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Abstract. Structural collapses have indirectly produced important progress in science. The last lesson learnt from struc-
tural collapses reveals the important role of polyrational systems of equations in the Civil Engineering field, as all 
problems in Physics and Engineering involving scale variables lead to systems of these equations. Since no efficient 
methods are known to solve this type of equations, a powerful and efficient method to multivariate polyrational equa-
tions using observability techniques is presented in this paper. It is pointed out that this method can be applied to solve 
different Civil Engineering problems. The information obtained by this tool can be used to assist decision making and 
risk management processes during maintenance and service life. As an example of its use, a structural damage detection 
problem is solved. 
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Introduction 

The history of humanity is closely linked to structural 
damage and to the loss of the load-carrying capacity of 
their components that may produce collapse. From an-
cient times, the collapse of an almost endless number of 
constructions, such as cathedrals, bridges or dams, have 
caused important social and environmental impacts, with 
associated economic costs, especially in terms of human 
lives. Due to its importance, the collapse of a structure 
nowadays receives significant attention from researchers. 

Structural damages can also be interpreted as an in-
direct mean for to developing science. The collapse of 
bridges due to resonance produced by military steps led 
to new precautions in bridge design or when dealing with 
dynamic loads. Failures of the Dee Bridge, in Great Brit-
ain (1847), or the Tay Bridge in Scotland (1879), led to 
improving the knowledge of steel (Akeeson 2008). From 
ancient times, failures have permitted us to identify new 
phenomena, such as the time-dependent behaviour of 
concrete material discovered after checking the deflec-
tions of Le Veurdre Bridge (1910), which produced the 
first documented prestressing application by Freyssinet, 
the aeroelastic flutter phenomenon discovered after the 
collapse of the Tacoma Narrows Bridge (1940) by the 
team led by Bleich et al. 1950, and the synchronous lat-
eral excitation phenomenon in the Millenium Bridge in 
London (2000). Unfortunately, as in any other problem in 

science, failure of a structure due to a certain phenomenon  
cannot be avoided until it is discovered, studied and well-
understood. Only when this process has been completed 
can theoretical models which simulate the behaviour of 
the real phenomenon be constructed and the simulation 
of the real structure behaviour can be achieved with high 
precision.

Since structures deteriorate with time, it is important 
to differentiate between models used in design (where 
material characteristics are assumed) from those utilized 
during service life, when material properties could have 
changed. According to a Federal Highway Administration 
report, in the USA alone, more than 160,000 bridges were 
structurally or functionally deficient in 2004. During ser-
vice life, inspections are often required to guarantee safe-
ty requirements. However, mathematical models should 
also be adapted to incorporate changes in the material and 
physical properties, but it is not always the case. An exam-
ple of this is found in the I-35W Mississippi River Bridge 
(USA) presented in Figure 1a and 1b. Despite the fact that 
this bridge was annually inspected, its collapse occurred in 
2007, killing thirteen and injuring one hundred and forty-
five people. Unfortunately, the inspections were not used 
to know the real stress state of the structure or its actu-
al material characteristics, which could have been done 
by updating the structural model. This example proves 
that even regular inspections cannot guarantee structural  
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have any explicit physical meaning, which is their main 
drawback. During the last decades, computer develop-
ment has enabled increasing popularity in non-parametric  
methods such as Neural Networks (Talebinejad et al. 
2011) or Genetic Algorithms (Marano et al. 2011), as 
complex structural systems can be identified, whereas 
parametric methods have mainly been applied to very 
simple models, due to the complexity of the mathemati-
cal relations among the variables. 

After this introduction, it becomes clear that struc-
tural failures foster new mathematical models and tech-
niques of solution. In this paper we show that the history 
repeats itself. When analysing the real state of a structure, 
we showed that systems of polyrational equations (equa-
tions involving monomial ratios of variables such as, X2Y 
or 3X5Y1/3 being X and Y the variables of the system) 
arise in structural analysis. Later we realized that this 
new mathematical problem appears in all fields of sci-
ence and engineering where scale variables are involved. 
Since no satisfactory methods to solve these systems of 
equations exist, a static excitement based, analytical, par-
ametric and efficient method that avoids resorting to nu-
merical approximations is presented. This new parametric  
tool can help the decision making process to support op-
erational and maintenance decisions on site. 

