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Abstract. Applicability of artificial neural networks is examined in determining the natural frequencies of intact beams 
and crack parameters of damaged beams. Multi-layer perceptron (MLP) and radial basis neural networks (RBNN) are 
utilized for training and validation of input data. In the first part of the study, the first four frequencies of free vibration 
are predicted based on beam properties by the networks. Showing the effectiveness of the neural networks in predicting 
the vibrational frequencies, the second part of the study is carried out. At this stage of the inverse problem, the frequen-
cies and mode shape rotation deviations in addition to beam properties are used as input to the networks to determine 
the crack parameters. Different hidden nodes, epochs and spread values are tried to find the optimal neural networks that 
give the lowest error estimates. In both parts of the study, the RBNN model performs better. The robustness of the net-
work models in the presence of noise is also shown. It is shown that the optimal MLP network predicts the crack param-
eters slightly better in the presence of noise. As a conclusion, the trained RBNN model can be used in health monitoring 
of beam-like structures as a crack identification algorithm. 
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Introduction

Engineering structures accumulate damage during their 
service life. The occurrence of damage in civil, me-
chanical and aerospace engineering structures might be 
unavoidable. However, the earliest possible detection of 
damage is crucial in order to prevent catastrophic, eco-
nomic and human loss. Damage detection methods can 
be ordinarily classified as local and global damage identi-
fication techniques (Doebling et al. 1996). Local damage 
detection methods are based on visual inspection, stress 
waves, ultrasonic waves, X-ray, acoustics or radiogra-
phy. These methods are restricted to local examination 
in limited areas and require a prior knowledge of the 
vicinity of damage (Yan et al. 2007). When applied to 
large structures, these methods are very time consuming 
and costly (Carden, Fanning 2004). To overcome these 
difficulties, global damage identification methods have 
been developed (Fan, Qiao 2011). Global methods re-
ferred to as vibration-based damage detection techniques 
assess the condition of the entire structure at once. These 
methods are based on the basic principle that damages 
emerging in a structure alters both its physical prop-
erties (e.g. mass, stiffness and damping) and dynamic 
properties (e.g. frequency response function, natural fre-
quencies, damping ratios and mode shapes) (Shi et al. 

2000a, 2002; Gawronski, Sawicki 2000; Kawiecki 2001; 
Abdo, Hori 2002; Sampaio et al. 2003). By analysing 
the dynamic characteristics of a structure, hence, any 
damage can be identified, including its location and de-
gree. Consequently, intensive research has been carried 
out in the field of vibration-based damage identification 
over the last three decades. A broad range of techniques, 
algorithms and methods utilizing natural frequencies  
(Gudmundson 1982; Kasper et al. 2008; Nandwana, Maiti  
1997), mode shapes (Shi et al. 2000b; Lee et al. 2005; 
Abdo, Hori 2002), mode shape curvature (Pandey et al. 
1991; Abdel Wahab, De Roeck 1999; Ratcliffe 2000), 
modal flexibility (Pandey, Biswas 1994; Wu, Law 2004, 
2005), etc. are developed to solve challenging problems 
encountered in various structures, from basic structural 
components (e.g. beams and plates) to complex structural 
systems (e.g. buildings and bridges). 

Vibration-based damage identification is an inverse 
problem of predicting crack location and severity from 
the modal information of structures. Problems exist with  
dynamic-based inverse procedures. The inverse system 
identification techniques deteriorate in the presence of 
noise. Also, a unique solution often does not exist for an 
inverse problem, particularly when the relationships be-
tween damage properties and dynamic changes in structures  
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are very complex and only limited data are available 
(Bakhary et al. 2007). Vibration-based damage detection 
is overall a pattern recognition problem, where alterations 
in the vibrational characteristics of a structure are attrib-
uted to certain properties of damage. Therefore, a differ-
ent approach is required to overcome these critical issues 
of traditional damage detection methods. Artificial neural 
networks (ANNs) are such one method. ANNs are reliable 
damage identification methods due to their capabilities of 
pattern recognition and classification. They have the noise 
filtering capabilities that make them more robust in the 
presence of measurement noise and other uncertainties. 
Besides, once ANNs are properly established, damage 
identification is relatively fast and mathematical models 
do not need to be constructed (Bakhary 2008).

