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Abstract. The paper deals with the analysis of reliability of a hot-rolled steel IPE-beam designed according to Euroco-
des. A beam at its ultimate limit state is considered. The load acting on the beam consists of permanent and long-term 
single variation actions. The beam is loaded with end bending moments about the major principal axis. The beam is 
susceptible to lateral torsional buckling between the end supports. Reliability of the beam is assessed using probabilis-
tic analysis based on the Monte Carlo method. Failure probability is a function of the random variability of the load-
carrying capacity and the random variability of load effects. The variability of the load-carrying capacity is influenced 
by the variability of initial imperfections. Imperfections are considered according to experimental research. Numerical 
studies showed that the failure probability is significantly misaligned. High values of failure probability were obtained 
for slender beams, for beams loaded only by permanent load action, and for beams loaded only by long-term single vari-
ation load. In further studies the values of partial safety factors of load and resistance were calibrated so that the failure 
probability had a target value of 7.2E–5. Relatively high values of partial safety factors were obtained especially for 
beams with high slenderness.
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Introduction

Present structural design codes such as the Eurocodes 
provide a simple, economic and safe way for the design 
of civil engineering structures (JCSS 2001). Eurocode 3 
(2005) provides the basic rule for the design of reliable 
steel structures. The design of building structures should 
be in accordance with the general rules given in EN 1990 
(2002). The guidelines for structural reliability are based 
on the concept of limit states used in conjunction with the 
partial safety factor method.

Reliability of steel structures is traditionally achieved 
by deterministic methods using partial safety factors cal-
culated generally under conservative estimators of influ-
ent parameters. Characteristic values or nominal values 
of material properties must be used as is indicated in Eu-
rocode 3 (2005). The characteristic value can be fixed 
on statistical basis, often as quantiles of corresponding 
random variables. The nominal value is a value fixed on 
non-statical basis, for example on acquired experience or 
on physical conditions. Geometrical data for cross sec-
tions and systems may be taken as nominal values from 
product standards. In Eurocodes, numerical values of the 
partial safety factors and other reliability parameters are 

recommended as basic values that provide an acceptable 
level of reliability. 

The degree of reliability can be identified accord-
ing to the rules of standard EN 1990 (2002). The basic 
reliability targets for design values for the ultimate limit 
state recommended in EN 1990 (2002) are based on a 
semi-probabilistic approach, with the target value of re-
liability index bd = 3.80 for a 50 years reference period 
(Sedlacek, Müller 2006). The target reliability level and 
the reference period are considered as parameters and can 
be adjusted, so the framework remains valid under alter-
native economic considerations or requirements for hu-
man safety (Caspeele et al. 2013). Reliability is usually 
expressed in probabilistic terms, although it is not the 
only possible mathematical approach to describe uncer-
tainty, see for e.g. fuzzy sets (Yazdani-Chamzini 2014), 
non-probability convex models (Bai et al. 2014) or Gray 
systems (Zavadskas et al. 2010). Methods for the analysis 
of reliability are an important part of optimization pro-
cedures (Kalanta et al. 2012a, b) and of methods for the 
analysis of risk (Fouladgar et al. 2012). 

One of the basic indicators of reliability of steel 
structures is the probability of failure. The reliability in-
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dex bd = 3.80 corresponds to a target failure probabil-
ity 7.2E–5, see EN 1990 (2002). If the evaluated failure 
probability is greater than the pre-set target value, then 
the structure is considered to be unsafe.

All random phenomena, which have an effect on the 
reliability of the structure must be taken into account dur-
ing the evaluation of the failure probability. The prob-
ability of failure is usually a function of random material 
and geometrical characteristics of the structure and the 
random load effect. With regards to mass produced hot-
rolled steel members statistical data of material and geo-
metric properties are relatively well known from experi-
mental research (Melcher et al. 2004; Kala et al. 2009). 
Other usable materials for the determination of input 
random variables of computational models include the 
tolerance standards EN 1090-2:2008+A1:2011 (2011), 
EN 10034:1993 (1993), which list maximum permissible 
deviations in the geometry of the structure or elements. 
The maximum allowable geometric deviations specified 
in the Eurocodes can never be met with 100% probability 
during production of steel structures; usually 5% non-
compliance of the tolerance limits is considered (Kala 
2011, 2012). 

