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Abstract. Change orders in construction projects are very common and result in negative impacts on various project 
facets. The impact of change orders on labor productivity is particularly difficult to quantify. Traditional approaches are 
inadequate to calculate the complex input-output relationship necessary to measure the effect of change orders. This 
study develops the Evolutionary Fuzzy Support Vector Machines Inference Model (EFSIM) to more accurately predict 
change-order-related productivity losses. The EFSIM is an AI-based tool that combines fuzzy logic (FL), support vector 
machine (SVM), and fast messy genetic algorithm (fmGA). The SVM is utilized as a supervised learning technique to 
solve classification and regression problems; the FL is used to quantify vagueness and uncertainty; and the fmGA is ap-
plied to optimize model parameters. A case study is presented to demonstrate and validate EFSIM performance. Simula-
tion results and our validation against previous studies demonstrate that the EFSIM predicts the impact of change orders 
significantly better than other AI-based tools including the artificial neural network (ANN), support vector machine 
(SVM), and evolutionary support vector machine inference model (ESIM).
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Introduction

Changes during construction projects are very common, 
making construction one of the most complex industries. 
Changes can involve adding to or reducing the scope 
of project work or correcting or modifying an original 
design. Change orders in the construction industry have 
negative effects in aspects such as cost, quality, time, and 
organization. While most change order items (e.g. mate-
rial, scheduling, rework, equipment) can be relatively 
easy to measure, quantifying the impact on labor produc-
tivity is typically more complicated (Hanna et al. 1999a). 

Many studies have reported on the impact of change 
orders on labor productivity. The methods used in the 
literature to calculate productivity loss can be grouped 
into the 3 categories of (1) regression analysis (Leonard 
1988; Moselhi et al. 1991; Ibbs 2005), (2) artificial neural 
network (ANN) (Moselhi et al. 2005), and (3) statistical-
fuzzy (Hanna et al. 2002).  Previous studies (Hanna et al.  
2002; Moselhi et al. 2005) have reported that ANN and 
statistical-fuzzy methods outperform regression analy-
sis. However, no method is suitable for calculating 

productivity loss because prediction accuracies are out-
side of acceptable limits.

Construction projects are complex undertakings full 
of uncertainty and vagueness. Developing a determin-
istic mathematical model to predict productivity loss is 
difficult and expensive. An inference model (Cheng, Wu 
2009) offering high accuracy and low cost is one fea-
sible approach to predicting productivity loss. Inference 
models derive new facts from historical data. The human 
brain can learn previous information and deduce new 
facts from that information. Artificial intelligence (AI) 
can be employed to develop models that simulate human 
brain functions. AI is concerned with computer systems 
able to handle complex problems using techniques such 
as Artificial Neural Network (ANN), Support Vector 
Machine (SVM), and Fuzzy Logic (FL). AI-based infer-
ence models thus offer a promising solution to predicting 
productivity loss. 

Several AI hybrid systems have been developed in 
recent years that have solved various construction man-
agement problems (Cheng, Wu 2009; Cheng, Roy 2010). 
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In an AI hybrid system, fusing different AI techniques 
can achieve better results than a single AI technique 
because the advantages of one technique can compen-
sate for another’s disadvantages (Cheng, Wu 2009). The 
Evolutionary Fuzzy Support Vector Machine Inference 
Model (EFSIM) (Cheng, Roy 2010) was proposed to 
further improve prediction accuracy. EFSIM is an arti-
ficial intelligence (AI) hybrid system that fuses fuzzy 
logic (FL), support vector machine (SVM), and fast 
messy genetic algorithm (fmGA). In EFSIM, FL deals 
with vagueness and uncertainty; SVM acts as a super-
vised learning tool; and fmGA works to optimize FL and 
SVM parameters. EFSIM significantly reduces the level 
of human intervention and can be used by professionals 
who do not have background in AI (Cheng, Roy 2010). 

