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Abstract. Building renovation is an effective way to revive the use of a building, the use efficiency of which is primar-
ily determined by its layout. However, in architectural practice, architects and building owners renovate buildings based 
on their personal subjective perceptions of how occupants use the building instead of systematically analyzing their use 
behaviors. This study proposes a model, called the Function-space Assignment and MOvement Simulation (FAMOS) 
model, which integrates radio frequency identification (RFID), fast messy genetic algorithms (fmGA), and movement 
simulation techniques to solve the function-space assignment problem. The RFID equipment is specifically used to track 
the occupants’ movement data in a building, the fmGA is employed to identify the optimal result of function assignment, 
and the movement simulation technique is adopted to verify the result and support the decision-making of function-space 
assignment. This study presents a real case study to demonstrate the use of FAMOS and compare its assignments with 
those generated by a renovation architect. The objective function showed that FAMOS’s version had a 14.80% higher 
objective value than the architect’s version. The experiment also showed that FAMOS helped the architect find the best 
assignment or improve their assignment based on desired objectives such as preferred space size, minimized movement 
distance, or removal of corridor congestion.
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Introduction

Assigning appropriate functions to building spaces is one 
of the most important factors in determining the use per-
formance of an existing building. Using an educational 
building as an example, there are several types of occu-
pants, and they move around the spaces in the building 
based on the activities which they have been formally 
assigned or in which they are personally interested. The 
function-space layout (such as classrooms, administra-
tion offices, laboratories, library, meeting room and so 
on) affects how occupants move and the distance they 
must cover to participate in their activities in the build-
ing. Kalay (2004) noted that function assignment only 
works in limited areas of architectural design, primarily 
because of the lack of quantifiable data. Instead of rely-
ing on the trial and error attempts of the facility admin-
istrator to find the optimum layout, mathematical opti-
mization algorithms can be used to design the layout of 
hospitals, factory assembly lines, and construction sites 
once quantifiable data on the occupants’ movements are 
available. Another prevailing problem is that the admin-
istrator may lack the means to quantitatively verify their 
proposed function-assignment to assess its performance. 
This verification may be difficult for new buildings be-
cause the intended occupants are unknown or no data 

on their behaviors are available. However, the solution 
to this problem may be feasible for an existing building 
because occupants are known and it is possible to collect 
data on how they use the building.

Instead of relying on subjective experience or 
opinions, a researcher can actually monitor the activi-
ties of building occupants manually or by using loca-
tion-tracking technologies to collect quantitative data on 
occupants’ movement. These technologies include Wi-
Fi-based systems, infrared systems, ultrasound, scene 
analysis, and RFID (Tesoriero et al. 2010). This study 
investigates a location technology capable of tracking 
occupants’ movements between multiple partitioned in-
door spaces in a multi-floor building using corridors that 
could be exposed to sunlight. Based on these conditions, 
Wi-Fi, infrared, ultrasound, and scene analysis technolo-
gies are unsuitable for movement tracking. Lionel et al. 
(2004) noted that an active RFID system is a viable and 
economical option for indoor location sensing. Therefore, 
this study uses RFID as the location technology.

However, the optimized function assignment may be 
unsuitable for occupants. This is because human crowds 
exhibit highly complex behavior driven by individual 
decisions based on individual goals, environmental ob-
stacles, and the surrounding crowd (Rahul et al. 2009). 



To quantitatively verify the function-space assignment, 
one may set up experiments in which sampled occupants 
mimic the use of the facilities in an ad hoc environment. 
However, this approach is costly, and thus, is seldom 
used. Another approach is to use a computer simulation 
program. Simulations have previously been used to mon-
itor building performance (Hong 2000) in areas such as 
renovation scheduling simulation (Lee 2012), and oc-
cupant evacuation planning (Yang et al. 2005), etc. In 
addition, the majority of renovation research in existing 
buildings has focused on the multi attribute assessment 
(Zavadskas et al. 2009), multiple criteria evaluation (Ka-
klauskas et al. 2005; Zavadskas, Antucheviciene 2007), 
and decision support system (Kaklauskas et al. 2008). 
Relatively little research simulates occupant movements 
in the function-space assignment of existing buildings. 
Dzeng et al. (2012) proposed a model that simulated oc-
cupant movement in an educational building based on the 
assumption that occupants move to participate in desig-
nated activities or for private needs.

This study proposes a model, called the Func-
tion-space Assignment and MOvement Simulation 
(FAMOS) model, which attempts to optimize the func-
tion assignment by sensing occupant movement data, 
data-mining the function-space relationship, finding opti-
mized function-space assignment using fmGA, and veri-
fying its achievement on the objective function and other 
objectives not included in the function using simulation.

1. Facility layout modeling and problem  
solving techniques

Optimization techniques have been used in architecture 
primarily for solving problems of facility layout, struc-
tural design, and building performance (Choudhary et al. 
2005). Facility layout optimization involves finding fea-
sible topology and the dimensions of interrelated objects 
that meet all of the design requirements and maximizing 
design preferences (Liggett, Mitchell 1981). Previous re-
search has developed several formulations for the opti-
mization of facility plans. For discrete formulations, the 
QAP is the most commonly encountered in the literature.