The most important characteristic for the analysis 
of reliability in the case of the ultimate limit state is the 
static load-carrying capacity. The load-carrying capacity 
is the maximum static load that a structure can safely 
carry. The load-carrying capacity can be determined ex-
perimentally or can be the output variable of a mathe-
matical computational model developed on the basis of 
the principles of the theory of elasticity and plasticity. As 
the material and geometric characteristics of the structure 
are random variables, the load-carrying capacity is also 
a random variable.

A basic idea of the statistical analysis of the load-
carrying capacity is provided by physical experiment, 
which however, is usually limited by the possibilities of 
the laboratory, particularly the size and shape of the ex-
amined specimen and the number of repetitions of the 
experiment. Standard EN 1990 (2002) considers a high 
number of tests such as n ≥ 100, which is a lot in terms of 
the economy of real experiments, but little for the theo-
retical evaluation of small values of failure probability. 
If the failure probability is small then it is customary to 
have a large number of realizations of the experiment, 
which can be performed using virtual computer simula-
tion based on methods of the Monte Carlo type. 

The goal of the presented article is the analysis of 
the failure probability of a laterally unrestrained steel 
beam IPE200 subjected to static bending around the ma-

jor axis, see Figure 1. The end-fork boundary condition 
is modelled as hinged ends of the beam for bending and 
warping torsion.

The beam has initial imperfections and is susceptible 
to lateral torsional buckling between the end supports. 
Beams IPE200 of varying lengths (varying slenderness) 
designed according to standards Eurocode 3 (2005) and 
EN 1990 (2002) for maximum utilization, i.e. the load 
is equal to the load-carrying capacity of the beam, were 
considered. The reliability of design of the steel beam 
designed according to standards Eurocode 3 (2005) and 
EN 1990 (2002) was evaluated using probabilistic analy-
sis elaborated on the basis of methodology (Kala 2007; 
Lukoseviciene, Daniunas 2013). The Monte Carlo meth-
od was used for the evaluation of the probability of fail-
ure. Loading of the beam consists of permanent and long-
term single variation actions. Different values of the ratio 
of permanent and long-term single variation action were 
considered in the probabilistic calculations. The partial 
safety factors in the calibration studies were calculated 
in such a manner that the probability of failure was fixed 
at 7.2E–5. Results of the probabilistic analyses show the 
limits of the applicability of the method of the partial co-
efficients of the Eurocode 3 (2005) standard for securing 
balanced reliability of steel elements.

1. Probability based reliability analysis

The standard EN 1990 (2002) permits the use of proba-
bilistic methods which take into account the variability 
of input parameters and loading states. The probabilistic 
calculation is formulated as an alternative, which is to be 
verified with standard conventional methods using par-
tial safety factors. Probabilistic methods can be used to 
determine the probability of failure and reliability index, 
the minimum values of which are recommended in EN 
1990 (2002) for the ultimate limit state and individual 
classes of reliability. The results of probabilistic reliabil-
ity analyses can be useful not only for the assessment of 
whether or not a structure fulfils requirements, but also 
for the verification of the reliability of design or for the 
calibration of partial safety factors of Eurocodes.

It is assumed for the reliability condition (1) that a 
steel structure is reliable, when and if the load action S is 
lower than the structure load-carrying capacity R:

 0,R SΓ = − ≥  (1)

where R is the load-carrying capacity and S is the load 
action. R and S are generally random variables.

1.1. Random effect of load action S
The random load action S was introduced as the sum 
G+Q of random permanent load G and random long-
term single variation action Q, see Table 1. For random 
permanent loading G, the characteristic value Gk can 
be considered as the mean value of a Gauss probability 
density function (pdf), variation coefficient of 0.1 (Honfi Fig. 1. End-fork IPE-beam with equal end moments
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et al. 2012). Gumbel-max pdf with mean value 0.6 Qk 
and standard deviation 0.21 Qk was considered for the 
determination of the random load action Q (Kala 2007). 
The value Qk is approximately 95% fractile of Q. 

Mean values and standard deviations of random var-
iables G and Q are functions of characteristic values Gk, 
Qk, which will be evaluated from Eqn (7) and are derived 
in the following manner. Let us consider value d accord-
ing to the equation:

 k

k k

Q
G Q

d =
+

.  (2)

It may be noted that Eqn (2) has also been used for 
example in Kala (2007) and Honfi et al. (2012). Design 
according to Eurocodes requires that the design resistance 
Rd is greater than or equal to the design load action Sd. 