ANN is a mathematical model of biological neural 
system and theoretical mind. The basic concept of utiliz-
ing ANN for damage identification is to build a model to 
provide a relationship between the measured parameters 
of structures such as modal information, frequency re-
sponse functions, time domain data, etc., and structural 
parameters via a training process. Once the relationship 
is set up, the trained ANN model is capable of detecting 
damage from the measured quantities. The first success-
ful application of ANN using dynamic parameters of civil 
structures in the field of damage identification was carried 
out by Wu et al. (1992). Since then, the ANN – based 
damage identification techniques have been used for 
various structures such as beams (Marwala, Hunt 1999), 
frame structures (Nikolakopoulos et al. 1997), plates (Liu 
et al. 2002), trusses (Yun, Bahng 2000) and composite 
frames (Zapico et al. 2003). The following presents a re-
view of recent work performed for structural beam ele-
ments only, as the study herein considers the ANN-based 
damage detection in beam-type structures.

Both global (changes in natural frequencies) and 
local (changes in strain mode shapes) dynamic-based 
analysis data  have been used as input in ANNs for loca-
tion and severity prediction of crack damage in beam-
like structures. Natural frequencies computed for various  
crack locations and depth using a fracture mechanics 
based crack model were used to train a neural network to 
identify both the crack location and height (Suresh et al.  
2004). A modular neural network architecture with two 
widely used neural networks, i.e. the multi-layer percep-
tron (MLP) network and the radial basis neural networks 
(RBNN), was employed for the comparative study. Sa-
hin and Shenoi (2003) developed a damage detection al-
gorithm using a combination of global (natural frequen-
cies) and local (curvature mode shapes) data to identify 
the location and depth of cracks in beam structures. The 
dynamic properties of intact and cracked cantilever steel 
beams for the first three natural modes were obtained 
from a finite element program. The formed ANN archi-
tecture was tested against noisy data and experimental 
damage cases. The performance of ANN is compared to 
that support vector machine (SVM) by Liu and Meng 

(2005) in crack detection using a few natural frequencies  
of supported beams. The analysis results showed that 
SVM is a little better in locating and sizing the cracks.
The inverse problem of finding the crack location and 
depth in a cantilever Euler-Bernoulli beam and a rotat-
ing beam was studied by Rosales et al. (2009). Two ap-
proaches, power series technique (PST) and ANNs, were 
presented to solve the inverse problem. It was concluded 
that PST is straightforward and identifies the crack with 
small errors. However, the simplicity of this approach 
limits its use. Though the ANN yields larger errors on 
the average, it is capable of handling more complex mod-
els. Detection of crack in a cantilever beam through ANN 
was also studied by Das and Parhi (2009). The first three 
natural frequencies and mode shapes were used as input 
parameters to the ANN. The output parameters of the net-
work were the relative crack depth and location. Several 
training patterns were derived in the network. The ro-
bustness of the developed network was verified using the 
experimental results. The use of ANN for crack predic-
tion in curvilinear beam was recently studied by Saeed 
and George (2011).Vibration characteristics of intact and 
damaged beams were numerically computed from finite 
element method. Natural frequencies and frequency re-
sponse functions were fed as input into ANN, which then 
estimated the size of crack and its location. 

The literature that has contributed to the vibration-
based damage detection using ANN over the past two 
decades can be categorized into four groups according 
to the input they employ: ANNs-based methods using 
modal parameters, methods using both modal parameters 
and their derivatives, methods using frequency response 
functions and methods using time domain data. In those 
procedures utilizing modal parameters only, a two-stage 
identification technique is performed due to complex com-
putation involved in neural network and non-uniqueness  
of the inverse problem. The idea of employing two-stage 
identification is to reduce the number of variables. Loca-
tion of crack is predicted in the first stage of these meth-
ods. The crack severity is then determined in the second 
stage. In addition to modal parameters, the second group 
of methods uses their derivatives to avoid a multi-stage 
computation. In that case, however, a large number of 
data needs to be made available since training a neural 
network with large data provides a significant amount of 
redundancy and a better learning algorithm. It can also 
avoid the problem of over fitting, which can be defined 
as the inability of a network to perform better when un-
seen test data are input to the network. The ANNs trained 
with frequency response functions ortime domain data 
generally require excessive number of input parameters, 
which may as a consequence result in large and complex 
models. In order to circumvent sophisticated neural net-
work models, data reduction techniques such as principal 
component analysis or singular value decomposition are 
carried out to reduce the computed input data sets. 
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Most ANN models are limited to example structures 
with a small number of degrees of freedom or small num-
ber of large structural elements. Since large elements are 
not sensitive to a small crack, severe damage scenarios 
are usually assumed to successfully apply ANNs to dam-
age identification. Most studies, therefore, consider a sin-
gle type of structural beam element. Also, the material 
and geometrical properties of beam-like structures are 
never includedin the neural networks. 