QAP was first proposed by Koopmans and Beckman 
in 1957. The QAP is a well-known classical combinato-
rial optimization problem, which can be described below. 
A set of n distinct facilities are to be placed uniquely in 
m distinct spaces, where m ≥ n (Koopmans, Beckman 
1975). The QAP can be described as the task of finding 
the minimum allocation costs as well as some constraints 
to be satisfied (Jo, Gero 1998). In the earlier studies of 
manufacturing planning, the objective of QAP can be to 
minimize the handling cost of total material, and con-
tribute to the overall efficiency of operations. Since then, 
the QAP model have been widely applied to many dif-
ferent real situations, such as the planning of buildings 
in university campuses, arrangement of departments in 
hospitals, warehouse management and distribution strat-
egies, minimization of the total wire length in electronic 

circuits, ordering of correlated data in magnetic tapes 
and others (Ramkumar et al. 2009). The QAP model 
was adopted in this research for the optimization of a 
building layout.

For the QAP, several types of problem-solving ap-
proaches have been proposed, such as exact, heuristics 
and meta-heuristics approaches. Examples of exact ap-
proaches are branch and bound (Solimanpur, Jafari 2008), 
cutting planes (Bazaraa, Sherali 1980), and dynamic pro-
gramming (Christofides, Benavent 1989). Because exact 
solutions require large expenditures of time and money, 
it may not be worthwhile to search for the optimum solu-
tions except in rare circumstances (Hahn, Jrarup 2000). 
For this reason, several heuristic and meta-heuristic ap-
proaches have been developed to search for sub-optimal 
solutions within a reasonable time limit.

There are two types of heuristic approaches, con-
struction methods and improvement methods. Con-
struction methods generate sub-optimal permutations 
from scratch by assigning functions to spaces one by 
one based on prioritized criteria. Examples are CORE-
LAP (Lee, Moore 1967), ALDEP (Seehof, Evans 1967), 
COFAD (Tompkins, Reed 1967) and SHAPE (Hassan 
et al. 1986). Instead of starting from scratch, improve-
ment methods begin with a feasible solution and try to 
systematically improve it by searching for other nearby 
solutions. The process is continued until no improvement 
can be found. Examples of this method are CRAFT (Ar-
mour, Buffa 1963), FRAT (Khalil 1973) and DISCON 
(Drezner 1987).

Before the end of the 1980s, most of the proposed 
heuristic approaches for combinatorial optimization 
problems were specific and dedicated to a given problem. 
Since that time, this paradigm has changed. More gen-
eral methods have appeared, known as meta-heuristics 
(Loiola et al. 2007). Several of these methods are based 
on some type of simulation of a natural process studied 
within another field of knowledge. Recently, numerous 
researchers have developed meta-heuristics approaches 
for the QAP. Solimanpur et al. (2005) developed an ant 
algorithm for a sequence-dependent single row machine 
layout problem. Yeh (2006) adopted annealed neural 
networks and Hopfield neural networks to solve prefer-
ences in a hospital building layout problem. Liang and 
Chao (2008) developed the multi-searching technique of 
tabu algorithms to improve facilities layout performance 
through several previous examples, including a pre-cast 
yard, construction site and hospital. Cheung et al. (2002) 
developed the swap method of simple genetic algorithms 
to determine the least cost arrangement for a pre-cast 
yard layout. Jang et al. (2007) also employed simple 
genetic algorithms to optimize the layout of multi-floor 
construction material.

The simple genetic algorithm (sGA) is one of the 
meta-heuristic approaches. First developed by Holland 
(1975), sGA is an efficient and popular algorithm. Gold-
berg et al. (1989) subsequently developed the messy 
genetic algorithm (mGA) in 1989 to improve the sGA. 
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Several experiments have proven that the mGA is much 
better at solving permutation problems than the sGA. In 
1993, Goldberg et al. (1993) developed the fast messy 
genetic algorithm (fmGA) to reduce the high memory 
consumption of operation processes. Over the years, 
mGAs and fmGA have been used successfully in wa-
ter distribution system design (Halhal et al. 1999), the 
dispatching of ready mixed concrete trucks (Feng, Wu 
2006), the design of fuzzy control systems (Hoffmann, 
Pfister 1996), solutions for clustering problems (Mo-
han 1993), and learning classifier systems (Lanzi 1999; 
Lanzi, Perrucci 1999; Skurikhin, Surkan 1996; Cheng 
et al. 2010). Because of its advantages, we used fmGA 
to search for the optimal solution in this research. 

2. Research problem

This study proposes an FAMOS model, which integrates 
RFID, fmGA, and movement simulation techniques to 
solve the function-space assignment problem. Consid-
er a scenario in which an existing public building with 
multiple-stories requires renovation, and the owner and 
the architect plan to adjust the functions of the spaces 
in the building during renovation based on their usage 
experience in order to accommodate the usability prob-
lems. The function provided by a space is fixed once the 
function-space assignment is finalized. There are several 
types of occupants, and they move around the spaces in 
the building based on the activities which they have been 
formally assigned or in which they are personally inter-
ested. Some activities occur periodically and some do 
not. Some activities require an occupant to participate at 
specific times, and some allow them to participate at will 

and at their preferred times. Each occupant has an identi-
fication object so that their individual movement can be 
detected. The objective of the adjustment of space func-
tionality is to minimize the total occupants’ movement 
distance and the interference between certain spaces. 
Finally, the movement simulation technique is adopted 
to verify the result and support the decision-making of 
function-space assignment.