The objective of this research is to use EFSIM to 
predict productivity loss caused by change orders. Fea-
sibility and capability of the proposed method are evalu-
ated and compared with other methods, including ANN, 
SVM, and ESIM (Cheng, Wu 2009). Validation with pre-
vious studies (Moselhi et al. 2005) is also carried out to 
demonstrate proposed model performance.

1. Literature review
1.1. Productivity loss caused by change orders
Change can be defined as any modification in the original 
scope, time, or cost of the work (Hester et al. 1991). A 
change order is issued to formally announce the change 
and modify the contract between the contractor and 
owner (Hester et al. 1991). Keane et al. (2010) grouped 
causes of change into four categories: owner-related,  
consultant-related, contractor-related, and non-party-
related, and effects of change into five categories: 
cost-related, quality-related, time-related, organization-
related, other effects (Keane et al. 2010). 

Preliminary research into calculating the effects of 
change orders on labor productivity was accomplished by 
Leonard (1988). This research attempted to identify the 
effects of change orders on labor productivity in 90 cases 
facing change-order-related productivity losses. Results 
indicated a significant correlation between change orders 
and productivity loss. However, there were limitations to 
Leonard’s study, including limited number of variables 
and subjective evaluation (Hanna et al. 1999a, b). This 
preliminary study motivated other researchers to develop 
research in this field further.

Two studies used a statistical method to quantify 
the impact of change orders on labor productivity in 
mechanical and electrical construction projects (Hanna 
et al. 1999a, b). These studies used the delta method as 
an efficiency indicator and regression analysis to ana-
lyze questionnaire data. Hanna et al. (2002) improved 
the method by using the statistical-fuzzy technique to 
quantify the cumulative impact of change orders. Unfor-
tunately, the technique is difficult for stakeholders to 
implement due to complicated calculation steps and poor 
prediction results.

A neural network model (Moselhi et al. 2005) was 
developed to estimate the impact of change orders on 
labor productivity, including the timing effect of change 
orders. Analysis results showed this model estimated the 
impact of change orders on productivity more accurately 
than those previously described. However, this method 
could gain better prediction results by fusing the neural 
network model with an AI technique. 

1.2. Fuzzy logic (FL)
FL is a popular AI technique invented by Zadeh in the 
1960s. FL has been used in forecasting, decision mak-
ing, and action control in environments characterized 
by uncertainty, vagueness, presumptions, or subjectivity 
(Bojadziev, G., Bojadziev, M. 2007). In general, FL sys-
tems have four major components: fuzzification, fuzzy 
rule base, inference engine, and defuzzification. Fuzzifi-
cation is a process that uses membership functions (MFs) 
to convert the value of each input variable into a corre-
sponding linguistic variable degree. Fuzzy rules repre-
sent relations between input and output fuzzy sets and 
form the basis for fuzzy logic to obtain fuzzy output. 
The result of fuzzification, which is used by the inference 
engine, stimulates the human decision–making process 
based on fuzzy implications and available rules. Lastly, 
defuzzification reverses the fuzzification process and 
converts the fuzzy set into crisp output.

The advantages of FL related to vagueness and 
uncertainty depend heavily on the appropriate distribution 
of membership functions (MFs), number of rules, and 
selection of proper fuzzy set operations. Greater problem 
complexity increases the difficulty of MF construction 
and rules (Ko 2002). Some researchers have treated this 
drawback as an optimization problem because determin-
ing MF configurations and fuzzy rules is complicated and 
problem-oriented. To overcome such difficulties, some 
researchers have tried to fuse FL with AI optimization 
techniques such as GA and ant colony (Ishigami et al. 
1995; Martinez et al. 2008). These optimization meth-
ods have demonstrated their ability to minimize time-
consuming operations and reduce the level of human 
intervention necessary to optimize MFs and fuzzy rules.

1.3. Support vector machine (SVM)
SVM (Vapnik 1995) is an AI paradigm already used in 
a wide range of applications. SVM is a learning tool for 
solving classification and regression problems. SVM 
works by plotting input vectors into a higher dimensional 
feature space. The optimal hyperplane is identified within 
this feature space with the help of a kernel function,  
K (xi, xj). A radial basis function (RBF) kernel has been 
recommended for general users as a first choice due to 
its ability to analyze higher-dimension data, use of only 
one hyperparameter in searches, and fewer numerical dif-
ficulties (Hsu et al. 2003). 