The study herein investigates the feasibility of ANNs 
as a crack identification technique. The newness of the 
study is: 1) to incorporate the material and geometrical 
characteristics of beam elements in the neural network;  
2) to consider a variety of beam types in a single neu-
ral network model; and 3) to utilize mode shape rotation 
deviation curve for the first time in training the ANNs. 
Euler-Bernoulli theory is assumed to model the beam ele-
ments. Two popularly used neural network models, name-
ly MLP and RBNN networks, are used for the forward and 
inverse problems. It is reported in the literature that ANNs 
can learn about the behaviour of undamaged structures. 
Due to this and a large number of parameters involved 
in network architecture, the capabilities of the two ANNs 
are first examined in the forward problem. Having shown 
the robustness of the ANN procedures, the inverse prob-
lem of identifying the crack parameters, crack location 
and crack depth, are next studied. At this stage, the beam 
material and geometrical characteristics, support types of 
beam structures, the natural frequencies and mode shape 
rotation deviation values of the first four modes are used 
as input to train the network models. The outcomes of the 
trained ANNs are the relative crack location and relative 
crack depth. Despite a very large number of input param-
eters, both the forward problem and inverse problem of 
identification are carried out at a single-stage and no re-
duction analysis of network parameters is performed due  
to proper arrangement of network models.

1. Theoretical analysis of beam 

In this study, flexural vibration of beams with rectan-
gular cross section having a transverse crack extending 

uniformly along the width of the beam is considered. 
The beam with two ends supported by transverse and  
rotational springs is analysed as, by changing the stiffnesses  
of the springs, any support conditions of interest can be 
obtained. A beam of length L with n open cracks located 
at distance of x1, x2, ... xn such that 0 < x1 < x2 < ... xn < L  
is shown in Figure 1. The entire beam is now divided into 
n +1 intact segments. The cracks are modelled by mass-
less rotational springs (Li 2000). One major assumption 
of this modelling is that the cracks are always open during 
the beam vibration and, hence, the sophisticated nonlinear 
dynamics of cracks that open and close during the motion 
are not considered. The x-coordinate is along the beam 
length and y is along the beam height. v is the transverse 
displacement and ϕ is the slope of the beam. The addition-
al flexibility induced by the presence of ith crack is defined 
by the local compliance Ci, which causes a jump in the 
slope of the beam at that location, as shown in Figure 1b.

The governing differential equation of flexural vi-
bration of intact Euler-Bernoulli beam is:

  (1)

where: Kb = EI is the flexural stiffness; E is the Young’s 
modulus of elasticity; I is the area moment of inertia;

 is the mass per unit length; ρ is the mass density; 
and A is the area of beam cross-section.

Assuming the variation of transverse deflection of 
the beam at any location to be:

  (2)

Eqn (1) becomes:

  (3)

In Eqn (2),  ω and X(x) are the circular frequency 
and mode-shape function of the beam respectively. 

Fig. 1. Euler-Bernoulli beam having n cracks (a), crack modelling as rotational spring (b)
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The general form of the solution for Eqn (3) is 
given by:

 

 

(4)

where Dj(j = 1, 2, 3, 4)’s are constants to be determined 
from the boundary conditions and Sj’s are the linearly 
independent solutions given by:

 , (5)

where:  To simplify the analysis of vibra-
tion of the Euler-Bernoulli beam, the linearly independent 
fundamental solutions denoted by  are 
constructed. This is done by satisfying the normalization 
condition at the origin of axes (see for details Li 2001). 
Consequently, the following are obtained:

 . (6)

Using the above solutions for jS ’s, the mode-shape of 
the first segment (0 ≤ x < x1) can be formulated as:

  (7)

where: X(0), ϕ(0), M(0) and V(0) are the displacement, 
rotation, moment and shearing force of the beam at x = 0 
respectively. Only two of these parameters are unknown 
for any type of support conditions (Li 2000).