3. FAMOS model

The FAMOS consists of 4 modules, namely data collec-
tion, data analysis, optimization, and simulation as illus-
trated in Figure 1. This paper focuses on the description 
of function-space assignment optimization and simula-
tion.

3.1. Data collection
For tracking the occupants’ movements, we used an 
active RFID positioning approach, and the movement 
tracking devices included readers, tags, and gateways. 
As shown in Figure 1, a reader was installed at each 
tracked space, and occupants carrying RFID-tagged ID 
cards were detected once they moved in and out of the 
space. The gateway was responsible for acquiring the 
terminal data from the readers. The number of required 
gateways, usually operating at 2.4 GHz, depended on the 
accessibility of the wireless signals. The manufacturer’s 
proprietary algorithm considered both the signal strength 
received and the time of arrival to determine the actual 
position of the tag. In the data screening, we also elimi-
nated data outside of the tracking time range and noise, 
such as “passing” a space instead of “using” a space.

Fig. 1. Framework of FAMOS model
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3.2. Occupants’ movement analysis
The analysis of occupants’ movement involves four 
steps, i.e., movement pattern determination, pattern de-
composition, pattern counting, and conditional probabil-
ity transforming, as shown in Figures 1 and 2. Movement 
pattern determination data mined an occupant’s move-
ment pattern between spaces on each day. One can set 
up a threshold of maximum break time for a movement 
between two spaces to be considered as part of a pattern. 
For example, one may set the maximum break time to be 
30 minutes. Thus, if the time interval of the detections 
of a tag at two different spaces is smaller than 30 min-
utes, the corresponding occupant’s movement between 
the two spaces will be considered as a movement pattern; 
otherwise, the uses of two spaces will be considered as 
independent usages. 

Pattern decomposition breaks down the daily move-
ment pattern of an occupant into pairs of spaces for later 
counting purposes. For example, as shown in the move-
ment pattern table in Figure 2, Tag 120 has used space a, 
a, b, c, c, and d on 1 March 2011. The breakdown results 
in pairs of aa, ab, bc, cc, and cd.

Pattern counting calculates the occurrence of each 
pair of spaces in the breakdown result of the previous 
step in preparation for constructing the interactive pref-
erence table. As shown in the pattern counting table of 
Figure 2, each number represents the number of occur-
rences of the corresponding pair (from a column space 
to a row space). For example, the use pattern aa (the use 
of space a following space a) occurs 4 times, ab occurs 
1 time, and so on.

The fourth step is to calculate the conditional prob-
ability of a row space given a column space, as shown 
in the movement relation table of Figure 2. For example, 
the likelihood of using space b, c, and d after using space 
c is 1/5 (0.2), 3/5 (0.6), and 1/5 (0.2), respectively.

3.3. Function-space assignment
The optimization module maximizes the objective func-
tion under defined constraints by finding the best as-
signment of functions to spaces. The objective function 
used in this research is based on the concept proposed by 

Koopmans and Beckman (1975), which was applied by 
Jo and Gero (1998) in assigning functions to spaces of 
equal size in an office building. Yeh (2006) modified the 
objective function to enable the assignment of functions 
to spaces with different sizes in a hospital. We used the 
objective function proposed by Yeh (2006), but with two 
primary differences. First, the objective function of this 
research is based on the interactive preference derived 
from the tracking of real occupants’ movements instead 
of subjective judgments. Secondly, while Yeh (2006) op-
timized the objective function using an annealed neural 
network, this research used a newly developed algorithm 
called the fast messy genetic algorithm.

For a building layout problem, facilities can be re-
garded as architectural functions; spaces can be regarded 
as spaces allocated for specific architectural functions 
(Yeh 2006). Eqn (1) is the objective function, which is 
a weighted average of two parts. First, (Xfisi×Pfisi) rep-
resents the assessment of the suitability of a function fi 
assigned to a space si. For example, a library (f1) as-
signed to a large space (s3) is more suitable than to a 
small space (s5). Secondly, (Xfisi×Xfjsj×Dsisj×Rfifj) rep-
resents the assessment of a function assigned to a space 
from the perspective of the moving distance (Xfisi×Dsisj) 
based on the movement relation (Xfjsj×Rfifj). For example, 
strong related functions assigned to neighboring spaces 
may have a higher assessment value than that to spaces 
at a distance:
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Fig. 2. Occupants’ movement analysis
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variable (i.e., the value is 1 if function fi is assigned to 
space si, and is 0 if not assigned to si); i if sP – suitability 
preference of function fi assigned to space si; i js sD – dis-
tance between spaces si and sj; i jf fR – movement rela-
tion of functions fi and fj (i.e., the value is between 0 and 
1, where 0 represents no sequential movement pattern 
exists between functions fi and fj, and 1 represents the use 
of fi always followed by the use of fj); n – total number of 
functions; W1, W2 – the weights between 0 and 1.