SVM has achieved performance levels compara-
ble to or higher than traditional learning tools (Burges 
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1998; Yongqiao et al. 2005). However, SVM’s generali-
zation ability and prediction accuracy are determined by 
the optimal penalty (C) and kernel (γ) parameters. To 
overcome this drawback, an optimization technique (e.g. 
fmGA) may be used to identify the optimum values of 
parameters simultaneously (Cheng, Wu 2009).

1.4. Fast messy genetic algorithm (fmGA)
fmGA is a recently developed machine learning and 
optimization tool based on a genetic algorithm approach 
(Goldberg et al. 1993). fmGA is an improvement on 
messy genetic algorithms (mGAs), which were initially 
developed to overcome linkage problems in simple 
genetic algorithms (sGAs) resulting from a parameter 
coding problem that sometimes generates suboptimal 
solutions (Deb, Goldberg 1991). Unlike sGAs, which 
use fixed length strings to represent possible solutions, 
fmGA applies messy chromosomes to form strings of 
various lengths that can efficiently find optimal solutions 
for large-scale permutation problems (Feng, Wu 2006). 

The fmGA contains two loop types: inner and outer 
(Fig. 1). The process starts with the outer loop. Firstly, 

a competitive template (randomly generated or problem-
specific) is generated. In the inner loop, the fmGA oper-
ation is three-phase, including an initialization phase, 
primordial phase, and juxtapositional phase. In the  
initialization phase, an adequately large population con-
tains all possible building blocks (BBs) of order k. fmGA 
performs the probabilistic complete initialization (PCI) 
by generating n chromosomes randomly and evaluat-
ing their fitness value. The primordial phase contains 
two operations, namely threshold selection and build-
ing-block filtering. In this phase, “bad” genes that do 
not belong to BBs are filtered out so that, in the end, 
the result encloses a high proportion of “good” genes 
belonging to BBs. In the juxtapositional phase, fmGA 
operations are similar to sGA operations. The selection 
for “good” genes is used together with a cut-and-splice 
operator to form a high-quality generation that may con-
tain the optimal solution. The next outer loop begins 
after the respective inner loop is finished. The competi-
tive template is replaced by the best solution found so 
far, which becomes the new competitive template for the 
next outer loop. The whole process is performed until the 

Fig. 1. Illustration of fmGA
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maximum number of eras (kmax) is reached. The fmGA 
can also be performed over epochs (emax). An epoch is 
the complete process between first era and the maxi-
mum number of eras (kmax). Epochs can be performed 
as many times as desired. The algorithm is terminated 
once a good-enough solution is obtained or no further 
improvement is made.

2. Evolutionary fuzzy support vector machine  
inference model

The evolutionary fuzzy support vector machine infer-
ence model (EFSIM) is a hybrid AI system developed 
by Cheng and Roy (2010) that fuses the three different AI 
techniques of fuzzy logic (FL), support vector machine 
(SVM), and fast messy genetic algorithm (fmGA). In 
this complementary system, FL deals with vagueness 
and approximate reasoning; SVM acts as a supervised 
learning tool to handle fuzzy input-output mapping; and 
fmGA works to optimize FL and SVM parameters.

In EFSIM, the fuzzy inference engine and fuzzy 
rules based on the FL system have been replaced by SVM. 
However, SVM’s generalization ability and prediction 
accuracy are determined by the optimal penalty (C) and 
kernel (γ) parameters. Improper tuning of the parameters 
will affect the accuracy of the prediction model. To over-
come this shortcoming, EFSIM utilizes fmGA to search 
simultaneously for optimum SVM parameters and FL 
parameters. The architecture of EFSIM is shown in  
Figure 2.