Let us assume that the steel beam IPE200 is de-
signed according to Eurocode 3 (2005) for maximum 
utilization, i.e.:

 ,d dS R=   (3)

where Rd is a function of the characteristic value of resist-
ance Rk and global partial safety factor γM: 

 ,
,

y nk
d LT pl y
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γ γ
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where cLT is the reduction factor for the relevant buck-
ling mode, Wpl,y is the plastic section modulus and fy,n is  
the nominal value of yield strength. For example: beam 
IPE200 under major axis bending with unbraced length 
L = 3.02 m, γM = 1.0, fy,n = 235 MPa have Wpl,y = 2.206E–
4 m3, LTλ  = 1.0→ cLT = 0.666 (buckling mode a) and 
Rd = 34.506 kNm. The value of cLT is a function of non-
dimensional slendernes defined in Eurocode 3 (2005) as:

 ( )0 , ,

, ,

n L pl y y n
LT

cr n cr n

M W f
M M

=
λ = = , (5)

where Mn,(L = 0) is the cross-section based resistance cor-
responding to a theoretical “zero-length” beam and Mcr,n 
is the critical buckling moment corresponding to bifurca-
tion from in-plane bending response to out-of-plane lat-
eral bending and twisting, (see, e.g. Trahair 1977; Kala 
2013). Mcr,n is calculated from Eqn (9) using nominal 
values of geometric and material characteristics. The de-
sign load action can be expressed according to Euroco-
de 3 (2005) as:

 · · .d G k Q kS G Q= γ + γ  (6)

To meet the requirement that Rd be greater than or 
equal to Sd, Eurocodes prescribe that, for structural de-
sign, loads are increased by partial safety factors. The 
partial safety factors applied in the calculations are the 
ones given by Eurocode: γG = 1.35, γQ = 1.5, γM = 1.0, 
see also (Honfi et al. 2012). Given the above assump-
tions, Gk, Qk are determined from the equation: 

 1.35 1.5
1.0

k
k k

R
G Q⋅ + ⋅ = , (7)

where LTλ  and δ are deterministic (non-random) com-
putational parameters. The goal of the presented article 
is to investigate the effect of LTλ  and δ on the failure 
probability.

1.2. Random load-carrying capacity R
The elastic load-carrying capacity MR of the beam IPE 
shown in Figure 1 can be derived (Trahair 1977). Lat-
eral deflection and twisting of the ends of the beam are 
prevented. The initial geometrical imperfections were as-
sumed to follow the shape of the first eigenmode pertain-
ing to lateral torsional buckling. The elastic load-carrying 
capacity MR is the maximum elastic load. It was assumed 
that failure of the imperfect beam occurs when the maxi-
mum longitudinal stress is equal to the yield strength fy. 
The formula for the calculation of MR was derived in 
Kala (2013) as:
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and where E is Young’s modulus, Wy is section modulus 
about axis y, Wz is section modulus about axis z, Iy is 
second moment of area about axis y, Iz is second moment 
of area about axis z, fy is the yield strength and av0 is the 
amplitude of a half-wave of the sine function of the initial 
lateral imperfection of the beam axis. Mcr is expressed as:
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Table 1. Input random load actions

Symbol Mean St. deviation Skewness Kurtosis
G* Gk 0.1 ⋅ Gk 0 3
Q** 0.6 ⋅ Qk 0.21 ⋅ Qk 1.14 5.4

* Gauss pdf, ** Gumbel-max. 
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where m is Poisson’s ratio, It is torsion constant, Iw is 
warping constant. The basic form of the empirical equa-
tion for the evaluation of the plastic load-carrying capac-
ity Mpl,R can be derived in accordance with (Galambos 
1998) as: 

 ( ), 1pl y
P R R

y

W
M M M

W
= α + −α , (10)

where:
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4
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1 LT
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. (11)

1.3. Input random imperfections
The following basic random parameters were considered 
for the computational model (10) of the steel beam: ge-
ometry of the section (tolerances of plate elements and 
section shape), geometry of the beam (initial curvature 
and twist), yield strength fy, modulus of elasticity E and 
Poisson’s ratio m. Random geometric and material imper-
fections of the profile IPE200 were considered according 
to Kala et al. (2009) and Soares (1988). Profile IPE was 
considered in accordance with Kala (2005, 2009, 2011) 
as perfectly biaxially symmetrical (without imperfections 
distorting the symmetry), see Figure 2. Statistical charac-
teristics of yield strength of steel grade S235 were con-
sidered according to Melcher et al. (2004). The effects of 
residual stresses were neglected.