3.4. Simulation
Assessing and improving the quality of the indoor space 
for occupants is an important issue in the design of a 
public building (Lee et al. 2012). The goal of applying 
computer simulation to occupants’ mobility is to repro-
duce and predict possible system behavior in hypotheti-
cal environments, thus facilitating the design of build-
ings and service location (Brambilla, Cattelani 2009). 
The FAMOS module allows decision makers to visualize 
occupant movements, verify the function assignment, or 
adjust the optimal assignment generated by the system 
for any reason. For example, one may want to adjust the 
building layout for qualitative reasons such as the consid-

eration of interference between functions (e.g., classroom 
should not be adjacent to a professor’s office to avoid 
noise interference), scenic view, safety, and theft con-
cerns. Other reasons may be quantitative, such as those 
that are difficult to express in an objective function. For 
example, avoiding movement flow congestion may be 
difficult to express in the objective function because 
there are theoretically an infinite number of congestion 
points in continuous corridors. The adjustment for new 
considerations may also come to mind when decision 
makers see simulation results.

As Figure 1 shows, the simulation module takes oc-
cupants’ movement data, building floor plans, function 
assignment data as its input, and allows the user to set 
the monitoring point at a specific location to observe its 
cumulative movement flow density. The simulation then 
generates statistics such as the total movement distance 
for various types of occupants, usage density of spaces, 
and cumulative flow density of corridors. These statistics 
may be viewed from the perspective of spaces, activities, 
or times. In addition, it can also demonstrate the occu-
pants’ movement trajectory in 2D and 3D animations 
(Fig. 3).

Fig. 3. Occupants’ movement trajectory: (a) 2D animation, (b) 3D animation

a)

b)
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This simulation module uses the cellular automata 
(CA) model (Yue et al. 2007) to simulate occupants’ 
movement trajectories in a building. The CA model is a 
discrete dynamical system that simulates complex behav-
iors based on simple computational models. In addition, 
it requires the modeling of a discrete W×W cell grid in a 
two-dimensional area (i.e., the size of the space a human 
occupies at any point in time), the moving field (i.e., the 
possible cells that a human can move in each discrete 
time step during a simulation), and a preference function 
governing the preferred moving direction of a human.

The FAMOS is based on a 0.4×0.4 m2 cell grid 
size for a typical space occupied by a human in a dense 
crowd, as suggested by Burstedde et al. (2001). Each 
cell can be empty or occupied by no more than one oc-
cupant or obstacle. Figure 4 shows a 3×3 moving field, 
which represents the nine movement alternatives avail-
able for an occupant at the center position if only one 
cell is allowed for each step. The vision-conscious field 
defines the area where vision may affect movement. The 
vision-conscious field is larger than the moving field, 
and measures 3×5 (if not next to a boundary) or 2×5 (if 
next to a boundary), as shown by Figures 5(a) and 5(b), 
respectively.

The simulation divides continuous time into discrete 
time steps. In each time step, an occupant can remain in 
the original position or move one cell in the movement 
field. The occupant’s movement direction depends on the 

preference values of moving alternatives, as shown by 
the numbers (Pij) in Figure 4. The occupant moves to-
ward the cell with the highest preference value.

Eqn (2) is the preference function of movement 
direction (Pij), which is a weighted average of four pa-
rameters: Straightness (Sij), Category (Cij), Forward (Fij), 
and Empty (Eij), each of which ranges between –1 and 
1. The sum of weights (i.e., wS, wC, wF, and wE) equals 
1. Sij represents the proximity to the occupant’s destina-
tion for a target cell ij. The cell closer to the destination 
has a higher Sij. Cij represents the proportion of empty 
cells and occupants homogeneous with the subject in the 
current direction of movement in the vision-conscious 
field around the target cell. Fij indicates the proportion of 
empty cells unoccupied by other occupants ahead of the 
target cell in the vision-conscious field. Eij calculates the 
proportion of empty cells unoccupied by obstacles ahead 
of the target cell in the vision-conscious field. Detail de-
scription regarding preference function of movement di-
rection can be found in Dzeng et al. (2012):

 
Max ,ij S ij C ij F ij E ijP w S w C w F w E= + + +   (2)

where: Pij – preference function of movement direction; 
Sij – straightness parameter; Cij – category parameter; 
Fij – forward parameter; Eij – empty parameter; wS, wC, 
wF, wE – the weights between 0 and 1.

4. Problem-solving process for function-space  
assignment optimization and movement  
simulation

The problem-solving process for function-space assign-
ment optimization and movement simulation are illus-
trated in Figure 6. The fmGA is adopted to optimize 
function-space assignment and its output assignment is 
then sent to the movement simulation module to verify 
the achievement of the objective function as well as other 
objectives that were not included in the function. The 
process consists of 8 primary steps described as follows.

Step 1. Randomly generate a competitive template
The first step is to randomly generate a competitive 

template, which is a problem-specific, fixed-bit string 
that is randomly generated or found during the search 
process (Goldberg et al. 1993). The competitive template 
is used to make up for the missing genes in the latter pro-
cess when chromosomes are under-specified. The fmGA 
process consists of inner and outer loops. Each inner loop 
is called an era and each outer loop is called an epoch. 
Thus, the execution of the maximum number of eras de-
fined by era_max completes an epoch. The execution of 
the maximum number of epochs defined by epoch_max 
terminates the fmGA evolution process.