The compatibility conditions enforce the continuity 
of the force and displacement fields across the crack. For 
a crack located at section xi, these conditions can be ex-
pressed as:

 , (8)

where Ci is the compliance of the crack at the ith sec-
tion. The expressions in Eqn (8) show the equalities of 

displacement, shear force, bending moment and rotation, 
respectively, at the common interface of the ith segment 
and the (i+1)th segment. Ci can be expressed as:

  (9)

where: h is the height of the beam cross section; and ai 
is the depth of the ith crack. The function f(ai/h) is the 
dimensionless local flexibility computed from the strain 
energy function (Dimarogonas 1996) and given by:

 (10)

The mode-shape function for the section (xi ≤ x < xi+1 ) 
after the ith crack can be determined based on Eqns (7) 
and (8) as:

  (11)

in which H(.) is the Heaviside function, which assumes 
0 for x < xi and 1 for x > xi. This equation is a recurrence 
formula of the mode-shape functions. Using this equation 
and the mode-shape function of the first segment, one can 
derive the mode-shape of the last segment (segment n+1) 
of the beam as:

 (12)

The characteristic equation is readily established by im-
posing boundary conditions on the above equation. This 
is outlined for a cracked beam with two ends supported 
by springs and with end masses. 

The beam shown in Figure 1a has a transverse 
spring of stiffness K0, rotational spring of stiffness Kϕ0 
and concentrated mass of m0 at the left end. The bound-
ary conditions are then:

  (13)

Replacing the V(0) and M(0) in Eqn (7) by those in  
Eqn (13) gives the first segment of the beam as:

  (14)

Eqn (14) can be rewritten in a compact form: 

  (15)
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where:

 , (16)

with .

The support conditions at the right end are:

 , (17)

where:

  (18)

In this equation, KL and KϕL  are the stiffness of the trans-
verse spring and the rotational spring, and mL is the con-
centrated mass at the right end support. Using Eqns (11), 
(15) and (17) leads to:

           
                            = 0 (19)

and

 
(20)

The frequency equation is obtained by setting the  
second-order determinant formed from the coefficients 
of X(0) and ϕ(0) in Eqns (19) and (20) to zero. The eigen 
frequency ωj (j = 1, 2, 3,…) is then calculated from the 
frequency equation. Substituting the calculated value of 
ωj back into Eqns (19) and (20) and setting either X(0) or 
ϕ(0) to 1 or any other value, the jth mode shape can be 
obtained. The first derivative of the mode shape yields 
the mode shape rotation, from which the mode shape 
rotation deviation curve can readily be determined.

2. Generation of training and test data for ANN 
and its architecture

The characteristic equation is determined from Eqns (19)
and (20), which is then analytically solved to obtain nat-
ural frequencies of beam structures. These equations are 
highly non-linear and take too much CPU time on regu-
lar computers. Therefore, the analyses have been run on  
Intel Xeon E5645 machine with two CPUs of  2.4 GHz with  
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12 cores, 24 threads and 48 GB ram. The values of the 
rectilinear and rotational spring stiffnesses in these equa-
tions can be assigned in a way that any beam configu-
ration of desire is acquired. For example, a free end is 
attained by giving zero stiffness to spring elements. Full 
fixity can be obtained by using a large value of spring 
constants. One should be careful, however, about assign-
ing a large value since this value can cause numerical 
instability during the solution of the characteristic equa-
tion. The rule of thumb for choosing spring stiffness to 
get a full fixity is that the value should be approximately 
a thousand times greater than the stiffness of the beam 
element (Hoit 1994) to which the spring is connected in 
the direction under consideration. It is noted that this ap-
proach is approximate. The choice of spring stiffnesses 
is checked in this study by comparing the natural fre-
quencies of spring-spring supported beams with those of 
classically supported beams. Consequently, the amount 
to be used for full fixity is determined. A value of zero 
is utilized for free DOF and a normalized value of 1 for 
full fixity. This results in 16 beam types in total. Interme-
diate quantities of spring constants can also be used but 
in order not to make the ANN architecture too complex, 
this study considers these two limitingvalues. Some of 
the resulting example beam structures are presented in 
Figure 2.

As stated previously, the beam material and geomet-
rical characteristics have not been used in the literature of 
crack identification through ANN-based methods. Only 
one study, which is actually not damage identification  
but a study of determination of vibrational frequencies of 
intact beams via ANN (Civalek 2004), considered these 
variables. The study herein is hence the first in that re-
spect. The minimum and maximum values of beam pa-
rameters utilized are given in Table 1.

It is reported in the current literature that the ANNs 
can learn about the response of undamaged beams. This 
study, therefore, examined first the feasibility of ANNs 

in the forward problems, i.e. the determination of natural 
frequencies of intact beams given the support conditions, 
material and geometrical properties. Accordingly, a total of 
64152 different beam configurations are obtained and used 
as input to the neural networks in the forward problem.