Structure of the paper is as follows. In Section 1, 
the importance of the polyrational systems of equations 
in all fields in science and engineering is presented. In 
this section a field where polyrational systems of equa-
tions appear (SSI) is described in depth. In Section 2, the 
observability techniques are applied to solve polyrational 
systems of equations. In Section 3 the application of the 
proposed methodology to the decision making in a real 
bridge is presented. Finally, in the last section, some con-
clusions are drawn.

1. Polyrational systems of equations

It is very important to mention that the fact that we get 
polyrational equations when writing a model for physical 
and engineering problems is not a coincidence, but the 
result of physical formulas to be independent on the units 
of measure (Aczél 1966a, 1967; Castillo, Ruiz-Cobo  
1999; Castillo et al. 2005). Thus, we should get the 
same type of polyrational equations in any problem aris-
ing from physics or engineering. More precisely, Aczél 
1966b demonstrated that the general form of dependent 
real-valued variables with ratio scale non-constant and 
continuous-at-a-point when all fundamental or independ-
ent variables have ratio scale, are functions of the form:
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where: a is a constant; x1, x2, ..., xn are the variables in-
volved in the equation; and c1, c2, …, cn are negative or 

safety. To avoid such failures, the information obtained by 
inspection programs should be used to calibrate theoretical 
models, to reproduce the actual structural behaviour and to 
locate structural damages more accurately. This informa-
tion must be linked with decision making (Simanaviciene 
et al. 2012; Liaudanskiene et al. 2012) and risk manage-
ment processes (Kim 2010; Paslawski 2011; Turskis et al. 
2012) to assure structural safety and functionality while 
the structure is in service. 

In the last few decades the development of the 
Health Monitoring field enabled the identification of 
structural parameters of the actual structure from in-
formation obtained on site. This technique is known as 
Structural System Identification (SSI), a complex process 
to determine the actual parameters of a structural system 
based on a subset of measured inputs and outputs. One 
of the most important applications of the SSI is damage 
detection (Garstecki et al. 2004; Yonggang et al. 2008). 

Damage can be detected by non-destructive tests 
that include the response of the structure to a certain ex-
citation. According to the excitation, these experiments 
can be classified as dynamic or static according to wheth-
er or not they engage inertial effects. Most of the dam-
age detection methods proposed in the existing literature 
are based on dynamic excitement (Witzany, Cejka 2007; 
Zwolsky, Bien 2011).

A wide range of damage detection methods has 
been presented in the existing literature. These can be 
classified as parametric, in which the parameters of an 
actual system model are directly used to represent the 
physical properties of the structure, and non-parametric 
methods, in which the input-output relation is character-
ized and determined by a set of equations that may not 

Fig. 1. Collapse of the I-35W Mississippi River Bridge, USA 
(courtesy of Federal Highway Administration and Context 
Sensitive Solutions and Creative Commons1)

1 http://www.flickr.com/photos/kj415/1056861837/
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positive real constants. Some examples of such equation 
in physics are the kinetic energy formula or the universal 
gravitation law:
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This means that no other formulas are possible from the 
point of view of unit consistency. A detailed analysis of 
this problem has been carried in Castillo and Ruiz-Cobo 
(1999), Castillo et al. (2005, 2012). 

This important property makes clear that poly-
rational equations play a very relevant role in phys-
ics and engineering fields. As some examples, we first 
can mention the cases of electrical and water power  
distribution. 

In these two cases, knowing the state of the distribu-
tion conduction or lines is crucial. For example, one of 
the main problems when the New York blackout occurred 
was the inability to pinpoint the exact site of the fail-
ure (Firestone, Pérez-Peña 2003). This led to an unusual  
flurry of accusations on both sides of the international 
border. Canadians initially said that failure originated 
due to a fire in a power plant near Niagara Falls on the 
American side, possibly caused by a lightning strike. This 
hypothesis was shortly replaced by saying that the power 
failure originated at a nuclear power plant in Pennsyl-
vania. American officials denied both charges and indi-
cated that the event began somewhere west of the Ontario 
power system, taking out electric power in Ontario and 
parts of Michigan and Ohio that produced the New York 
blackout. Later, New York State officials said the event 
may have begun with a power surge at the Perry nuclear 
power plant near Cleveland (Firestone, Pérez-Peña 2003).

As a consequence, several investments of billions 
of dollars in new wires, towers and transformers were 
suggested to prevent such power failures in the future. 
However, much cheaper and more efficient methods are 
available, based on maintenance and control policies 
which permit identifying the exact location of critical or 
damaged elements and thus replacing not all but only 
selected critical elements, with considerable savings in 
money and materials. This is where the calibration and 
identification of the state of the system arises as a power-
ful and useful technique.