The inner loop consists of three phases (Goldberg 
et al. 1993): (1) the initialization phase – a population 
with sufficient chromosomes is created to contain all pos-
sible building blocks (BBs) of the order k, where BBs 
refer to partial solutions of a problem; (2) the primordial 

Fig. 4. Preference function of movement direction

Fig. 5. Moving filed vs. vision-conscious field  
without/with a boundary

– direction of occupant destination

Pij – preference function of movement direction

P1,–1

P1,0

P1,1

P0,1

P–1,1

P0,–1

P–1,–1
P–1,0

P0,0

a) b)
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phase – bad genes are filtered out to maintain only the 
chromosomes with good fitness; and (3) the juxtaposition 
phase – those good alleles (BBs) are rebuilt by cut-splice 
and mutation operations to form a high quality genera-
tion, which tends to generate an optimal solution.

Step 2. Initialization phase
To ensure a sufficient quantity of chromosomes, the 

population size of each era is determined by Eqn (3), 
as suggested by Goldberg et al. (1993). In addition, n 
chromosomes are randomly generated in this phase, so 
the fitness of each chromosome is evaluated based on the 
objective function, defined by Eqn (1):

                      

22 ( ) ( 1)2 ,k

l

n  c m
l k

k

 
 λ = α β −
− 

 λ − 

         

(3)

where: l – the problem length; k – the order of BBs; λ – a 
random value, generally set to be l – k, k < λ ≤ l; c(α) – 
the square of a normal random deviate corresponding to 

a tail-probability α; β – the signal-to-noise ratio which is 
the ratio of the fitness deviation to the difference between 
two competing BBs; m – BBs coefficient.

Step 3. Primordial phase
There are two operations in the primordial phase, 

namely building-block filtering and threshold selection. 
Building-block filtering includes building-block selection 
and random gene deletion. The key to building-block fil-
tering is to pump up enough copies of the good building 
blocks so that even after random deletion eliminates a 
number of copies, there remain one or more copies for 
subsequent processing (Goldberg 2002).

According to Goldberg et al. (1991), having enough 
good building blocks provides more good chromosomes 
for subsequent processing. Thus, they used a generic 
threshold mechanism, where the selection between two 
strings was only permitted if they shared a greater than 
expected number of genes in common, which restricts 
the competition between building blocks with little in 
common. However, the threshold was not needed in our 

Fig. 6. Problem-solving process for function-space assignment optimization and movement simulation
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(Pij) of occupants 

7. Update position of occupants 

Function-space assignment optimization

 Output data
  (1) Movement distance of occupants

  (2) Cumulative flow density of

        corridors

  (3) Use efficiencies of spaces   

  (4) 2D or 3D animation of mOvement

        trajectory

 Input data
  (1) Occupants' movement data 

  (2) Building floor plans

  (3) Function-space assignment 

  (4) Monitoring points of cumulative

        flow density

No
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case because all of the chromosomes share the same set 
of genes (i.e., the same set of functions are assigned to 
a set of genes).

Step 4. Juxtaposition phase
The purpose of the juxtaposition phase is to change 

chromosomes, and it includes the cut-splice and mutation 
operations. At first the cut-splice operation is applied to 
a predetermined proportion (i.e., crossover rate Pc) of 
the chromosomes. After performing the cut-spice opera-
tion, the fitness value of a chromosome may be higher or 
lower than (or equal to) that of the competitive template 
in the previous era. The mutation is applied to a predeter-
mined proportion (i.e., mutation rate Pm) of the chromo-
somes with lower (or equal) fitness values because they 
are less competitive solutions and vice versa.

The newly generated and existing chromosomes are 
stored in a pool, representing the population of the era. 
The best chromosome with the highest fitness value will 
be selected and replaces the competitive template if its 
fitness is higher. In addition, a predetermined proportion 
of the best population is kept and carried to the next era. 
Steps 2 to 4 are iterated for a predetermined number of 
times, which completes an epoch. Such a process is iter-
ated until the fitness value of the best chromosome con-
verges or the predetermined maximum number of epochs 
is reached.

Step 5. Randomly generate the movement velocity
The simulation module randomly generates a move-

ment velocity for each occupant. Based on the Federal 
Highway Administration (2012), the pedestrian’s average 
walking speed is approximately 1.22 m/s. Thus, the de-
fault setting is a random number between 1 and 4 cells/s 
(approximately 0.4 to 1.6 m/s).

Step 6. Calculate the movement direction
The module calculates the movement direction for 

each occupant. In a 3×3 moving field, the module chooses 
one cell with the highest preference value of movement 
direction (Pij) as the target position for each time step. 
The module also uses the A* algorithm (Bourg, Seemann 
2004) to calculate the occupants’ shortest path from the 
original position to the final position.