The above beam configurations are introduced with 
local damage for the inverse problem. A number of simu-
lations are performed for various crack depths at different 
locations. The crack location x1 is varied from 0.05L to 
1.0L in steps of 0.05 and crack depth a1 is varied from 
0.05h to 0.5h in steps of 0.05. This results in 200 differ-
ent damage scenarios. Due to the symmetry between the 
natural frequencies and crack parameters for some beam 
structures, an additional parameter is needed in uniquely 
identifying the crack. Modal shapes and their derivatives 
have been frequently employed in the past. This study 
uses mode shape rotation deviation curves for that purport. 
These curves are computed from a simple transformation 
of the mode shape rotation data. Let ϕi be the ith datum of 
mode shape rotation along the beam length. Then:

  (21)

yields the desired deviation data. Combination of these de-
viation data with natural frequencies, the beam types, beam 
material and geometrical properties produce the data input 
to train the ANN of the inverse identification problem.

3. Neuralnetwork models
3.1. Multi-layer perceptron (MLP)
The multi-layer perceptron (MLP) is based on the pre-
sent understanding of the biological nervous system. It is 
a massive parallel system composed of many processing 
elements connected by links of variable weights. Among 
the many MLP paradigms, the back propagation network 
is by far the most popular (Haykin 1998). The network 
consists of layers of parallel processing units or neurons. 
Each layer is connected to the proceeding layer by inter-
connection strengths or weights, W. Figure 3 illustrates a 
three-layered MLP network consisting of layers i, j and 
k with the interconnection weights Wij and Wjk between 

Table 1. Ranges of beam material and geometrical properties 
used in training the neural network

Parameter Minimum
value

Maximum
value

Number of 
parameter

within range
Height of beam
h (m) 0.05 0.45 9

Mass density
ρ (kg/m3) 500 8000 18

Length of beam
L (m) 0.5 4.5 9

Modulus of 
elasticity
E (GPa)

29 220 11

Fig. 2. Examples of the beams resulting from the extreme 
conditions of spring stiffnesses
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the layers of the neurons. The initial assigned weights are 
progressively corrected during the training process. In this 
process, the outputs predicted by MLP are compared with 
known outputs, and errors are back propagated (from right 
to left in Fig. 3) to determine  the appropriate weight ad-
justments necessary to minimize errors. In this study, the 
Levenberg-Marquardt algorithm (Marquardt 1963) is used 
for adjusting the MLP weights (Hagan et al. 1994; Kisi 
2004; Kocabas et al. 2008, 2010a; Kisi, Ay 2011). Detailed 
information about MLP can be found in Haykin (1998).

3.2. Radial basis neural network (RBNN)
RBNN was first introduced into the ANN litera-
ture by Broomhead and Lowe (1988) and Poggio and  
Girosi (1990). The RBNN has two layers whose output 
nodes form a linear combination of the basis functions. 
RBNN is also known as a localized receptive field net-
work because of the fact that the basis functions in the 
hidden layer produce a significant nonzero response to 
input stimulus only when the input falls within a small 
localized region of the input space (Lee, Chang 2003). 
The relation between inputs and outputs is demonstrated 
in Figure 4. The RBNN has connection weights between 
the hidden layer and the output layer only. These weight 
values can be obtained by the linear least-squares method, 
which gives an important advantage for convergence. The 
Gaussian activation function is widely used as a radial 
basis function. The RBNN can be considered as a spe-
cial case of MLR. The RBNN method does not perform 
parameter learning as in MLP. It performs linear adjust-
ment of the weights for the radial bases. This characteris-
tic gives RBNN the advantage of a very fast converging 
time without local minima (Kocabas et al. 2010b; Kisi, 
Ay 2011) because its error function is always a convex. 
In this study, different numbers of hidden layer neurons 
are examined for the RBNN models with a simple trial-
and-error method. Detailed information about the RBNN 
method can be obtained from Haykin (1998).

4. Applications of neural network models 

This section presents the design and predictions of neural 
network models in forward and inverse problems. Due to 
a very large number of input parameters, the ability of 

the ANNs to estimate the vibrational frequencies of in-
tact beams given the material properties, beam geometri-
cal properties and support conditions is first examined. 
The inverse problem of identifying the crack location  
and depth is later studied. For these purposes, two dif-
ferent codes in MATLAB including Neural Network 
Toolbox are written for the MLP and RBNN simula-
tions. Each simulation considers a variety of models to 
determine the most effective neural networks. In order 
to evaluate the efficiency of each model, mean absolute 
relative error (MARE), root mean square error (RMSE) 
and determination coefficient (R2) statistics are used. The 
R2 measures the degree to which two variables are lin-
early related. MARE and RMSE provide different types 
of information about the predictive capabilities of the 
model. The RMSE measures the goodness-of-fit relevant 
to high values whereas the MARE yields a more balanced 
perspective of the goodness-of-fit at moderate values  
(Karunanithi et al. 1994).  The optimal model should 
have the minimal RMSE and MARE and an R2 close 
to 1. The RMSE, MARE, and R2 statistics are given by:

