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Abstract. An innovative multi expression programming (MEP) approach is used to derive new predictive equations for 
tangent elastic modulus of normal strength concrete (NSC) and high strength concrete (HSC). Similar to several building 
codes, the modulus of elasticity of NSC and HSC is formulated in terms of concrete compressive strength. Furthermore, 
a generic model is developed for the estimation of the elastic modulus of both NSC and HSC. Comprehensive databases 
are gathered from the literature to develop the models. For more verification, a parametric analysis is carried out and 
discussed. The proposed formulas are found to be accurate for the prediction of the elastic modulus of NSC and HSC. 
The predictions made by the MEP-based models are more accurate than those obtained by the existing models. 
Keywords: tangent elastic modulus, normal and high strength concrete, multi expression programming, compressive 
strength, formulation.

Introduction 

The elastic modulus of concrete is an important parame-
ter in structural and material engineering. This parameter 
plays a key role in the determination of the immedi-
ate and time-dependant deformation, modular ratio and 
the stiffness of buildings and members. Moreover, the 
modulus of elasticity is widely used for the assessment 
of creep, shrinkage and crack control in reinforced and 
pre-stressed concrete (Mesbah et al. 2002; Khan 1995; 
Gandomi et al. 2010a). This parameter can be deter-
mined from the slope of a stress-strain curve depicting 
the results of tensile tests made on a sample of concrete. 
Figure 1 shows a typical stress-strain diagram (Gandomi 
et al. 2010a). As can be observed from this figure, the 
first part of the curve is almost a straight line. The initial 
slope of the stress-strain curve defines the initial or tan-
gent modulus (Ec) used with the parabolic stress method. 
Despite its importance, the elastic modulus is not usually 
measured at the site. It is often estimated using empiri-
cal relationships proposed by various codes of practice. 
Such models formulate the elastic modulus in terms of 
the measured compressive strength. Consequently, there 
is no need to go through laborious and time-consuming 
direct measurements from load-deformation curve to 

determine the elastic modulus (ASTM 1994; Gandomi 
et al. 2010a).

Recently, pattern recognition systems have received 
much attention for tackling civil engineering tasks. These 
systems learn from experience and extract various discrim-
inators. Artificial neural networks (ANNs), fuzzy logic 
(FL), Adaptive neuro fuzzy inference system (ANFIS), 
and support vector machine (SVM) are the well-known 
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Fig. 1. Typical stress-strain diagram for concrete
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pattern recognition methods. These techniques have been 
utilized for the prediction of the elastic modulus of normal 
and high strength concrete (NSC and HSC) (Demir 2005, 
2008; Yan, Shi 2010; Aydin 2006; Ahmadi-Nedushan  
2012). Although ANNs, FL, ANFIS, and SVM are suc-
cessful in prediction, their inability to produce prediction 
equations limits their use by researchers. 

Genetic programming (GP) (Koza 1992) is a new 
alternative approach to overcome the limitations of 
ANNs, FL, ANFIS, and SVM. One of the main features 
of GP over other pattern recognition tools is its ability to 
generate simplified prediction equations without assum-
ing prior form of the existing relationship (Alavi et al. 
2011). GP is an extension to genetic algorithms in which 
computer programs are evolved to find solutions to prob-
lems (Banzhaf et al. 1998). For the last decade, GP and 
its variants has been pronounced as a powerful method 
for simulating the behavior of civil engineering problems 
(e.g. Gandomi et al. 2009, 2010b, 2012; Sadrossadat  
et al. 2012; Shahnazari et al. 2012). Multi expression pro-
gramming (MEP) (Oltean, Dumitrescu 2002) is a recent 
variant of GP that uses a linear representation of chromo-
somes. MEP has a special ability to encode multiple com-
puter programs of a problem in a single chromosome. The 
MEP approach is able to significantly outperform similar 
techniques (Oltean, Grosşan 2003). Some of the limited 
studies focused on applying MEP to the civil engineer-
ing tasks include predicting limestone compressive and 
tensile strength (Baykasoglu et al. 2008), formulation of 
soil classification (Alavi et al. 2010), ground-motion pre-
diction (Alavi et al. 2011), prediction of uplift capacity 
of suction caissons (Gandomi et al. 2011), formulation 
of geotechnical engineering systems (Alavi, Gandomi 
2011),  soil liquefaction assessment (Alavi, Gandomi 
2012), formulation of secant and reloading soil deforma-
tion moduli (Alavi et al. 2012), and modelling of con-
crete and steel structures (Gandomi, Alavi 2013). 

MEP is capable of extracting the knowledge con-
tained in the experimental data. Thus, it can be used to 
derive prediction models for the elastic modulus of con-
crete. The main purpose of this paper is to utilize the MEP 
technique to obtain mathematical relationships between 
the tangent elastic modulus and compressive strength of 
NSC and HSC. Reliable databases of previously published 
test results are utilized to develop the models. A com-
parative study is conducted between the results obtained 
by MEP and those obtained from the buildings codes  
(ACI-318-95 1996; NBS 2006; CEB-FIB 1993; BS-8110 
1985; CSA-A23.3 1995; NS-3473 1992; TS-500 2000), 
compatibility aided (Wee et al. 1994; Gardner, Zhao 
1993), regression (Demir 2005), FL (Demir 2005), ANN 
(Demir 2008), and SVM (Yan, Shi 2010) models. 