The EFSIM involves eight major steps, beginning 
with training data and ending with the optimal prediction 
model. An explanation of major steps involved in EFSIM 
is given below:

1) Training data
Final data for training are obtained from data pre-

processing output. Data preprocessing used in this study 
included data cleaning, attribute reduction and data trans-
formation.

2) Fuzzification
Each normalized input attribute from the previous 

step is converted into membership grades corresponding 
to the specific membership function (MF) set generated 
and encoded by fmGA. This model uses trapezoidal and 
triangular MF shapes (see Fig. 3) that, in general, may 
be developed by referencing summit points and widths. 
This study used the Summit and Width Representation 
Method (SWRM) (Ko 2002) to encode complete MF sets 
(Fig. 3 (c)). Figure 4 illustrates the fuzzification process.

3) SVM training model
SVM addresses the complex relationship between 

fuzzy input and output variables. Fuzzification process 
output, in the form of membership grades, is fuzzy input 
for SVM. SVM trains the dataset to obtain the prediction 
model, with penalty (C) and kernel (γ) as its parameters, 
which are randomly generated and encoded by fmGA. 
This study used the RBF kernel as a reasonable first 
choice (Hsu et al. 2003).

4) Defuzzification
This is a fuzzification reverse process. Once 

SVM finishes the training process, output numbers are 
expressed in terms of a fuzzy set. Output numbers are 
then converted into crisp numbers. Employing fmGA, 
the model generates a random defuzzification parameter 
(dfp) substring and encodes it for conversion into SVM 
fuzzy output. This evolutionary approach is simple and 
straightforward, as it uses dfp as a common denominator 
for SVM output.

5) fmGA parameter search
fmGA is utilized to search simultaneously the fittest 

shapes for MFs, dfp, penalty parameter (C), and RBF 
kernel parameter (γ). In fmGA, the chromosome that 
represents the possible solution for searched parameters 
consists of four parts: the MFs substring, dfp substring, 
penalty parameter substring, and kernel parameter sub-
string (Cheng, Roy 2010). The chromosome is encoded 
into a binary string. Chromosomes consist of two seg-
ments: FL and SVM. Figure 5 illustrates the chromosome 

Fig. 2. Architecture of EFSIM
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structure. Table 1 summarizes the parameter settings and 
number of bits required for the chromosome design. For 
more details about fmGA parameter search, readers are 
referred to the previous work of Cheng and Wu (2009) 
and Cheng and Roy (2010). 

Fig. 5. EFSIM chromosome structure

Table 1. Summary of EFSIM parameter settings 

Parameter Upper 
bound Lower bound Number of 

bits
MF set – – 27a

C 200 0 5
γ 1 0.0001 10
dfp 1 0.5 9

a Number of bits required for one complete MF set.

6) Fitness evaluation
A fitness function, a function designed to measure 

model accuracy and good generalization properties (Ko 
2002), is now developed to evaluate fitness value. This 
function describes the fittest shape of MFs, optimized 
dfp number, and SVM parameters. The fitness function 
consists of parameters to calculate accuracy and model 
complexity, as expressed in Eqn (1):

  (1)

where caw represents the accuracy weighting coefficient; 
ser represents the prediction error between actual output  

Fig. 3. Membership function: trapezoidal (a), triangular (b), complete MF set (c) (Ko 2002)

Fig. 4. Fuzzification process
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and desired output; ccw represents the complexity weight-
ing coefficient; and mc represents model complexity, 
which can be quantified by counting the number of sup-
port vectors.

7) Termination criteria
The process terminates when the termination crite-

rion is satisfied. While still unsatisfied, the model will 
proceed to the next generation. As EFSIM uses fmGA, 
the termination criterion used in this study was either era 
number (k) or epoch number (e).

8) Optimal prediction model
The loop stops when the termination criterion is 

fulfilled. This condition means that the prediction model 
has identified the input/output mapping relationship with 
optimal C, γ, and dfp parameters and is ready to predict 
new facts.