  (22)

  (23)

  (24)

Fig. 3. Schematic diagram of MLP architecture

Fig. 4. Schematic diagram of RBNN architecture
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where: N is the number of observations; Yo,i is the ith ob-
served datum; YM,i is the ith corresponding simulated da-
tum; o and M are mean of the observed and simulated 
values. Before applying the MLP and RBNN models to 
the data, the training input and output values were nor-
malized using the equation:

  (25)

where xmin and xmax are the minimum and maximum of 
the data set. In this study, a and b are taken as 0.6 and 0.2 
following the suggestion of Cigizoglu (2003). According 
to the Cigizoglu (2003), normalizing data in the range 
[0.2,0.8] increases the flexibility of ANN models.

In the first part of the study, the first four natural 
frequencies of beam elements are predicted based on 
beam material, geometrical and boundary conditions. 
Accordingly, a total of seven inputs and four outputs 
are used in training the neural network models. Due to 
a high number of input data, the simulations are run on 
previously mentioned Intel Xeon E565 machine. Sev-
eral hidden node numbers are tried for the MLP and 
RBNN models. For each hidden node number, vari-
ous numbers of iterations are tried for the MLP mod-
els. The iteration numbers tried for each MLP model 
are 5000, 10000, 20000, 30000, 40000 and 50000. For 
the RBNN models the optimal spread constant value 
for each RBNN model is obtained. The spread values 
tried for each RBNN model are 0.1, 0.2... 2.0. Opti-
mum parameters of the MLP and RBNN models are de-
termined by minimizing the objective function (MARE  

between calculated and observed frequency values) in test  
period. The test results of the optimal MLP models in 
frequency estimation are given in Table 2. The first three 
columns of Table 2 indicate that the optimum iteration 
number increases parallel to the hidden node numbers. 
It is clear from the table that the MLP5 model which 
has 50 hidden nodes with 20000 iterations performs bet-
ter than the other models. MLP7 model has better ac-
curacy than the MLP5 in estimating the first, the third 
and the fourth frequency values. However, it seems 
to be insufficient in estimating the frequency of the  
second mode.

Table 3 displays the test results of the optimal 
RBNN models in frequency estimation. It can be clearly 
seen from the table that the RBNN7 model comprising 
200 hidden nodes with 0.8 spread value performs better  
than the other models. Comparison of Tables 2 and 3 re-
veals that the optimal RBNN model (RBNN7) performs 
better than the optimal MLP5 model in estimating fre-
quency values. The estimates of the MLP and RBNN 
models in test period are shown in Figure 5. The fit line 
equations and R2 values of each model are also provided 
in this figure. It can be seen from the figure that the 
RBNN model performs better than the MLP model. As 
seen from the fit line equations (assume that the equa-
tion is y = aox + a1) in the scatterplots that the ao and a1 
coefficients for the RBNN model are respectively closer 
to the 1 and 0 with a higher R2 value than those of the 
MLP model.

In the second part of the study, the inverse problem 
is dealt with. Crack parameters, i.e. crack location and 
crack severity, are predicted using the beam properties and  

Table 2. The test results of the MLP models in natural frequency estimation

Hidden
node number Model Epochs

Frequency of mode 1 Frequency of mode 2
MARE RMSE R2 MARE RMSE R2

10 MLP1 5000 89.5 2113 0.001 8.39 343.3 0.996
20 MLP2 5000 5.49 65.24 0.999 84.8 6926 0.022
30 MLP3 10000 3.43 60.59 0.999 3.07 123.8 0.999
40 MLP4 20000 6.17 75.67 0.998 84.8 6926 0.003
50 MLP5 20000 7.48 82.43 0.998 5.58 216.4 0.999
100 MLP6 50000 4.06 32.49 0.999 84.8 6926 0.001
200 MLP7 50000 3.94 45.58 0.999 84.8 6926 0.016