1. Multi expression programming

GP creates computer programs to solve a problem by sim-
ulating the biological evolution of living organisms (Koza 
1992). Generally, in GP, inputs and corresponding output 

data samples are known and the main goal is to find a 
program that connects them. Most of the genetic opera-
tors used in GA can be implemented in GP with minor 
changes. The main difference between GP and GA is the 
representation of the solution. GA creates a string of num-
bers that represent the solution. The classical GP solutions 
are computer programs represented as tree structures and 
expressed in a functional programming language (such as 
LISP) (Koza 1992; Alavi et al. 2011). In GP, a random 
population of individuals (programs) is created to achieve 
high diversity. A comprehensive description of GP can be 
found in Koza (1992) and Banzhaf et al. (1998). MEP is 
a linear variant of GP. The linear variants make a clear 
distinction between the genotype and the phenotype of 
an individual. Thus, the individuals are represented as 
linear strings that are decoded and expressed like nonlin-
ear entities (trees) (Oltean, Grosşan 2003; Gandomi et al. 
2008). MEP is another subarea of GP. It was first intro-
duced by Oltean and Dumitrescu (2002). Linear chro-
mosomes are used by MEP for solution encoding. This 
technique encodes multiple computer programs in a sin-
gle chromosome. A program with the best fitness repre-
sents the chromosome. The MEP decoding process is not 
more complicated than other GP variants storing a single  
program in a chromosome (Oltean, Grosşan 2003; Alavi 
et al. 2010). The steady-state algorithm of MEP starts 
by the creation of a random population of computer pro-
grams. MEP uses the following steps to evolve the best 
program until a termination condition is reached (Oltean, 
Grosşan 2003; Alavi et al. 2010):

I.  Selection of two parents using a binary tournament 
procedure and recombination of them with a fixed 
crossover probability.

II.  Obtaining two offspring by the recombination of 
two parents.

III.  Mutation of the offspring and replacement of the 
worst individual in the current population with the 
best of them (if the offspring is better than the worst 
individual in the current population).
The representation of the MEP solutions is similar 

to the procedure followed by C and Pascal to convert 
expressions into machine code. Functions and terminals 
are a part of a population member created by MEP. The 
terminal and function symbols are elements in the ter-
minal and function sets, respectively. A function set can 
contain the basic arithmetic operations or any other math-
ematical functions. The terminal set can contain numeri-
cal constants, logical constants and variables (Alavi et al.  
2010). Each gene encodes a terminal or a function sym-
bol. The first symbol in a chromosome is a terminal 
symbol. An example of a MEP chromosome can be seen 
below. Using the set of functions F = {+, ×, /} and the 
set of terminals T = {v1, v2, v3, v4}, the example is given 
as follows: 

0: v1
1: v2
2: × 0, 1
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3: v3
4: + 2, 3 
5: v4
6: / 4, 5.   

The translation of the MEP individuals into com-
puter programs can be obtained by reading the chromo-
some top-down starting with the first position. In the 
present example, genes 0, 1, 3, and 5 encode simple 
expressions formed by a single terminal symbol. These 
expressions are: E0 = v1, E1 = v2, E3 = v3, E5 = v4. 

Gene 2 indicates the operation × on the operands 
located at positions 0 and 1 of the chromosome. There-
fore gene 2 encodes the expression: E2 = v1×v2. Gene 4 
indicates the operation + on the operands located at posi-
tions 2 and 3. Therefore, gene 4 encodes the expression: 
E4 = (v1×v2) + v3. Gene 6 indicates the operation / on the 
operands located at positions 4 and 5. Therefore gene 6 
encodes the expression: E6 = ((v1×v2) + v3)/ v4.

Each of MEP chromosomes encodes a number of 
expressions equal to the chromosome length (the number 
of genes). Due to its multi expression representation, each 
MEP chromosome may be viewed as a forest of trees 
rather than a single tree (Fig. 2). Each of these expres-
sions can be considered as a possible solution to a prob-
lem. The fitness of each expression encoded in an MEP 
chromosome is defined as the fitness of the best expres-
sion encoded by that chromosome (Alavi et al. 2010). For 
solving symbolic regression problems, the fitness of an 
MEP chromosome may be computed by using the follow-
ing formula (Oltean, Grosşan 2003; Alavi et al. 2010):

 
, (1) 

where: n is the number of fitness cases; hj is the expected 
value for the fitness case j; oj

i is the value returned for 
the jth fitness case by the ith expression encoded in the 
current chromosome; and m is the number of chromo-
some genes.

2. MEP-based modeling of elastic modulus of NSC 
and HSC

Deriving relationships between the elasticity modulus 
of concrete and its component characteristics has been 
of interest for many researchers (Larrard, Belloc 1997). 
The modulus of elasticity is frequently expressed as a 
function of the compressive strength of concrete. Most 
of the national and international codes use this way 
to express the modulus of elasticity of concrete (e.g.  
American Concrete Code (ACI-318-95 1996), British  
Concrete Code (BS-8110 1985), Canadian Concrete 
Code (CSA-A23.3 1995)). Thus, this study is aimed 
at developing explicit formulas for the tangent elastic 
modulus (Ec) of NSC and HSC in terms of compressive 
strength (fc) as follows:

 . (2) 

Hence, one parameter is used for the MEP models as the 
input variable. The NSC and HSC databases are sepa-
rately used to derive two different MEP-based formu-
las for the elastic modulus of each of NSC and HSC. 
In order to propose a generic model for both of NSC 
and HSC, another MEP model is developed based on 
the whole of available test results. Various parameters 
are involved in the MEP predictive algorithm. In this 
study, basic arithmetic operators and mathematical func-
tions were utilized to get the optimum MEP models. 
The number of programs in the population that MEP 
will evolve is set by the population size. A run will take 
longer with a larger population size. The number of 
generation sets the number of levels the algorithm will 
use before the run terminates. The proper number of  
population and generation depends on the number of 
possible solutions and complexity of the problem. A 
large number of generations are tested to find models 
with minimum error. Mutation rate is the probability that 
an offspring will be subject to mutation. This parameter 
was set to 10%. Crossover rate is the probability that an 
offspring will be subject to crossover. At the low level 

Fig. 2. Expressions encoded by an MEP chromosome 
represented as trees 
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the crossover rate is 50% and at the high level it is 95%.
The values of the other involved parameters are selected 
based on some previously suggested values (Baykasoglu  
et al. 2008; Alavi et al. 2010) and also after a trial and 
error approach. The parameter settings are shown in 
Table 1. For the analysis, source code of MEP (Oltean 
2004) in C++ is modified by the authors to be utilizable 
for the available problem.