We also find polyrational systems of equations in 
the water supply problem, where the node flow bal-
ance equations, pipe height losses written in terms of 
the water velocities and the roughness and diameter of 
the pipes, and the total node heights written in terms  
of the geometric, piezometric and cinetic heights lead to 
a system of polyrational equations. A complex problem 
to be solved in water supply systems is the location of 
obstructed pipes which substantially degrades the effi-
ciency of the network. It is clear that the methods pro-
posed in this paper permit us to locate the sources of 
failures by adequately measuring pressures and speeds 
at adequately selected locations.

Another field of application is high-speed train safe-
ty. The accident suffered by the InterCityExpress train set 
51, travelling on the Munich to Hamburg route, could 
have been avoided if adequate maintenance policies were 
applied, permitting us to detect the location of damaged 
elements. The result of the accident can be thus summa-
rized as: 101 fatalities, 88 severe injuries and 106 minor/
no injuries.

According to some information, during the week pri-
or to the Eschede disaster, three separate automated checks 
indicated that a wheel was defective. Investigators discov-
ered from a maintenance report generated by the train’s 
on-board computer that two months prior to the Eschede 
disaster conductors and other train staff filed eight separate 
complaints about the noises and vibrations generated from 
the bogie with the defective wheel but the company did 
not replace the wheel. The proposed technique of polyra-
tional systems can be successfully applied to prevent fail-
ures or damage to train elements which can be identified 
by designing an appropriate maintenance protocol.

Hence, it is clear that polyrational equations play a 
very relevant role in physics and engineering fields such 
as: 1) the water supply problem (Castillo et al. 2012); 
2) the electrical power distribution problem; 3) the high-
speed train safety problem; and 4) the Structural System 
Identification problem. 

The application of the polyrational systems of equa-
tions appearing in the Structural System Identification is 
presented in this paper as an example of the application 
of such technique. 

1.1. Polyrational system of equations in structural  
system identification. 
In structural analysis, statement of the equilibrium condi-
tions leads together with strength of materials theory to 
the following system of equations:

 [K] ×{δ} = {f}, (3) 

in which [K] is the stiffness matrix of the structure that 
depends on material and geometric properties of the 
structural elements; {δ} is a vector of node displacements 
(in 2D horizontal and vertical deflections ui, vi and rota-
tions wi in each node); and {f} is a vector of node forces 
(in 2D horizontal and vertical forces Hi, Vi and moments 
Mi in each node). 

As an illustrative example, a simply supported 
beam is presented in Figure 2a. In Figure 2b, the different 
terms of Eqn (1) for 2D analysis are shown, including the 
geometrical and mechanical properties of the beam ele-
ments of the structure, such as length, L, Young’s modu-
lus, E, area, A, and inertia, I.

The stiffness method assumes that the stiffness ma-
trix K is known, and since the stiffness matrix is singular, 
the system of equations has infinite solutions. 

Then, the engineer adds the boundary conditions of 
the structure and a new system with a unique solution is 
obtained. The number of boundary conditions depends 
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on the structural redundancy of the structure and must 
avoid the presence of global or partial mechanisms. For 
a 2D structure, a minimum of three boundary conditions 
(e.g. in structure of Figure 2a u1 = 0, v1 = 0 and v4 = 0) 
is required. In this case, the system of equations is linear 
and easy to solve.

The stiffness method is a direct method, as the me-
chanical and geometrical properties of the structure are 
known. However, due to uncertainties in the materials, 
construction procedures, stress state, degradation or dam-
age, this is not always the case. Thus, the inverse prob-
lem is introduced in the SSI where [K] is at least partially 
unknown. In summary, while direct methods solve sys-
tems of linear equations to determine reactions and node 
displacements in terms of forces, boundary conditions 
and material and geometric properties, inverse methods 
solve polyrational systems of equations to determine  
material and geometric properties in terms of boundary 
conditions and displacements (Castillo et al. 2012). This 
enables us to determine material parameters in the stiff-
ness matrix (output), based on producing changes in the 
vector of forces and measuring the vector of displace-
ments (input) in order to make better predictions. Even 
more, it allows us to locate structural damage and assess 
the corresponding magnitude. Unfortunately, the resulting  
system of equations in this case is non-linear. In this ar-

ticle we present mathematical models that allow us to 
solve this non-linear system, that is to say, the inverse 
problem in very general cases.