Hidden
node number Model Epochs

Frequency of mode 3 Frequency of mode 4
MARE RMSE R2 MARE RMSE R2

10 MLP1 5000 6.98 596.0 0.998 7.35 1173 0.997
20 MLP2 5000 3.04 335.0 0.999 81.8 26220 0.009
30 MLP3 10000 82.9 14957 0.001 3.19 611.2 0.999
40 MLP4 20000 82.9 14957 0.004 3.75 795.3 0.999
50 MLP5 20000 5.17 469.4 0.998 4.91 878.6 0.998
100 MLP6 50000 2.14 195.2 0.999 81.8 26220 0.001
200 MLP7 50000 2.02 177.4 0.9997 2.12 361.7 0.9997
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dynamic-based analysis data. Hence, a total of 15 input 
parameters are utilized to determine two output quantities.  
Here also several hidden node numbers are tried for the 
MLP and RBNN models. The iteration numbers tried for 
each MLP model are 1000, 5000 and 10000. Epochs val-
ues greater than 10000 produce out-of-memory errors in 
the simulations, hence, could not be used in the identifi-
cation problem. The same spread values (0.1, 0.2... 2.0)  
used in the forward problem are alsoattempted for each 
RBNN model of crack identification case. The optimal 
MLP models’test results in crack estimation are given in 
Table 4. The table evidently shows that the MLP2 mod-
el that has 100 hidden nodes with 10000 iterations per-
forms better than the other MLP models. The test results 
of the optimal RBNN models in crack estimation are il-
lustrated in Table 5. It is observed from the table that 
the RBNN9 model comprising 2000 hidden nodes with 
0.7 spread value performs better than the other RBNN 
models. Comparison of Tables 4 and 5 indicates that the 
optimal RBNN model (RBNN9) performs much bet-
ter than the optimal MLP2 model in estimating crack.  
Figure 6 shows the estimates of crack location of RBNN 
and MLP models in test period in the form of time series 
data. It can be seen that the neural network models close-
ly follow the actual data with no over-fitting. Figure 7  
compares the crack severity predictions of optimal MLP 
and RBNN models in test period. It is seen from the  
figure that the MLP estimates are more scattered than 
those of the RBNN model. Since the RBNN has a bet-
ter interpolating capability in the multidimensional space, 
it can approximate the crack parameters better than the 
MLP (Haykin 1998).

4.1. Effect of noise on the performance of neural  
network models
In order to simulate the uncertainties of real-life problems 
and to get a better generalization during the training of 
ANNs in the crack identification case, artificial random 
noise is added to the normalized vibrational frequencies 
and mode shape rotation deviation values. Noise with 
zero mean and unit standard deviation is added to the 
dynamic data as follows:

  (26)

where: xnoise is the data with noise; x is the original data 
without noise; SF is the scale factor (or noise level); and 
y is the randomly generated noise vector.  Three differ-
ent noise levels, i.e. 1, 2 and 3% are considered. The 
same MLP and RBNN models that have the lowest error 
estimates in noise-free cases are again used herein for 
training and validation. The results for additional artifi-
cial noise cases are given in Table 6 for performance test. 
It is observed that as the noise level increases, the pre-
dictions of ANN models get worse. When the ANN esti-
mates are compared to those of the previous studies that 
considered noise, the errors here are a little bit higher. 
However, keeping in mind that those studies dealt with 
only one case of beam and a single set of beam material 
and geometrical properties and this study covered a great 
variety of beam types, these relative errors should be ac-
ceptable. Another observation is made from the table  
that when the gradually increased noise combination ap-
plied to the vibrational frequencies and mode shape ro-
tation deviation quantities are used in order to predict 

Table 3. The test results of the RBNN models in natural frequency estimation

Hidden
node number Model Spread 

value
Frequency of mode 1 Frequency of mode 2

MARE RMSE R2 MARE RMSE R2

10 RBN1 0.8 31.1 660.7 0.867 33.9 2281 0.840
20 RBN2 0.9 39.3 541.6 0.910 28.5 1668 0.913
30 RBN3 1.1 37.5 287.0 0.978 14.9 840.0 0.978
40 RBN4 0.9 30.4 229.4 0.984 13.0 731.6 0.983
50 RBN5 1.0 22.6 204.5 0.987 12.2 1457 0.987

100 RBN6 0.8 8.72 94.35 0.997 6.82 335.0 0.996
200 RBN7 0.8 3.48 33.89 0.9997 2.65 121.5 0.9995

Hidden
node number Model Spread

value
Frequency of mode 3 Frequency of mode 4

MARE RMSE R2 MARE RMSE R2

10 RBN1 0.8 36.0 5228 0.813 36.8 9506 0.796
20 RBN2 0.9 29.1 3594 0.911 30.0 6387 0.907
30 RBN3 1.1 14.1 1852 0.976 15.6 3405 0.974
40 RBN4 0.9 14.1 1758 0.979 16.4 3331 0.975
50 RBN5 1.0 12.4 1457 0.985 13.5 2706 0.983