The best MEP models are chosen on the basis of a 
multi-objective strategy as below (Gandomi et al. 2010a):

1. The simplicity of the model, although this is not a 
predominant factor.

2. Providing the best fitness value on the training set 
of data.

3. Providing the best fitness value on a test set of 
unseen data.
The first objective can be controlled by the user 

through the parameter settings (e.g. chromosome length). 
For the other objectives, the following objective function 
(Obj) is considered as  a  measure  of  how  well  the  
model  predicted  output  agrees  with  the  experimen-
tally measured  output. The selections of the best MEP 
models are deduced by the minimization of the following 
function (Gandomi et al. 2010a):

  (3)

where: No.Train, No.Test
 and No.All are, respectively, the 

number of training, testing and whole of data; R and 
MAE are, respectively, correlation coefficient and mean 
absolute error given in the form of formulas as follows:

  (4)

  (5)

in which hi and ti are, respectively, actual and predicted 
outputs for the ith output;  and 

 
are the average of the 

actual and predicted outputs, respectively; n is the num-
ber of sample. The constructed objective function takes 
into account the changes of R and MAE together. Higher 
R values and lower MAE values result in lowering Obj 
and, consequently, indicate a more precise model. In 
addition, the above function considers the effects of dif-
ferent data divisions for the training and testing data.

2.1. Experimental database
An experimental database of the previously published 
test results (Wee et al. 1994; Shannag 2000; Turan, 
Iren 1997; Ozturan 1984; Gesoglu 2002) is utilized to 
develop the MEP based models. This database has been 
previously employed by Demir (2005, 2008) and Yan, 
Shi (2010) to develop the FL, ANN and SVM models, 
respectively. This database has been already been used 
by Gandomi et al. (2010a) to develop linear genetic pro-
gramming models. The database contains 70 and 89 test 
results for the elastic modulus of NSC and HSC, respec-
tively. The concrete specimens are tested at the age of 
28 days. NSC and HSC are considered as types of con-
crete having compressive strength lower and higher than 
50 MPa, respectively (Mehta, Monteiro 2005). It should 
be noted that one of the data sets in the HSC database 
has a compressive strength lower than 50 MPa, which is 
mistakenly considered in the development of the other 
existing models such as regression (Demir 2005), FL 
(Demir 2005), ANN (Demir 2008), and SVM (Yan, Shi 
2010) . In the current study, this data set is also included 
in the HSC database in order to conduct a fair com-
parison between the predictions provided by MEP and 
other existing models. However, in the present study, a 
general model was further proposed for both of NSC 
and HSC using the entire data. Descriptive statistics of 
the variables included in the analysis are shown in Fig-
ure 3. To visualize the samples distribution, the data are 
presented by frequency histograms (Fig. 4). 

For the analysis, the data sets are divided into the 
training and testing subsets. Out of the 89 data sets for 
HSC, approximately 78% of the data (69 values) are 
taken for the training of the MEP algorithm and the 
remaining 22% (20 values) are used to test the generali-
zation capability of the models. For NSC, approximately 
80% of the data (57 values) are taken to train and the 
remaining 20% (13 values) are used to test the models. 
Out of the total 159 data sets for NSC and HSC, almost 
80% of the data (126 values) are taken for the training of 
the MEP algorithm and the remaining 20% (33 values) 
are used for the testing of the proposed NSC and HSC 
generic model.

2.2. Explicit formula for the elastic modulus of NSC
The optimal formulation of the Ec of NSC in terms of fc 
is as given below:

Table 1. Parameter settings for the MEP algorithm

Parameter Setting
Function set +, –, ×, /, exp, ln, sin, cos
Population size 500 – 2000
Chromosome length 20–50 genes
Number of generations 1000
Number of tournaments 4
Crossover probability (%) 50, 90
Crossover type Uniform
Mutation probability (%) 10
Terminal set Problem input
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 (6)

Figure 5 shows a comparison between the predicted 
and experimental Ec

 values for NSC. In Figure 5, resid-
ual is the difference between the experimental value 
and the value predicted by the MEP model. The pro-
posed model for the Ec of NSC yields an Obj value 
equal to 6.542. 

2.3. Explicit formula for the elastic modulus of HSC
The optimal formulation of the Ec of HSC in terms of fc 
is as follows:

 
.  (7)

Figure 6 presents a comparison between the predicted 
and experimental Ec

 values for HSC.  As can be observed 
in this figure, the proposed model for Ec of HSC yields 
a low Obj value equal to 3.976. 

2.4. Explicit formula for the elastic modulus of NSC 
and HSC
The best prediction model for the Ec of NSC and HSC in 
terms of fc is as given below:

 

 
. (8)

A comparison of the MEP predicted values against exper-
imental Ec of NSC and HSC is shown in Figure 7. The 
proposed generic model yields a low Obj value equal to 
2.428. 