If we assume that the coefficients in matrix K are no 
longer constant and involve some unknown variables we 
face the inverse problem (Fig. 2b). Then, the unknown 
terms in the stiffness matrix can be moved to the right 
column vector so that we keep a constant coefficient 
matrix and we obtain a column vector of non-linear un-
known variables (Fig. 2c). Note that: (a) terms of matrix 

K involved unknown variables such as: 
2,EA EI

L L
 or 

3
EI
L

; 

(b) these unknown variables are non-linearly related and 
(c) unknown variables present in K are also multiplying 
those present in δ. This implies that our new unknown 
variables are not E, A, I, L or ui, but products/quotients 

of them, as 
2,i iEAu EIv

L L
 or 

3
iEIv

L
. Thus, we obtain un-

known variables that are quotients of multivariate mo-

nomials (very simple rational functions), which in some 
cases can degenerate to single monomials. Consequent-
ly, we obtain a system of polyrational equations, that 
is, linear combinations of elemental rational functions 
(Fig. 2d). Moreover, the linearized products or quotient 
variables outnumber the original ones (Fig. 2c).

Fig. 2. Example of a simple beam showing the initially measured displacements and forces and the resulting observed extra 
displacements and forces (reactions) after recursive steps 1 and 2 (a); the resulting stiffness matrix [K] and force {f} and displacement 
{δ} vectors (b); the modified stiffness matrix K* and the monomial products located in the column matrix of the left hand side (c); 
the system of multivariate polyrational (polynomial) function, which in this case degenerates to a multivariate polynomial system 
of equations (d)
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2. Solving polyrational systems of equations

Though there are very well-known and efficient meth-
ods for solving very large systems of linear equations, 
we have not found in the existing literature any works 
dealing with the problem of solving this type of multi-
variate polyrational equations. However, this is not the 
case for the particular case of polynomial equations. 
The field of multivariate polynomial equations has been 
studied in the existing literature. A good reference is  
Lazard (2009), in which a summary of the state of the art 
on polynomial equations is given. In this area, Gröbner 
bases, which are introduced by Buchberger (1965, 1970, 
1976), are the key tool. Important references in Gröbner  
bases are Buchberger (2001) and Faugère and Perret  
(2009), but there are many others. Unfortunately, the 
Gröbner bases techniques for solving polynomial equa-
tions are not very efficient and do not include the case 
of negative exponents in the factors (polyrational equa-
tions). Thus, new mathematical methods are required to 
solve not only multivariate polynomial equations, but 
the more general problem of multivariate polyrational 
equations.

Given that no practical solving methods are avail-
able to our knowledge for these equations, we propose 
the use of observability analysis to the SSI field.

2.1. Observability
In many areas of engineering the variables involved in 
a given problem are related by constraints that must be 
satisfied in order to make the solution of the problem 
physically valid. These constraints frequently lead to sys-
tems of equations that have an infinite number of solu-
tions when they are initially stated (Castillo et al. 1999). 
Thus, the engineer must add new constraints (boundary 
conditions) for the problem to have a unique solution. 
However, it could happen that the system, which does 
not have a unique solution for all variables, it could 
have a unique solution for a proper subset of variables  
(Castillo et al. 2000, 2002). We say that a subset of vari-
ables is observable when the system of equations implies 
a unique solution for this subset, even though the remain-
ing variables remain undetermined. This leads to the ob-
servability problem, which has a relevant role in many 
engineering problems. In particular, given a system of 
equations we can ask several questions that are relevant  
to SSI problems. Among them are the following:

1) What is the subset of variables with a unique  
solution?

2) What is the minimum subset of variables needed 
to uniquely obtain the values of another subset of 
variables?

3) What is the subset of variables that become observ-
able given another subset of variables?
Castillo et al. (2007) provided a general method to 

solve the observability problem in the case of systems 
of linear equations or inequalities. However, since many 

problems in engineering are non-linear, this method can-
not be directly used in many practical cases.

The application of observability techniques to 
solve polyrational system of equations in SSI is much 
more complex than to some previous applications  
(Lozano-Galant et al. 2012). Since the system of equa-
tions in terms of the initial variables is non-linear, these 
techniques are not directly applicable, but they can be 
applied to the system of equations in terms of products 
or quotients because they are linear. Once we have ob-
tained the values of the elemental product or quotients, 
we can take logarithms to obtain new linear systems that 
allow us to obtain the values of some initial variables.