If the beam is curved according to the first eigen-
mode, it is then valid that:

 0
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where av0, e0 af0 (see Kala (2013) and Fig. 3). Input ran-
dom variables are clearly listed in Table 2. All input vari-
ables are considered as statistically independent.

Hermite pdf is a Gaussian pdf multiplied by the 
Hermite polynom with respective skewness and kurtosis 
(program Statrel 3.10). 

1.4. Failure probability
Failure occurs in the event that inequality (1) is not ful-
filled. The failure probability Pf (14) was calculated using 
the Monte Carlo method for 10 million simulation runs. 
The program Statrel 3.1 was used:

	 ( 0).fP P= Γ < 	  (14)

Input random variables needed for the evaluation of Pf in 
(14) are listed in Table 1 and Table 2. 

It is necessary to specify L, Gk, Qk in Table 1 and 
Table 2. Practically, the procedure is as follows: the pair 
of values LTλ  and δ is selected. L is evaluated from 
Eqn (5) using the value of LTλ . Gk, Qk are evaluated 
from Eqn (7) using the value of δ. 

Fig. 2. Geometry of symmetric IPE cross section

Fig. 3. Curvatures in the middle of the span

Table 2. Input random imperfections

Symbol Mean St. deviation Skewness Kurtosis
h** 200.18 mm 0.8847 mm –0.409 3.038
b** 101.39 mm 0.9868 mm –0.3711 3.730
t1** 5.902 mm 0.2187 mm 0.5306 4.9671
t2** 8.438 mm 0.3898 mm –0.1039 2.7782
r* 12 mm 0.552 mm 0 3
e0* 0 m L/1960 0 3
E* 210 GPa 10 GPa 0 3
m* 0.3 0.009 0 3

fy** 297.3 MPa 16.8 MPa 0.3246 2.5415

* Gauss pdf, ** Hermite. 

Fig. 4. Misalignment of failure probability Pf
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2. Reliability verification of design according to 
standard

The curves of the misalignments of failure probability Pf 
for a set of fixed values of LTλ  are shown in Figure 4. 
Parameter δ was considered with a step of 0.02. A con-
vex curve Pf is obtained for each fixed (constant) LTλ . 
If 3.1LTλ ≤ , the maximum values of Pf are obtained for 
δ = 1.0; otherwise, the maximum Pf is for δ = 0.

More general results are shown in Figure 5. Figure 5 
shows a 2-D top view of the 3-D surface chart, in which 
the outlines (similarly as isolines) depict curves connect-
ing points with the same (predetermined) value of Pf. Pa-
rameter δ (horizontal axis) was considered with a step of 
0.02, parameter LTλ  (vertical axis) was considered with 
a step of 0.05. Values of Pf for plotting the curves were 
selected so that Figure 5 was as illustrative as possible.

The shaded regions between the lines depict areas 
according to values of Pf. Three reliability classes RC1, 
RC2 and RC3 are differentiated. Reliability classes RC 
are defined in standard EN 1990 (2002) for reference pe-
riods of 1 and 50 years according to the b reliability index 
concept. The reliability index b is related to Pf by: 

 ( ),fP = F −b   (15)

where F	 is the cumulative distribution function of the 
standardised Gauss distribution. Values in Table 3 are 
taken from Table B2 in EN 1990 (2002). Table 3 lists the 

minimum values of the reliability index b for ultimate 
limit state and 50 years reference period.

Three reliability classes RC1, RC2 and RC3 may be 
associated with the three consequence classes CC1, CC2 
and CC3 listed in Table B1 of standard EN 1990 (2002), 
see Table 4.

Table 4. Consequence classes according to EN 1990 (2002)

Consequences 
class

Description Examples of building 
and civil engineering 
works

CC3

High consequences 
for loss of human life, 
or economic, social 
or environmental 
consequences very 
great

Grandstands, public 
buildings where 
consequences of 
failure are high (e.g. 
a concert hall)

CC2

Medium 
consequences for 
loss of human life, 
economic, social 
or environmental 
consequences 
considerable

Residential and office 
buildings, public 
buildings where 
consequences of 
failure are medium 
(e.g. an office 
building)

CC1

Low consequences 
for loss of human life, 
and economic, social 
or environmental 
consequences small 
or negligible

Agricultural buildings 
where people do 
normally enter (e.g. 
storage buildings), 
greenhousses

 
Reliability index b has a target value of 3.8 provided 

that we consider the ultimate limit state for common de-
sign situations within the reference period of 50 years, 
see Table C2 in EN 1990 (2002).