3. Performance analysis 

Figures 8 and 9 illustrate the prediction performance of 
the MEP models, American (ACI-318-95 1996), Iranian  
(NBS 2006), European (CEB-FIB 1993), British  
(BS-8110 1985), Canadian (CSA-A23.3 1995), Norwegian 

Fig. 3. Descriptive statistics of the variables 

Fig. 4. The histograms of: a) compressive strength; and  
b) elastic modulus for all data 

Fig. 5. Predicted versus experimental Ec
 of HSC using the 

MEP model 

Fig. 6. Predicted versus experimental Ec
 of NSC using the 

MEP model 
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(NS-3473 1992), and Turkish (TS-500 2000) codes, two  
compatibility aided models (Wee et al. 1994; Gardner, 
Zhao 1993), regression (Demir 2005), FL (Demir 2005), 
ANN (Demir 2008), and SVM (Yan, Shi 2010) models 
for the Ec of NSC and HSC, respectively. Moreover, the 
predictions made by different models for the NSC and 
HSC databases are presented in Tables 2 and 3, respec-
tively. It can be seen from Figures 8 and 9 and Tables 2  
and 3 that the proposed MEP models provide a signifi-
cantly better performance than the available codes and 
models. The only exception is the SVM model for NSC 

Fig. 8. A comparison of the ratio between the predicted and experimental Ec of NSC using different models

Fig. 7. Predicted versus experimental Ec of HSC and NSC 
using the MEP model 
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Fig. 9. A comparison of the ratio between the predicted and experimental Ec of HSC using different models
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Table 2. Predictions made by different models for the Ec of NSC

Test 
No.