Step 7. Update positions of occupants
The module randomly selects one occupant for the 

position update function within each time step. To avoid 
a conflict when any two or more occupants attempt to 
move to the same position (Keßel et al. 2002), FAMOS 
adopts a sequential update pattern at each time step dur-
ing a simulation. The update rules are described as fol-
lows. The occupant in the cell with the highest value Pij 
stays at the original position and does not move to an-
other cell. If there are empty cells, the occupant moves to 
the cell with the highest value Pij. If there are no empty 
cells, the occupant’s moving direction is compared with 

the occupant who has the highest value Pij. Based on a 
50% exchange probability (Blue, Adler 2001), two occu-
pants mutually exchange positions if they have opposite 
movement directions. Steps 5 to 8 are repeated until all 
occupants have moved for the current time step.

5. Case and experiment

This section describes an experiment with a real case to 
prove the research concept. A simulation system, previ-
ously developed by the authors, is used to verify the re-
sult and support the decision making of function-space 
assignment to accommodate the desirable goals that are 
not included in the objective function. The following sec-
tions first introduce the case and the experiment with the 
setting of the system variables, then presents the results 
of function assignment and movement simulation.

5.1. Case
The case used in this experiment is the building of the 
Civil Engineering Department of National Chiao-Tung 
University in Hsinchu, Taiwan. The building is a 4-story 
courtyard building with a total floor area of 6 616 m2. 
The 4 plans of this building (1F to 4F) are shown in 
Figure 7. There are 3 main entrances on the ground floor 
and two staircases. The spaces of the building include a 
garden, a library, an auditorium, an administration office, 
classrooms, laboratories, meeting rooms, seminar rooms, 
faculty offices, mechanical rooms, and storage rooms. 
The building was renovated by an architect in 2010.

Limited by the availability of RFID readers, we 
only tracked 10 key spaces (numbered from s1 to s10), 
as shown in Figure’s 7 of highlights. These 10 spaces 
were situated separately on the 4 floors of the building, 
and its functions consisted of an administration office 
(f6), a library (f1), a seminar room (f3), 2 laboratories (f8 
and f9), 2 meeting rooms (f4 and f5), and 3 classrooms 
(f2, f7 and f10). There were 98 students (23% of the total 
number of college and graduate students) participating 
in this experiment. Each of them carried a Helicomm IP-
Link 5110 active-RFID tag while performing their daily 
activities in the building for 8 weeks during the middle 
and end of a semester in 2011. Although the movement 
was tracked 24 hours a day during the experiment period, 
only the data obtained within 8:00 AM and 10:00 PM on 
weekdays (Monday to Friday) were used.

5.2. Variables of function-space assignment
1. Suitability preference of function fi assigned to space 
si ( )

i if sP . The spaces were divided into 3 groups, i.e., 
large (L: 90–135 m2), medium (M: 45–80 m2), and small 
(S: 15–20 m2) spaces. Different functions require differ-
ence sizes of space. The library and seminar rooms prefer 
large spaces. The administration office and 2 laboratories 
prefer medium spaces. The 2 meeting rooms prefer small 
spaces. In addition, one of the classrooms prefers a me-
dium space, and the rest of the two classrooms prefer 
large spaces. Table 1 provides the types of space size and 
the functions’ preferred size.
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The suitability preference for each possible pair of 
function-space assignment was given based on the fol-
lowing principles. A function requiring a large space 
can only be assigned to large space. Thus, the suitabil-
ity preferences ( )

i if sP for the function assigned to large, 
medium, and small spaces were 1, 0, and 0, respectively. 
A function requiring a medium space can only be as-
signed to a large or medium (with less preference) space. 
Thus, 

i if sP for the function assigned to large, medium, 
and small spaces was 0.5, 1, and 0, respectively. A func-
tion requiring a small space can be assigned to any space 
with different preferences. Thus, 

i if sP for the function as-
signed to large, medium, and small spaces was 0.1, 0.5, 
and 1, respectively. The preference values between 0 
and 1 were arbitrary depending on the decision maker, 
who, in this case, is the head of the department. FAMOS 
treated the zero preference as a constraint, and never as-
signed a function to a space with 

i if sP = 0.

2. Distance between spaces si and sj ( )
i js sD . The 

distance between spaces si and sj was given based on 
the normalization of the sum of the actual geographical 
distance and weighted floor difference value of the two 
spaces. The weighted floor difference value was equiva-
lent to 0 m if the two spaces are located on the same 
floor, such as s5 and s10 in Figure 7. The weighted value 
is equivalent to 20 m if the two spaces were located on 
two different consecutive floors, such as s5 and s4. Simi-
larly, the weighted value is 40 m and 60 m for the spaces 
situated 2 and 3 floors apart, respectively. Equation (4) 
was used to normalize the weighted distance sum to en-
sure that the value falls between 0 and 1. Table 2 shows 
the normalized distances between the 10 spaces:

 

min

max min
.

i j
x

s s
D D

D
D D

−
=

−
  (4) 

Fig. 7. Comparison of Architect’s function assignment and the assignment result R2  
(Objective value = 1.10471 vs. Objective value = 1.25849)
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Table 1. Space size and functions’ preferred size

Space s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Size M M L M S L M L S L
Function f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Preferred size L L L S S M M M M L