Table 3. Recommended minimum values of b and related Pf

Reliability class b Pf
RC3 4.3 8.5E–6
RC2 3.8 7.2E–5
RC1 3.3 4.8E–4

 

Fig. 5. 2-D graph of Pf for γG = 1.35, γQ = 1.5, γM = 1.0

Fig. 6. 2-D graph of Pf for γG = 1.35, γQ = 1.5, γM = 1.1 
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The graphs for other selected γG, γQ, γM, see Fig-
ures 6, 7 and 8, are plotted similarly as was the graph 
in Figure 5. It may be noted that the case in Figure 8 
corresponds essentially to the criteria of allowable stress 
design, which is the design approach used in the USA.

It is apparent from the graphs in Figure 5 to Figure 8 
that the failure probability Pf is significantly misaligned. 
High values of Pf were obtained for d→ 0 and for  
d→ 1.0. 

High values of Pf were also obtained for slender 
beams with 1.5LTλ > . For γG = 1.35, γQ = 1.5, it can be 
recommended that if 1.5LTλ ≤ , then γM = 1.0, otherwise 
γM = 1.1, see Figures 5 and 6.  

Comparing the graphs in Figures 5 and 8 it can be 
noted that the values of Pf are the same for d	= 1.0. This 
is because γQ = γM =1.5.

3. Partial safety factor calibration 

From the previous chapter, it can be generalized that Pf 
decreases if there is an increase in γM, γG, or γQ. Let us 
now ask ourselves what values of γG, γQ, γM would have 
to be implemented in the probabilistic study (14) in order 
to attain the target value Pf = 7.2E–5.

Let us assume that LTλ  (and thus also L) and γM are 
known. Let us select d and seek the pair γG, γQ such that 
Pf = 7.2E–5. Figure 9 illustrates the pair γG, γQ evaluated 
for 0LTλ = (L→ 0), γM = 1.0 and d = 0, 0.1, ..., 1.0. 
Practically, the procedure is as follows: Variables LTλ , 
γM, d, γG are fixed as constants and the value of γQ is 
evaluated using the bisection method with the starting 
interval 0; 3Qγ ∈  so that Pf → 7.2E–5. It is apparent 
from Figure 9 that for constant d the pairs γG, γQ lie on a 
line. This is an important finding, which was not evident 
in advance. Each line in Figure 9 was plotted from ten 
pairs γG, γQ (from ten points). 

Fig. 9. Partial safety factors for LTλ = 0 and Pf = 7.2E–5

The procedure was similar for the calculation of γM, 
γG, γQ plotted in Figures 10–15. 

Fig. 8. 2-D graph of Pf for γG = 1.0, γQ = 1.0, γM = 1.5

Fig. 7. 2-D graph of Pf for γG = 1.1, γQ = 1.3, γM = 1.1

Fig. 10. Partial safety factors for LTλ  = 0.0, Pf = 7.2E–5
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Fig. 15. Partial safety factors for LTλ  = 3.0, Pf = 7.2E–5 

Fig. 14. Partial safety factors for LTλ  = 2.0, Pf = 7.2E–5

Fig. 13. Partial safety factors for LTλ  = 1.5, Pf = 7.2E–5

Fig. 12. Partial safety factors for LTλ  = 1.0, Pf = 7.2E–5

Fig. 11. Partial safety factors for LTλ  = 0.5, Pf = 7.2E–5
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4. Reliability of structures

The presented study showed one of the strategies in the 
verification of reliability of design of steel elements ac-
cording to the Eurocodes and the complexity of the cali-
bration of partial safety factors. Results of the numerical 
studies have shown that the probability of failure is sig-
nificantly misaligned. With regard to the variety of struc-
tural elements and building materials used in construction 
attainment of optimal reliability of building structures 
based on the system of Eurocode  standards can be very 
complicated. Mechanical parameters of building materi-
als and foundation soil obtained within the framework of 
experimental research often have significant variance. In 
this context, mention can be made of concrete and rein-
forced concrete (J. Králik, J. Jr. Králik 2009; Kala et al. 
2010), brickware and masonry (Li et al. 2014), wood 
(Sousa et al. 2013), metals (Strauss et al. 2006), glass 
(Badalassi et al. 2014) and soil (Amšiejus et al. 2014). 
Brandl (2004) found that according to European statis-
tics 80–85% of all failures and damages in buildings are 
due to problems inherent in the subsoil. The properties 
of the subsoil, however, compared with other types of 
building materials, are very variable, generally of signifi-
cantly lower quality, and are very difficult to determine 
(Kelevišius et al. 2014; Martinkus et al. 2014). The ap-
proaches for the study of reliability are not even unified 
(Möller, Reuter 2007; Wang et al. 2012). The greater the 
epistemic (fuzzy) uncertainty, the less suitable is the use 
of probabilistic methods for the study of reliability.