fc
   

(MPa)
Ec 

(GPa)
Ec,FL/

Ec

Ec,ANN/
Ec

Ec,SVM/
Ec

Ec,Regression/
Ec

Ec,ACI/
Ec

Ec,NBS/
Ec

Ec,BS/
Ec

Ec,TS/
Ec

Ec,Gardner and 
Zhao/Ec

Ec,MEP/ 
Ec

1 31.4 30.4 0.99 0.97 0.98 0.98 0.87 0.92 0.94 1.06 0.93 0.94

2 27.8 29.1 0.97 0.97 0.99 0.97 0.86 0.91 0.95 1.07 0.94 0.96

3 28.5 26.8 1.07 1.06 1.09 1.07 0.94 1.00 1.04 1.17 1.03 1.06

4 29.4 31.5 0.92 0.91 0.93 0.92 0.81 0.86 0.89 1 0.88 0.93

5 26.4 30 0.92 0.92 0.93 0.92 0.81 0.86 0.90 1.02 0.89 0.95

6 28.5 29 0.99 0.98 1.00 0.99 0.87 0.92 0.96 1.08 0.95 0.98

7 32.6 32.4 0.95 0.93 0.92 0.94 0.83 0.88 0.90 1 0.89 0.91

8 29.9 30.2 0.97 0.96 0.98 0.97 0.86 0.91 0.94 1.05 0.92 0.94

9 29.8 27.5 1.06 1.05 1.07 1.06 0.94 0.99 1.03 1.15 1.01 1.05

10 28 30.8 0.92 0.92 0.94 0.92 0.81 0.86 0.90 1.01 0.89 0.95

11 27.3 26.5 1.06 1.05 1.08 1.06 0.93 0.99 1.03 1.17 1.02 1.08

12 27.5 25.2 1.12 1.11 1.13 1.12 0.98 1.04 1.09 1.23 1.08 1.13

13 27 27.2 1.03 1.02 1.04 1.03 0.9 0.96 1.00 1.14 0.99 1.02

14 28.5 27.3 1.05 1.04 1.07 1.05 0.93 0.98 1.02 1.15 1.01 1.04

15 26.4 26.5 1.05 1.04 1.06 1.05 0.92 0.97 1.02 1.16 1.00 1.07

16 27.1 23.9 1.17 1.17 1.19 1.17 1.03 1.09 1.14 1.29 1.13 1.13

17 26.3 24 1.15 1.15 1.17 1.15 1.01 1.07 1.13 1.28 1.11 1.19

18 26.1 24.9 1.10 1.10 1.12 1.11 0.97 1.03 1.08 1.23 1.06 1.07

19 27.8 25.3 1.12 1.11 1.14 1.12 0.99 1.04 1.09 1.23 1.08 1.10

20 25.7 25.7 1.06 1.06 1.07 1.07 0.93 0.99 1.04 1.19 1.02 1.04

21 27.8 26 1.09 1.08 1.10 1.09 0.96 1.01 1.06 1.2 1.05 1.07

22 28.6 27.5 1.05 1.04 1.05 1.04 0.92 0.97 1.01 1.14 1.00 1.06

23 27.9 26.2 1.09 1.08 1.10 1.08 0.96 1.01 1.05 1.19 1.04 1.10

24 18.4 21.9 1.09 1.14 0.93 1.08 0.92 0.98 1.10 1.27 0.95 1.11

25 23.4 26.3 1.00 1.01 0.98 1.00 0.87 0.92 0.99 1.13 0.93 0.98

26 29.9 30.4 0.97 0.95 0.97 0.96 0.85 0.90 0.93 1.05 0.92 0.93

27 22.9 26.5 0.98 0.99 0.95 0.98 0.85 0.90 0.98 1.11 0.91 1.04

28 23.7 27.2 0.97 0.98 0.96 0.97 0.85 0.89 0.96 1.1 0.91 0.95

29 27.4 27.1 1.04 1.03 1.06 1.04 0.91 0.97 1.01 1.14 1.00 1.07

30 14 15.6 1.27 1.53 0.97 1.35 1.13 1.20 1.41 1.67 1.12 1.51

31 16.9 20.5 1.06 1.20 0.91 1.12 0.95 1.00 1.14 1.34 0.96 1.18

32 17.1 26.3 0.83 0.94 0.80 0.88 0.74 0.79 0.89 1.04 0.76 0.92

33 18 28.8 0.78 0.86 0.84 0.82 0.7 0.74 0.83 0.96 0.72 0.86

34 18.5 30.1 0.76 0.83 0.82 0.79 0.68 0.71 0.80 0.93 0.70 0.87

35 21.8 20.9 1.19 1.24 1.16 1.22 1.06 1.12 1.22 1.4 1.12 1.23

36 25.8 28.6 0.96 0.96 0.97 0.96 0.84 0.89 0.94 1.07 0.92 0.98

37 27.3 32.9 0.85 0.85 0.87 0.85 0.75 0.79 0.83 0.94 0.82 0.87

38 30.3 35.9 0.82 0.81 0.83 0.82 0.73 0.77 0.79 0.89 0.78 0.80

39 29.6 36.8 0.79 0.78 0.80 0.79 0.7 0.74 0.76 0.86 0.76 0.81

40 19.6 23.1 1.01 1.10 0.94 1.05 0.91 0.96 1.06 1.23 0.94 1.13

41 19.4 30.3 0.77 0.84 0.75 0.80 0.69 0.73 0.81 0.94 0.71 0.87

42 20.9 23.9 1.02 1.08 0.97 1.05 0.91 0.96 1.05 1.21 0.95 1.13

43 21.2 26.5 0.92 0.97 0.89 0.95 0.82 0.87 0.95 1.09 0.87 1.00
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which provides slightly better results than the MEP 
model. As shown in Figure 7, the proposed MEP model 
for both of NSC and HSC yields the best (lowest) Obj 
value on the entire database. The superior performance 
of the generic model implies the reasonability of devel-
oping comprehensive models for the Ec of both NSC and 
HSC rather than developing separate models for each of 
them.

Besides, Figure 10 shows the ratios of the experi-
mental Ec values of NSC and HSC to the values predicted 
by the MEP solutions with respect to fc. As the scatter-
ing increases in these figures, the model accuracy will 
consequently decrease. It can be observed from these 
figures that the predictions obtained by the proposed 
models have a very good accuracy with no significant 
trend with respect to the design parameters. In cases of 
the model for NSC and generic model for both NSC and 
HSC (Fig. 10(a) and (c)), the scattering slightly decreases 
with increasing fc.

Although the ANN, FL and SVM models have a 
good performance, they do not give a certain function 
to calculate the outcome. ANN has only final synaptic 
weights to obtain outcome in parallel manner. Determi-
nation of the fuzzy rules in FL is also a difficult task 
(Yan, Shi 2010). The major limitation of SVM, which is 
not entirely solved, lies in the choice of the kernel for a 
given problem. Other serious problems with SVMs are 
the high algorithmic complexity and low speed of algo-
rithm training process (Burges 1998; Platt 1999). More, 
the ANN, FL and SVM approaches are appropriate to be 
used as a part of a computer program and are not suitable 
for practical calculations.  On the other hand, empirical 
modelling based on statistical techniques has significant 
limitations. The regression analyses can have large 
uncertainties. In regression analyses, the nature of cor-
responding problem is modelled by a limited number of 
pre-defined equations, either linear or nonlinear. Contrary 
to the existing modelling techniques, MEP introduces  

Continued Table 2

Test 
No.