Description Library Class room Seminar  
room

Meeting
room

Adm.
office

Class
room Laboratory Class

room
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Table 2. Distance between space si and sj

i js sD s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 0.00 0.97 0.09 0.78 0.38 0.00 0.72 0.04 0.43 0.60

s2 0.97 0.00 0.11 0.80 0.40 0.02 0.74 0.06 0.44 0.58

s3 0.09 0.11 0.00 0.32 0.57 0.49 0.24 0.53 0.61 0.40

s4 0.78 0.80 0.32 0.00 0.61 0.22 0.75 0.26 0.66 0.45

s5 0.38 0.40 0.57 0.61 0.00 0.47 0.53 0.51 0.96 0.84

s6 0.00 0.02 0.49 0.22 0.47 0.00 0.14 0.90 0.51 0.30

s7 0.72 0.74 0.24 0.75 0.53 0.14 0.00 0.18 0.57 0.37

s8 0.04 0.06 0.53 0.26 0.51 0.90 0.18 0.00 0.55 0.34

s9 0.43 0.44 0.61 0.66 0.96 0.51 0.57 0.55 0.00 0.80

s10 0.60 0.58 0.40 0.45 0.84 0.30 0.37 0.34 0.80 0.00

3. Movement relation of functions fi and fj ( )
i jf fR . 

The movement relationship plays an important role in 
the optimization process. Table 3 shows the values of the 
interactive preference ( )

i jf fR , which was based on the 
movement analysis of the RFID tracking data. It signifies 
a usage pattern of an occupant between two functions. 
Basically, two functions with a large 

i jf fR should be lo-
cated closer together to reduce the moving distance. The 
RFID reader read every half minute to determine which 
tags existed in a functional space. The reader might false-
ly read a tag if the tag was close to the space but did not 
enter the space. Therefore, data screening was essential 
to determine if a tagged student was really entering, us-
ing the space or just passing by.

The minimum stay time required to be considered 
as using the space was set to 1 minute for the library 
and administration office and 5 minutes for the rest of 
the functions. Thus, a tagged student who entered the 
administration office to retrieve mail and left after two 
minutes was considered to have used the office once. A 
student who entered a classroom to collect some text-
books he forgot during a previous lecture and left the 
classroom after two minutes was not considered to have 
used the classroom. 

Table 3. Movement relation of functions fi and fj

i jf fR f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f1 0.13 0.03 0.01 0.01

f2 0.16 0.02 0.11 0.01 0.02 0.06

f3 0.01 0.04 0.02 0.04 0.06

f4
f5 0.01 0.02 0.02

f6 0.08 0.07 0.01

f7 0.05 0.01 0.12 0.00 0.38 0.02

f8 0.01 0.05 0.02 0.04 0.04 0.72

f9 0.01 0.01 0.01 0.03 0.09 0.75 0.00

f10 0.03 0.05 0.02 0.05 0.02

When a student shifted from a function to another, 
there was a time lag in between because he needed a 
break or travelling time to move between physical spaces. 
A short break between two functions should be consid-
ered a usage pattern, meaning that students tended to par-
ticipate in a function after participating in another. Long 
breaks between two functions were not considered to 
have a usage pattern. The maximum break time allowed 
in the experiment was 30 minutes. Thus, for example, a 
student leaving from a class and entering a laboratory 15 
minutes later would construct a usage pattern between 
the class and the laboratory. A student leaving from a 
laboratory, having lunch, and entering a seminar room 45 
minutes later would not construct a usage pattern.

5.3. Function assignment and movement  
simulation results
The FAMOS was run on a Pentium 3.40 GHz PC with 
512 MB RAM, with the parameters epoch_max and 
era_max set to 5 and 4, respectively. Table 4 shows the 
different function-space assignments suggested by the 
architect (A0), FAMOS (R1), and administrator-adjusted 
versions (R2–R5), and their corresponding performances. 
The performance data include the objective values ob-
tained from the FAMOS optimization module and the 
movement distance and cumulative flow simulated by the 
FAMOS module.

The objective-function column shows that the FA-
MOS assignment has a 14.80% higher objective value 
than the architect’s assignment. The functions are also 
assigned to the space sizes most preferred by the admin-
istrator (e.g., f1 is assigned to the large spaces of s6, and 
f5 is assigned to the small spaces of s9). Additionally, 
functions with a larger value of 

i jf fR are also placed at 
least at the same floor (e.g., functions f8 and f9 and func-
tions f7 and f9 are on floor 4).

Although FAMOS produces the assignment with the 
highest objective value, the administrator attempted to 
adjust some specific function-space assignment to em-
phasize some sub-objectives such as movement distance. 
Alternatively, the administrator may consider other sub-
objectives that were or could not be included in the ob-
jective function, such as congestion in corridors or the 
interference to the library because of congestion. The 
colored traced lines in Figure 3(a) show the approximate 
usage load of the corridors as occupants move by. Con-
sequently, we set up several monitoring points for some 
locations near staircases or exits (Fig. 7, lines 1–6) and 
repeated the simulation to gather detailed flow density 
statistics.

Table 4 presents four adjustments (R2–R5) in the 
order of their objective values. Compared to the archi-
tect’s version (A0), the FAMOS version (R1) reduced the 
movement distance by 1.89%. This result was expected 
because the movement distance is part of the objective 
function. The FAMOS version also reduced the cumu-
lative flow density by 12.25%, despite the flow density 
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not being part of the objective function. One possible 
explanation is that the FAMOS placement of the under-
graduate classroom (f2), which has a much higher fre-
quency of use compared to the library (f1) because of 
the required courses of undergraduate students, in the 
space (s8) near the building entrance not only reduced 
the movement distance, but also reduced the flow density 
near the library.