100 RBN6 0.8 8.29 864.4 0.995 9.00 1678 0.994
200 RBN7 0.8 3.09 304.9 0.9994 3.32 584.2 0.9992
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Fig. 5. Calculated and modelled frequencies by RBNN (left) and MLP (right) models in test phase

Table 4. The test results of the MLP models in estimation of crack parameters

Hidden
node number Model Epochs

Crack Location Crack Depth
MARE RMSE R2 MARE RMSE R2

50 MLP1 10000 48.1  0.294     0.901 44.4  0.291 0.903
100 MLP2 10000 48.6 0.281 0.909 45.9 0.292 0.902
500 MLP3 10000 53.4 0.938 0.501 53.6 0.926 0.509

1000 MLP4 10000 53.7 0.938 0.497 53.8 0.927 0.499
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Fig. 6. The RBNN and MLP estimates of crack location and absolute errors in model predictions

Table 5. The test results of the RBNN models in estimation of crack parameters

Hidden
node number Model Spread value

Crack Location Crack Depth
MARE RMSE R2 MARE RMSE R2

100 RBNN1 1.7 61.4 0.406 0.811 57.1 0.396 0.821
500 RBNN2 1.3 48.9 0.302 0.896 47.1 0.318 0.885

1000 RBNN3 1.3 46.3 0.282 0.910 45.2 0.309 0.893
2000 RBNN4 0.7 41.6 0.249 0.930 41.1 0.235 0.936

Fig. 7. Calculated and modelled crack severity by RBNN and MLP models in test phase
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the severity and location of cracks, better estimates are 
obtained in severity predictions compared to the location 
predictions at each level of noise. This is attributed to 
non-uniqueness of the relation between the crack param-
eters and vibrational data.

Conclusions

Two neural network approaches are examined to esti-
mate the vibrational frequencies of pristine beams in the  
forward problem and crack parameters (location and 
depth) in the inverse problem. Considering various beam 
material properties, beam geometrical characteristics and 
beam boundary conditions, a large number of input data 
sets are produced based on the theoretical analysis of 
beam elements. The theory to obtain the dynamic data 
(natural frequencies and mode shape rotation deviation 
curves) is provided. In the forward problem, four sup-
port conditions and three beam properties (e.g. modulus 
of elasticity, mass density and length of beam) are used as 
input to the neural network models to predict the first four 
natural frequencies of beam structures. In addition to these 
parameters, the first four natural frequencies and mode 
shape rotation deviation data (15 in total) are employed as 
input to the network models in the inverse problem to es-
timate the location and severity of cracks present in beam 
structures. Training the data sets are carried out using a  
multi-layer perceptron and a radial basis function net-
works. Although a great number of input data, no data 
reduction techniques have been employed. In the forward 
problem, the MLP model that has 50 hidden nodes with 
20000 iterations and the RBNN model that has 200 hidden 
nodes with a spread value of 0.8 have performed better 
than the other corresponding models. Comparison of the 
MLP and RBNN error estimates yields that the optimal 
RBNN model accomplish better than the optimal MLP 
model. The same conclusion is also drawn in the inverse 
problem of predicting the crack parameters. In this case, 
the MLP model with 50 hidden nodes and 10000 itera-
tions, and the RBNN model with 2000 hidden nodes and 
0.7 spread valueperformed better. That the RBNN model 
predicts the crack parameters better the optimal MLP mod-
el is attributed to the fact that the RBNN has a better in-
terpolating capability in multidimensional space. Though 
the optimal RBNN yields better estimations in both cases, 
it takes slightly longer time in training the input data. The 
robustness of the optimal MLP and RBNN models in the 
presence of noise is also investigated. For this purpose, a 

random noise with zero mean and unit standard deviation 
is added to the vibration data. Comparison of the current 
estimates with the literature values shows that the errors 
of this study are a bit higher. However, this increase is 
within acceptable range and is due to the non-uniqueness 
of the relationship between the input and output data sets 
and the very large number of beam cases considered. The 
relative errors of optimal MLP model are somewhat less  
than those of the optimal RBNN model. 

As a conclusion, the trained RBNN model can be 
used in health monitoring of beam-like structures as a 
non-destructive crack identification procedure. Although 
it is very hard to accumulate such large number of input 
data, the developed network should be tested using the 
real measurement cases.
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