fc
  

(MPa)
Ec 

(GPa)
Ec,FL/

Ec

Ec,ANN/
Ec

Ec,SVM/
Ec

Ec,Regression/
Ec

Ec,ACI/
Ec

Ec,NBS/
Ec

Ec,BS/
Ec

Ec,TS/
Ec

Ec,Gardner and 
Zhao/Ec

Ec,MEP/ 
Ec

44 23.6 32.1 0.81 0.83 0.81 0.82 0.72 0.76 0.81 0.93 0.77 0.85

45 24.2 33.6 0.79 0.80 0.85 0.79 0.69 0.73 0.78 0.89 0.75 0.82

46 31.8 25.5 1.18 1.17 1.17 1.17 1.04 1.11 1.13 1.27 1.12 1.12

47 32.2 27.4 1.11 1.09 1.09 1.10 0.98 1.04 1.06 1.18 1.04 1.06

48 30.6 28.6 1.03 1.03 1.04 1.03 0.92 0.97 1.00 1.12 0.98 1.05

49 29.6 31.6 0.92 0.91 0.93 0.92 0.81 0.86 0.89 1 0.88 0.94

50 35 35.6 0.89 0.88 0.83 0.88 0.79 0.83 0.84 0.93 0.83 0.89

51 32.8 36.7 0.83 0.82 0.81 0.83 0.74 0.78 0.79 0.89 0.78 0.81

52 38.4 26.6 1.26 1.24 1.05 1.22 1.1 1.16 1.15 1.29 1.14 1.20

53 35.7 30.1 1.07 1.05 0.97 1.05 0.94 0.99 1.00 1.11 0.98 1.00

54 42.7 34.1 1.05 1.03 0.87 1.00 0.91 0.96 0.93 1.03 0.92 0.98

55 36.8 29.3 1.11 1.10 0.98 1.09 0.98 1.04 1.03 1.15 1.02 1.08

56 40.1 28.4 1.21 1.19 0.96 1.17 1.05 1.11 1.10 1.22 1.08 1.13

57 47.7 29.6 1.30 1.26 0.85 1.20 1.1 1.17 1.11 1.23 1.10 1.15

58 29.4 33 0.88 0.87 0.90 0.88 0.78 0.82 0.85 0.96 0.84 0.89

59 28.8 29 0.99 0.98 1.01 0.99 0.88 0.93 0.96 1.08 0.95 1.01

60 27.7 25.6 1.10 1.10 1.12 1.10 0.97 1.03 1.08 1.21 1.06 1.06

61 22.1 21.8 1.17 1.20 1.12 1.18 1.02 1.08 1.17 1.34 1.08 1.17

62 28.9 26.8 1.08 1.07 1.09 1.07 0.95 1.00 1.04 1.17 1.03 1.07

63 20.6 23.9 1.04 1.07 0.96 1.04 0.9 0.95 1.04 1.2 0.94 1.12

64 25.3 28.1 0.97 0.97 0.97 0.97 0.85 0.90 0.95 1.08 0.92 0.96

65 16.2 23.3 0.91 1.05 0.85 0.97 0.82 0.86 0.99 1.16 0.82 1.03

66 23.2 23.9 1.08 1.11 1.07 1.10 0.95 1.01 1.09 1.24 1.02 1.16

67 17.9 18 1.24 1.38 1.10 1.30 1.11 1.18 1.32 1.54 1.14 1.39

68 23.9 30.5 0.86 0.88 0.86 0.87 0.76 0.80 0.86 0.98 0.82 0.92

69 27.1 24.7 1.13 1.13 1.16 1.14 1 1.05 1.11 1.25 1.09 1.09

70 37.5 32.6 1.01 1.00 0.87 0.99 0.89 0.94 0.93 1.04 0.92 0.97
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Table 3. Predictions made by different models for the Ec of HSC

Test 
No.

fc 
(MPa)

Ec 
(GPa)

Ec,FL/
Ec

Ec,ANN/
Ec

Ec,SVM/
Ec

Ec,Regression/
Ec

Ec,ACI/
Ec

Ec,CEB/
Ec

Ec,NS/
Ec

Ec,CSA/
Ec

Ec,Wee
 

et al./Ec

Ec,Gardner 
and Zhao/

Ec

Ec,MEP/
Ec

1 63.2 41.8 1.01 1.02 1.07 0.96 0.80 0.95 0.79 0.86 0.97 0.86 1.00
2 70.2 43 1.00 1.02 1.00 0.98 0.81 0.96 0.79 0.88 0.98 0.86 1.01
3 65.1 41.5 1.02 1.03 1.06 0.98 0.81 0.97 0.80 0.87 0.99 0.87 1.01
4 70.5 40.4 1.07 1.09 1.06 1.04 0.86 1.02 0.84 0.94 1.04 0.92 1.08
5 71.5 41.4 1.05 1.07 1.04 1.02 0.84 1.00 0.83 0.92 1.02 0.90 1.07
6 63.6 42.6 0.99 1.00 1.05 0.95 0.78 0.94 0.78 0.84 0.96 0.84 0.99
7 85.9 45 1.01 1.01 1.00 1.02 0.84 0.98 0.80 0.93 1.00 0.88 1.00
8 90.2 44.4 1.04 1.03 1.03 1.05 0.87 1.01 0.83 0.96 1.03 0.91 1.06
9 85.9 44.3 1.03 1.03 1.01 1.03 0.85 0.99 0.82 0.94 1.02 0.90 1.02
10 81.2 43.9 1.02 1.03 1.00 1.02 0.84 0.98 0.81 0.92 1.01 0.89 1.03
11 88.1 44.5 1.03 1.03 1.02 1.04 0.86 1.00 0.82 0.95 1.02 0.90 1.03
12 81.6 43.8 1.03 1.03 1.00 1.02 0.84 0.99 0.81 0.93 1.01 0.89 1.03
13 84.8 47.2 0.96 0.96 0.95 0.97 0.79 0.93 0.76 0.88 0.95 0.84 0.95
14 85.6 45.6 1.00 1.00 0.98 1.00 0.82 0.96 0.79 0.91 0.99 0.87 0.99
15 96.2 46.6 1.01 1.02 1.00 1.03 0.85 0.98 0.80 0.95 1.00 0.88 1.04
16 46.4 35.2 1.08 1.04 1.00 1.00 0.84 1.02 0.85 0.87 1.04 0.92 1.09
17 73.9 41.6 1.05 1.07 1.03 1.03 0.85 1.01 0.83 0.93 1.03 0.91 1.09
18 87.6 44.5 1.03 1.03 1.02 1.04 0.85 1.00 0.82 0.95 1.02 0.90 1.03
19 93.1 45.4 1.03 1.05 1.02 1.04 0.86 1.00 0.82 0.96 1.02 0.90 1.06
20 95.3 45.2 1.04 1.05 1.03 1.06 0.87 1.01 0.82 0.97 1.03 0.91 1.07
21 102.1 46.1 1.05 1.03 1.02 1.07 0.88 1.01 0.83 0.99 1.03 0.91 1.03
22 102.8 46.7 1.04 1.02 1.01 1.06 0.87 1.00 0.82 0.98 1.02 0.90 1.01
23 106.3 48.4 1.01 0.99 0.97 1.04 0.85 0.98 0.80 0.96 1.00 0.88 0.99
24 104.2 46.3 1.05 1.03 1.02 1.07 0.88 1.01 0.83 0.99 1.04 0.91 1.03
25 94.6 47.3 0.99 1.00 0.98 1.01 0.83 0.96 0.79 0.93 0.98 0.87 1.02
26 94 46.3 1.01 1.03 1.00 1.03 0.84 0.98 0.80 0.94 1.00 0.88 1.04
27 96.6 46.5 1.02 1.02 1.00 1.04 0.85 0.98 0.80 0.95 1.01 0.89 1.04