Based on the FAMOS version, the administrator 
tried to swap some function assignments with the same 
space size requirement to further mitigate the interfer-
ence of movement flow near the library. The R2 version, 
shown in Table 4, is the best assignment among several 
attempts by the administrator. Compared to R1, R2 swaps 
the assignments of the f1 (library) and f10 (graduate class-
room) and places the library in space s3, a space with a 
less populated neighborhood. The result is a significant 
reduction in flow density by 14.53% with only slightly 
worse performance on the objective value (–0.77%) and 
movement distance (+0.36%). This decrease in perfor-
mance is the result of placing two strongly related func-
tions (i.e., library (f1) and undergraduate classroom (f2)) 
separately in spaces on different floors.

As shown in Figure 7, the R2 version needs four 
groups of swapping or moving compared to architect’s 
function assignments (A0), including (1) swapping 
the assignments of the f1 (library) and f2 (classroom); 
(2) swapping the assignments of the f5 (meeting room) 
and f9 (meeting room); (3) moving the assignments of the 
f10 (classroom), f3 (seminar room) and f6 (Administrator 
office); (4) swapping the assignments of the f10 (class-
room) and f1 (library). In addition to R2, we also tried 
to swap some function-space assignments (i.e., R3, R4, 
and R5) with the same space size requirement to reduce 
movement distance, but were unable to find a better as-
signment. Besides, Figure 8 shows a comparison of these 
designs in 3D from the perspectives of objective func-
tion (x-axis), movement distance (y-axis), and cumulative 

flow density (z-axis). At the end of the experiment, the 
administrator chose the R2 version because he thought 
that its slightly worse performance on the objective value 
and movement distance could be tolerated to gain the 
benefit of less interference surrounding the library. 

Therefore, the R2 version is a best assignment and 
its effectiveness is described as follows: Compared to the 
architect’s version (A0), the R2 version increased the ob-
jective-function by 13.92%, reduced the movement dis-
tance by 1.53%, and reduced the cumulative flow density 
by 25.00%.

Conclusions

This study presents the FAMOS model, which takes oc-
cupants’ movement data and building floor plans as its 
input, and then searches for the optimal function-space 
assignment in a building. The FAMOS model has con-
tributed to the following several aspects: First, inte-
grating three techniques (that is, the RFID, fmGA, and 
movement simulation techniques) into the FAMOS mod-

Table 4. Function-space assignments and movement simulation results

Results
Function-space assignment Objective value Movement distance (m) Cumulative flow 

density (man-time)
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Value Improvement Value Improvement Value Improvement

A0 f8 f9 f3 f7 f5 f2 f10 f1 f4 f6 1.10471
(A0 – A0)/A0 172.503

(A0 – A0)/A0 2.392
(A0 – A0)/A0

0.0% 0.0% 0.00%

R1 f8 f9 f10 f7 f4 f1 f6 f2 f5 f3 1.26821
(R1 – A0)/A0 169.244

(R1 – A0)/A0 2.099
(R1 – A0)/A0

14.80% –1.89% –12.25%

R2 f8 f9 f1 f7 f4 f10 f6 f2 f5 f3 1.25849
(R2 – R1)/R1 169.856

(R2 – R1)/R1 1.794
(R2 – R1)/R1

–0.77% 0.36% –14.53%

R3 f8 f9 f10 f7 f5 f1 f6 f2 f4 f3 1.26784
(R3 – R1)/R1 169.371

(R3 – R1)/R1 1.976
(R3 – R1)/R1

–0.03% 0.08% –5.86%

R4 f9 f8 f10 f7 f4 f1 f6 f2 f5 f3 1.26739
(R4 – R1)/R1 169.816

(R4 – R1)/R1 2.014
(R4 – R1)/R1

–0.06% 0.34% –4.05%

R5 f8 f9 f10 f7 f4 f2 f6 f1 f5 f3 1.26729
(R5 – R1)/R1 172.130

(R5 – R1)/R1 2.132
(R5 – R1)/R1

–0.07% 1.71% 1.57%

Fig. 8. Comparison of the performances in different  
function-space assignments
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el, which is a innovative model to systematically deal 
with real world the function-space assignment problems. 
Second, the FAMOS model can help architects or ad-
ministrators to find the best assignment or improve their 
assignment according to their desired objectives, such as 
preferred space size, minimized movement distance, or 
removal of corridor congestion. Third, a real case study 
demonstrates the use of FAMOS and compares its as-
signments with those generated by a renovation architect/
administrator. The objective function showed that FA-
MOS’s assignment (R1 version) had a 14.80% higher ob-
jective value than the architect’s version. In addition, ex-
perimental results show that a human could not improve 
the optimal assignment proposed by the FAMOS. The 
computing efficiency of the FAMOS was also acceptable 
for solving the assignment problem with 10 spaces and 
10 functions, taking only 16 s on a Pentium 3.40 GHz 
PC with 512 MB RAM. Our future research will focus 
on experiments with other types of buildings and objec-
tives, and on extending the FAMOS.
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