3. Productivity loss prediction using EFSIM
3.1. Historical data
Data used in this research were drawn from 102 cases 
cited in Assem’s thesis (2000) and covered 33 cases from 
Assem’s (2000) investigation of the adverse effects of 
change orders and 69 cases from Leonard’s (1988) inves-
tigation of change order impacts. A summary of cases is 
shown in Table 2. 

3.2. Data preprocessing
Data preprocessing is an important stage in data analy-
sis that resolves the “unclean” nature of real-world data 
(Zhang et al. 2003). Several data preprocessing tech-
niques such as data cleaning, attributes reduction, and data 
transformation were employed in this study. A systematic  

data-preprocessing flowchart (Fig. 6) was developed to 
obtain better prediction results. Historical data was ana-
lyzed using this flowchart to obtain training data.

Data cleaning can be applied to fill in missing values 
and remove noisy data (univariate and multivariate out-
liers) (Han, Kamber 2007; Shahi et al. 2009). Attributes 
reduction was applied to reduce the dimensionality of data 
attributes and help reduce computational time by eliminat-
ing unnecessary attributes. Two methods, correlation anal-
ysis (CA) and principal component analysis (PCA), were 
employed to compare attributes reduction method results. 
CA is the simplest way to assess input-output relationships. 
PCA is used to identify strong predictor variables in a data-
set. Data transformation techniques such as normalization, 
where attribute data are scaled to fall within a small speci-
fied range, may improve the accuracy and the efficiency of 
mining algorithms involving distance measurements (Han, 
Kamber 2007; Shahi et al. 2009). The function used to 
normalize data in this study is shown in Eqn (2):

 , (2)

where: xnorm is the normalized data; xi is the observed 
data; xmin is the minimum data; and xmax is the maxi-
mum data.

3.3. Final data
A total of 96 records were used to train the prediction 
model. Two kinds of analyses were done to compare 
performance of attribute reduction methods. Analysis 1 
used CA to reduce attributes and Analysis 2 used PCA to 
do the same. As shown in Table 3, CA and PCA identi-
fied 6 and 4 attributes, respectively, as significant factors. 
Both analyses transformed the data into values ranging 

Table 2. Summary cases

Parameter Min Max Mean

Work type (Architectural, Civil, Electrical, 
Mechanical)

Change orders number 7 2150 106.784
Frequency of change 
orders a 0.389 195.454 8.614

Average size of change 
orders b 3.214 1595.238 161.964

Change orders hours 100 83000 10528.688
Change orders hours 
ratio to the planned 
hours

0.009 2.660 0.323

Change orders hours 
ratio to the actual hours 0.006 0.573 0.198

Type of impact (1, 2, or 3)c

a frequency of change order: ratio change orders number to 
the actual duration in months;

b average size of change orders: ratio of change orders hours 
to the number of change orders;

c  1 represents change-order causes of productivity loss only; 
2 or 3 represents change order plus 1 or 2 additional major 
causes of productivity loss.

Fig. 6. Flowchart of data preprocessing
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Table 3. Summary of training data

Analysis 1 (CA) Analysis 2 (PCA)
Work type Work type
Frequency of change orders Type of impact
Average size of change 
orders