28 91.5 45.9 1.01 1.03 1.00 1.03 0.84 0.98 0.80 0.94 1.00 0.88 1.03
29 91.7 46 1.01 1.03 1.00 1.02 0.84 0.98 0.80 0.94 1.00 0.88 1.03
30 119.9 49.1 1.04 1.00 1.01 1.08 0.88 1.00 0.81 1.00 1.02 0.90 1.02
31 125.6 50.9 1.02 1.00 1.00 1.06 0.87 0.98 0.80 0.99 1.00 0.89 1.00
32 77.2 47.1 0.94 0.95 0.92 0.93 0.77 0.90 0.74 0.84 0.91 0.81 0.97
33 66.5 46.8 0.91 0.92 0.93 0.88 0.73 0.86 0.72 0.78 0.85 0.78 0.90
34 70.7 47.3 0.91 0.93 0.91 0.89 0.74 0.87 0.72 0.80 0.87 0.79 0.93
35 61.8 45.4 0.92 0.93 1.00 0.88 0.73 0.87 0.72 0.78 0.84 0.78 0.93
36 68.9 47.6 0.90 0.92 0.91 0.88 0.72 0.86 0.71 0.78 0.85 0.78 0.90
37 62.2 45.4 0.92 0.93 1.00 0.88 0.73 0.87 0.72 0.78 0.84 0.79 0.93
38 75.8 43 1.02 1.04 1.00 1.01 0.83 0.98 0.81 0.91 0.99 0.89 1.06
39 67.7 48.2 0.89 0.90 0.90 0.86 0.71 0.84 0.70 0.77 0.83 0.76 0.88
40 53.6 46.2 0.88 0.86 1.00 0.81 0.68 0.81 0.68 0.71 0.76 0.73 0.90

41 92.9 46.4 1.01 1.02 1.00 1.02 0.84 0.97 0.80 0.93 1.03 0.88 1.03
42 94 48.3 0.97 0.98 0.96 0.99 0.81 0.94 0.77 0.90 1.00 0.85 1.00
43 97.7 47 1.01 1.01 1.00 1.03 0.85 0.98 0.80 0.95 1.05 0.88 1.02
44 102 48.8 0.99 0.98 0.96 1.01 0.83 0.96 0.78 0.93 1.03 0.86 0.97
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Continued Table 3

Test 
No.

fc 
(MPa)

Ec 
(GPa)

