3 53.8 3 4 (85.46)
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although the transformation mechanism from FT 
to BN has been efficiently examined, the use of a BN 
relies on the inputs of experts for arcs and CPTs in Bn. 
Data provided by various experts directly affect the ac-
curacy and assessment quality of a Bn.  Future studies 
must focus more on expert elicitation. In addition, a Bn 
can be learned from raw data. If complete and accurate 
safety data are available, an objective Bn framework and 
parameters can be explored and established. Moreover, 
certain safety events and causes may interact in a time 
sequence. For such time-dependent safety analysis, a 
dynamic Bn (DBn) may be an appropriate approach; a 
DBn can be easily built by transforming a dynamic FT 
(DFT). Finally, other occupational accidents occur fre-
quently at SC project sites, such as object fall, object 
collapse, and electrocution. It may be necessary to extend 
the Bn scope to cover these accidents and use the Bn for 
an overall safety diagnosis at SC project sites to enhance 
safety operations and management.
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