2.2. Developed method
Recently, the authors have developed a technique that 
promises to solve the polyrational equations arising in 
some engineering problems (Castillo et al. 2012). In par-
ticular, they show that it is very efficient in solving the 
problems arising from the structural field.

Figure 3 shows a flow chart of the proposed meth-
od. The main idea consists of finding the unique solutions 
of elemental rational ratios (products of single variables 
raised to positive or negative powers), which is denoted 
“learning products step” in Figure 3, and then learning 
the signs and the absolute values of the variables, solving 
the corresponding systems in terms of single variables 
by taking logarithms denoted “learning single variables 
step”. A “simplification step”, in which the actual knowl-
edge of data or derived values of the variables is used to 
simplify the actual product variables, completes the three 
main steps of the algorithm. 

Since the resulting observed variables in each itera-
tion are not included in the observability analysis cor-
responding to that iteration, a recursive process has to 
be carried out where the observable information of pre-
ceding iterations is introduced as new input data. This 
process has to be repeated until no additional observable 
variables are obtained between two successive steps. The 
recursive process allows us to analytically solve the poly-
rational system of equations without the need to resorting 
to numerical approximations.

The proposed method can be formally explained as 
follows:

INPUT: The topology of the structure and the sub-
set M of known mechanical properties and measured  
deflections.

OUTPUT: The resulting subset of observable vari-
ables O (subset of single and/or product variables) that 
can be written in terms of the subset M of measured  
variables.
Step 1:  Build the stiffness matrix of the structure K and 

its modified version K*. Based on the topology 
of the structure the stiffness matrix K is built. 
Modify the stiffness matrix K to K* by separat-
ing the terms made of summands such that each 
summand correspond to a single column.
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Step 4:  Remove the measured variables and update. Mul-
tiply the columns of K* associated with measured  
variables by their corresponding values and re-
move the associated factors from the column  
matrix δ*.

Step 5:  Eliminate duplicated variables and remove the 
null columns. Identify duplicated variables in δ*, 
compact matrix K* by adding columns of dupli-
cated variables and replace column  by the result-
ing non-duplicated variable list. 

Step 6:  Reorder the system. Reorder the system such that 
the unknown variables {z} are grouped together 

Step 2:  Generate the list of product variables. Identify 
the set of all unknown variables in K and multi-
ply it by δ. A new vector δ* of different product 
variables (such as EAu, EIv or EIw) is obtained. 
After this step, matrix  transforms to a constant 
and known matrix K*. Matrix  K* can be rear-
ranged in order that δ* contains only monomial  
terms.

Step 3:  Impose boundary conditions and known loads. 
Replace the displacements and known loads as-
sociated with the boundary conditions by the cor-
responding values. 

Fig. 3. Flow chart of the proposed method for solving the system of multivariate polyrational equations, showing the simplification 
step and the learning steps 1 and 2
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and the known values appear in the independ-
ent term column matrix D. The resulting system 
has associated a matrix B, that is, the system be-
comes:

 [ ]{ } { }B z D= . (4) 

Step 7:  Obtain the null space of matrix B, [V]. In order 
to derive the observable variables the null space 
of matrix B is obtained (see note).

Step 8:  Identify the observable variables. Identify the 
null rows of the matrix with the generators of 
the null space. The associated product variables 
are the observable variables (they have a unique 
solution) whose values are obtained. 

Step 9:  Identify null single variables. If the unique values 
for the observable product variables are null, the 
associated null displacements (E, A and I values 
cannot be null) are identified. 

Step 10:  Identify negative single variables. If the single 
values for the observable product variables are 
negative, the associated negative displacement 
(E, A and I values cannot be negative) are iden-
tified. 

Step 11:  Solve logarithmic equations. By taking loga-
rithms, build the linear system involving abso-
lute values of observable product variables and 
obtain the corresponding null space.

Step 12:  Identify observable single unknown variables. 
These variables correspond with null rows of 
the null space, as in Step 9. The absolute values 
of these variables are obtained and if their signs 
have been determined, the values become known. 

Step 13:  Recursive Process. Repeat the process from Step 
4 to Step 13 again with the values of observable  

variables until no new observable variables are 
obtained. In such a case return the list of all 
observable variables O and the corresponding 
values.