Ec,FL/
Ec

Ec,ANN/
Ec

Ec,SVM/
Ec

Ec,Regression/
Ec

Ec,ACI/
Ec

Ec,CEB/
Ec

Ec,NS/
Ec

Ec,CSA/
Ec

Ec,Wee
 

et al./Ec

Ec,Gardner 
and Zhao/

Ec

Ec,MEP/
Ec

45 86.2 47.1 0.97 0.97 0.95 0.97 0.80 0.94 0.77 0.89 0.97 0.84 0.96
46 87.9 43 1.07 1.06 1.05 1.08 0.88 1.03 0.85 0.98 1.08 0.93 1.06
47 82.7 45.4 0.99 1.00 0.97 0.99 0.82 0.96 0.79 0.90 0.99 0.86 0.99
48 79.1 44.7 1.00 1.01 0.98 0.99 0.81 0.96 0.79 0.90 0.98 0.86 1.02
49 86.6 46.1 0.99 0.99 1.01 1.00 0.82 0.96 0.79 0.91 1.00 0.86 0.98
50 85.5 44.3 1.03 1.03 0.88 1.03 0.85 0.99 0.81 0.94 1.03 0.90 1.02
51 91.1 46.8 0.99 1.01 0.98 1.00 0.82 0.96 0.79 0.92 1.01 0.87 1.01
52 96.7 53.2 0.89 0.89 0.88 0.91 0.74 0.86 0.70 0.83 0.92 0.78 0.91
53 91.2 49.3 0.94 0.96 0.93 0.95 0.78 0.91 0.75 0.87 0.96 0.82 0.96
54 83.8 45.9 0.99 0.99 0.97 0.99 0.81 0.95 0.78 0.90 0.98 0.86 0.98
55 87.1 47.7 0.96 0.96 0.95 0.97 0.79 0.93 0.76 0.88 0.97 0.84 0.95
56 93.2 46.2 1.01 1.03 1.00 1.03 0.84 0.98 0.80 0.94 1.04 0.88 1.04
57 86.9 46.1 0.99 0.99 0.98 1.00 0.82 0.96 0.79 0.91 1.00 0.86 0.98
58 90.7 48.1 0.96 0.98 0.95 0.98 0.80 0.93 0.76 0.89 0.98 0.84 0.98
59 89.5 47.6 0.97 0.96 0.96 0.98 0.80 0.94 0.77 0.89 0.98 0.85 0.98
60 87.8 45.4 1.01 1.01 1.00 1.02 0.84 0.98 0.80 0.93 1.02 0.88 1.01
61 95.2 50.8 0.93 0.94 0.92 0.94 0.77 0.90 0.73 0.86 0.95 0.81 0.95
62 92.2 50 0.93 0.95 0.91 0.94 0.78 0.90 0.74 0.86 0.95 0.81 0.95
63 97.6 49.3 0.96 0.97 0.95 0.98 0.81 0.93 0.76 0.90 1.00 0.84 0.98
64 87.5 48.5 0.95 0.94 0.93 0.95 0.78 0.91 0.75 0.87 0.95 0.82 0.94
65 80.4 43.2 1.04 1.04 1.01 1.03 0.85 1.00 0.82 0.93 1.02 0.90 1.05
66 86.5 44.2 1.03 1.03 1.02 1.04 0.85 1.00 0.82 0.95 1.04 0.90 1.02
67 83.9 44.3 1.02 1.03 1.00 1.02 0.84 0.99 0.81 0.93 1.02 0.89 1.01
68 80.9 44.6 1.01 1.01 0.98 1.00 0.82 0.97 0.80 0.91 0.99 0.87 1.01
69 85.7 45.1 1.01 1.01 0.99 1.02 0.83 0.98 0.80 0.92 1.01 0.88 1.00
70 69.7 41.5 1.04 1.06 1.04 1.01 0.83 0.99 0.82 0.91 1.01 0.89 1.04
71 78.3 44.3 1.00 1.01 0.98 0.99 0.82 0.96 0.79 0.90 0.99 0.87 1.03
72 82.6 44.2 1.02 1.03 1.00 1.02 0.84 0.98 0.81 0.93 1.01 0.89 1.01
73 65.8 40.8 1.04 1.06 1.08 1.00 0.83 0.99 0.82 0.89 1.01 0.89 1.03
74 100.6 45.8 1.05 1.04 1.02 1.07 0.88 1.01 0.83 0.99 1.04 0.91 1.04
75 92.8 45.8 1.02 1.04 1.00 1.03 0.85 0.99 0.81 0.95 1.01 0.89 1.05
76 93.6 47.1 1.00 1.01 0.98 1.01 0.83 0.96 0.79 0.92 0.98 0.87 1.02
77 71.5 48 0.90 0.92 0.93 0.88 0.73 0.86 0.71 0.79 0.86 0.78 0.92
78 59.1 40.9 1.01 1.01 1.08 0.96 0.79 0.95 0.79 0.85 0.90 0.86 1.04
79 57.9 44.5 0.93 0.92 1.04 0.87 0.72 0.87 0.72 0.77 0.82 0.78 0.96
80 93.7 50.5 0.93 0.94 0.92 0.94 0.77 0.90 0.73 0.86 0.95 0.81 0.95
81 85.3 45 1.01 1.01 1.00 1.02 0.83 0.98 0.80 0.92 1.01 0.88 1.00
82 99.7 47.6 1.01 1.00 0.98 1.03 0.84 0.97 0.79 0.94 1.04 0.88 1.00
83 85.1 44.7 1.02 1.02 1.00 1.02 0.84 0.98 0.81 0.93 1.02 0.89 1.00
84 90.3 45 1.03 1.02 1.02 1.04 0.85 0.99 0.82 0.95 1.05 0.90 1.04
85 87.2 41.1 1.12 1.11 1.10 1.12 0.92 1.08 0.88 1.02 1.12 0.97 1.11
86 84.5 45.3 1.00 1.00 0.98 1.00 0.83 0.97 0.79 0.91 1.00 0.87 0.99
87 77 47.2 0.90 0.95 0.95 0.93 0.76 0.90 0.74 0.84 0.92 0.81 0.97
88 86 43.8 1.00 1.04 1.03 1.05 0.86 1.01 0.83 0.95 1.03 0.91 1.03
89 86 42.3 1.04 1.08 1.06 1.08 0.89 1.04 0.85 0.99 1.06 0.94 1.07
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Fig. 10. The ratio between the predicted and experimental Ec values of NSC and HSC with respect to fc

Fig. 11. Parametric analysis of the Ec
 of NSC and HSC

completely new characteristics. One of the major advan-
tages of the MEP approach over other pattern recognition 
methods and traditional statistical analysis is its ability to 
derive explicit relationships for the Ec of NSC and HSC 
without assuming prior forms of the existing relation-
ships. The best equations evolved by this technique are 
determined after controlling numerous preliminary mod-
els, even millions of linear and nonlinear models. 

4. Parametric analysis

For further verification of the MEP models, a paramet-
ric analysis is performed in this study. The parametric 

analysis investigates the response of the predicted Ec 
by the MEP models to a set of hypothetical input data. 
The robustness of the design equations is determined 
by examining how well the predicted Ec values agree 
with the underlying physical behaviour of NSC and HSC 
(Kuo et al. 2009).

Figure 11 presents the tendency of the predictions to 
the fc variations. The results indicate that the Ec of  NSC 
and HSC continuously increases due to increasing fc. 
The parametric analysis results are expected cases from 
a structural engineering viewpoint. The results confirm 
that the proposed design equations are robust and can 
confidently be used.
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Conclusions

In this research, a new variant of GP, namely MEP is 
utilized to formulate the tangent Ec of NSC and HSC. 
Three design formulas are obtained for the prediction 
of Ec. The proposed models are developed upon several 
test results obtained from the literature. The MEP mod-
els provide reliable estimations of the Ec of NSC and 
HSC and outperform the existing models nearly in all 
of the cases. The generic MEP model provides signifi-
cantly accurate determinations of the Ec of both NSC and 
HSC. In addition to the acceptable accuracy, the MEP-
based prediction equations are very simple. The robust-
ness of the proposed MEP models is confirmed with 
the results of the parametric study. With the use of the 
MEP approach, Ec can be estimated without carrying out 
sophisticated and time-consuming laboratory tests. The 
models can be easily retrained and improved to make 
more accurate predictions for a wider range by including 
the data for other test conditions.
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