The general principles for the reliability of differ-
ent structures are given by the international standard 
ISO 2394 (1998). Generally, different levels of reliabil-
ity can be accepted for safety, serviceability and durabil-
ity of structures, however, the current requirement of the 
Eurocode standards for simplicity of calculation proce-
dures eliminates the advantages of the partial safety fac-
tors method and may often lead to uneconomic design. 
However, one thing seems apparent today. Further im-
provement of current regulations will be based on cali-
bration methods, optimization techniques and other reli-
ability approaches of the theory of reliability, including 
the application of methods of the theory of probability 
and mathematical statistics.

Conclusions

The reliability analysis of the steel member loaded un-
der bending and solved with regard to the influence of 
lateral torsional buckling showed that the probability of 
failure is highly misaligned. Beams designed according to 
the Eurocode 3 (2005) standard for maximum utilization 
(with zero resistance reserve) were studied.

The results presented in this article show that the 
design of very slender beams may be risky. High values 
of failure probability were obtained for slender members 
(approx. for 1.5LTλ > ) and for the beam loaded solely 
by permanent load action (d	= 0) as well as for the beam 
loaded only by long–term single variation action (d	= 1.0).

Eurocode 3 (2005) prescribes for γM a constant value 
of γM = 1.0. Results of the probabilistic studies presented 
in the article show that a more balanced failure prob-
ability would be obtained if higher values of γM (for e.g. 
γM = 1.1) are considered for higher values of LTλ . Step 
change of γM, for e.g., from 1.0 to 1.1, however, cannot 
be recommended for practical design of steel structures 
according to the Eurocodes. The main reason is human 
factor. Engineers under economic pressure are forced to 
design structures with the lowest production costs lead-
ing to structures of small masses. In practical design, 
where the influence of many load case combinations (in 
the thousands) is considered, the buckling length is often 
chosen subjectively by an expert estimate as the same 
for all load cases. Small inaccuracies in the calculation 
of buckling lengths, however, must not lead to large dif-
ferences in the calculation of standardized design load-
carrying capacities of steel members. 

Optimization of reliability of slender beams can 
be relatively feasibly calibrated using the coefficient LTc .   
European buckling curves are based on the Ayrton-
Perry equation. Buckling curves are smooth curves for  

LTλ > 0.2, see Eurocode 3 (2005). If we decrease LTc
in (4), then Pf is decreased in (14). Calibration of LTc  
can be used to ensure that with constant values of γM, γG, 
γQ more optimized reliability is achieved for all consid-
ered slenderness. Practically, the values of LTc  could be 
calibrated so that the graphical outputs in Figures 10–15 
were as similar as possible.

Misalignment of the probability of failure due to 
changes in parameter d can be optimized by calibrating 
the values of γG, γQ. It is apparent that the values of γG 
can be increased for small values of d, and similarly γQ 
can be increased for large values of d. However, it could 
be argued that extreme values d	=	0 or d = 1.0 cannot 
realistically occur and the complex calculation of γG, γQ 
may be less feasible for practical design according to the 
Eurocodes.

In further reliability studies aimed at stability prob-
lems it will be necessary to focus attention also on the 
serviceability limit state. The serviceability limit state 
identifies civil engineering structures, which fail to meet 
technical requirements for use, despite being strong 
enough to remain erect. Serviceability limit state is the 
deciding state for design of a number of structures (see 
for e.g. Kamiński, Pawlak 2011; Juozapaitis et al. 2013; 
Majcher et al. 2014). Bearing in mind stability problems 
of steel structures, the buckling of slender members can 
reach high values, which may adversely affect the use of 
the structure. Nevertheless Eurocode 3 (2005) does not 
limit the maximum values of buckling of slender mem-
bers. It is advisable to specify limit values of maximum 
deflections according to the type of structure depending 
on the method of use, the expected life span of the struc-
ture and projected cost of repairs. In the case of tech-
nologically important structures, for e.g. power plants, 
specification and quantification of the risks that society 
is still willing to accept is also important.
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