Note:  The general solution (the set of all solutions) of the 
system (4) has the structure (Castillo et al. 2000, 
2002):

  (5) 

where: z, z0 and ρ are column matrices; and [V] is a rec-
tangular matrix of arbitrary real values, that contains the 
null space generators. The solution of a given z is unique 
if, and only if, the corresponding row in matrix V is null. 
In such a case, the corresponding unique value is in the 
corresponding element of z0.

It is important to note that in some particular cases 
(the field of structures presents some examples) these 
multivariate polyrational functions become multivariate 
polynomial functions, but in general this is not the case. 
In this case, we obtain a multivariate polynomial system 
of equations because we have assumed that the lengths of 
the elements are known, otherwise we obtained a rational 
monomial function.

In the following section the application of the pro-
posed methodology to damage detection is presented by 
its application in an actual structure. Then, some insights 
to help the decision making process when damages are 
detected are provided. 

3. Application of the method
To illustrate the proposed methodology, an example 
where the technique is used for damage quantification, 
the Koror–Babelthuap Bridge in the Republic of Palau 
(Fig. 4a) is described. This structure was a prestressed 

Fig. 4. Koror–Babelthuap bridge in Republic of Palau: (a) Actual structure (Courtesy of Bill Perryclear and Chris Burgoyne);  
(b) Collapsed structure (Courtesy of Bill Perryclear and Chris Burgoyne); (c) Detected Cracks (Burgoyne, Scantlebury 2006); and 
(d) Finite Element Model
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concrete bridge with a total length of 385 m, which 
 collapsed in 1996 (Fig. 4b), killing two people and in-
juring other four. 

The actual characteristics of the built structure were 
unknown due to uncertainties in the materials, construc-
tion procedures and stress state. As the bridge was made 
of concrete, flexural and axial stiffness (EI, EA) might 
have been influenced by the stress state of the structure. 
The damage scenario could have been reproduced, ac-
cording to the actual damage of the structure reported in 
Burgoyne and Scantlebury (2006). In this study, struc-
tural cracks, among others, were detected in the proximi-
ties of the left inner support, as presented in Figure 4c. 
A simplified Finite Element Model including 86 beam 
elements could have been used to quantify the damage 
on the structure. The characteristics of all beam elements 
except those located in the proximities of the damage (in 
red in Fig. 4d) might have been assumed to be known. 
The damaged flexural stiffness could have been ob-
tained, providing that enough vertical deflections were 
measured in the actual structure under a given load test, 
(e.g. with some heavy trucks loading the deck). Assum-
ing that the characteristics of the undamaged sections 
were known, flexural stiffness of the damaged section 
could have been obtained by measuring vertical deflec-
tions in the actual structure at two points (highlighted 
with circles in Fig. 4d). 

The proposed methodology is not only limited to 
damage quantification when the location of the damage 
is known, it can also be used to determine the location 
of the damage along with its intensity. However, more 
information is required to do so as the flexural stiffness 
of all the beam elements are assumed to be unknown. In 
this example, in order to locate the damage, vertical de-
flections at 169 points in the structure should have been 
measured on site for a given load test. The flexural stiff-
ness of all the 86 beam elements modelling the structure 
could have been obtained after 29 recursive steps. 

As the static vertical deflections in actual structures 
can be economically and accurately measured by topog-
raphy, the proposed method is presented as a powerful 
alternative to other damage detection methods proposed 
in the literature. 

Comparing the real stiffness with the theoretical 
one, a damage index for the different elements of the 
structure can be determined, along with their remaining 
strengths. This information can be included in decision 
making and risk management processes to prevent future 
failures. Once the threshold value is reached in any of the 
elements of the structure, action might be taken.

Conclusions

In this paper, we have shown that the search for a meth-
od to avoid structural collapse has led to the knowledge 
of the importance of multivariate polyrational equations 
and to the development of new mathematical algorithms 
and procedures to solve them. As polyrational systems 

arises in science and engineering fields whenever scale 
variables are involved, some practical applications of 
this method in several fields of engineering are pointed 
out. As an example, the proposed methodology has been 
applied for locating and quantifying damages in actual 
structures based on static monitoring information ob-
tained during inspection programs. This new tool can be 
included in decision making and risk management pro-
cesses to design appropriate maintenance protocols or to 
identify failure in a complex system. The fact that the 
method is parametric enables not to lose the physical 
meaning of the estimated variables. 
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