Frequency of change 
orders 

Change order hours Time related
Change order hours ratio to 
the planned hours

Relative size of change 
orders

Change order hours ratio to 
the actual hours

Si
gn

ifi
ca

nt
 a

ttr
ib

ut
es

Table 4. Input and output data for Analysis 1

No. Actual % 
productivity 

loss

Work type Frequency Average size Change order 
hours

Change order 
hours/planned 

hours

Change order 
hours/actual 

hours
1 23.7 1 1.54545 33.41176 568 0.08686 0.06494
2 24.5 1 1.36000 165.02941 5611 0.11567 0.08492
3 31.8 1 1.20000 69.75000 837 0.13368 0.08745
4 11 3 9.75000 25.35897 989 0.08074 0.07122
5 27 3 0.47619 138.80000 1388 0.68850 0.42382
6 19 3 1.81818 71.15625 5692.5 0.12291 0.09728
… … … … … … … …
41 18.4 2 12.04762 129.64427 32800 0.41362 0.33745
42 22.81 2 21.11111 113.15789 21500 0.48864 0.37719
43 14.18 2 0.80000 191.66667 2300 0.10000 0.08582
44 17.75 2 0.73333 272.72727 3000 0.05769 0.04745
45 19.03 2 0.71429 190.00000 1900 0.13333 0.10795
46 21.05 2 6.25000 189.33333 14200 0.13524 0.10677
… … … … … … … …
92 38.71 4 34.00000 135.29412 23000 0.68047 0.39792
93 44.31 4 4.64286 61.53846 4000 0.66116 0.53121
94 48.95 4 6.47059 156.36364 17200 1.01176 0.51652
95 35.09 4 2.42857 63.23529 4300 0.11406 0.07713
96 45.34 4 2.92857 336.58537 13800 0.31364 0.17143

between 0 and 1. Table 4 shows example input and out-
put data from Analysis 1.

3.4. Cross-validation
Cross-validation is a statistical technique that assesses 
how accurately a predictive model will perform by divid-
ing data into two segments, of which one is used to learn 
or train the model and the other is used to test or validate 
the model. 10-fold cross-validation resulted in the best 
performance in the simulation (Borra, Di Ciaccio 2010). 
In 10-fold cross-validation, original data was randomly 
portioned into 10 equally (or approximately equally) sized 
segments. Consequently, 10 independent performance  
estimations of training and testing were performed such 
that, within estimation, a different fold of the data was 
alternately used for testing while the remaining 9 folds 

were used for training (Fig. 7).  We then calculated the 
average of each performance measure to obtain cross-
validation accuracy.

3.5. Performance measures
This research used the following four performance meas-
ures to evaluate EFSIM: 

1. Root mean square error
Root mean square error (RMSE) is the square root 

of the average squared distance of predicted values by 
the model and the observed values. RMSE can be used 
to calculate the variation of errors in a prediction model 
and is very useful when large errors are undesirable. The 
RMSE is expressed using the following equation:

 
 (3)

where yj is the actual value;  is the predicted value; and 
n is the number of data samples.

2. Mean absolute error
Mean absolute error (MAE) is the average absolute 

value of the residual (error). MAE is a quantity used to 
measure how close forecasts or predictions are to even-
tual outcomes. The MAE is expressed using the follow-
ing equation:

  (4)
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3. Mean absolute percentage error
Mean absolute percentage error (MAPE) is a meas-

urement of prediction accuracy. It represents prediction 
percentage error. Small denominators can cause problems 
in MAPE value because small denominators generate 
large MAPE values that impact overall value. The MAPE 
is expressed using the following equation:

  (5)

4. Training time
Training time represents time taken by the proposed 

model to train data and obtain the optimum prediction 
model.

To obtain an overall comparison, a normalized refer-
ence index (RI) (Chou et al. 2011) was created by com-
bining the four performance measures (RMSE, MAE, and 
MAPE, and training time). The RI was obtained by calcu-
lating the average of each normalized performance meas-
ure. Performance measure values ranged from 1 (best) to 0  
(worst). The equation of RI can be described as follows:

  (6)

where: xi is the measurement indicator (RMSE, MAPE, 
MAE, training time);  is the maximum value of the 
indicator among all prediction methods;  is the mini-
mum value of the indicator among all prediction meth-
ods; n is the number of measurement indicators.

4. Results and discussion
4.1. Model performance
A systematic methodology was previously established 
to calculate prediction performance. Database records 
contain several attributes related to productivity loss 
caused by change orders. Data preprocessing was done 
to improve data quality. In the data preprocessing stage, 
two kinds of analysis relate to attributes reduction meth-
ods. We performed Analyses 1 and 2 to compare the per-
formance of each. Analysis 1 employed the CA method 
and Analysis 2 employed the PCA method, with each 
implementing training and testing processes in accord-
ance with 10-fold cross-validation. 

In the testing process, each fold validates the perfor-
mance of the proposed model. A comparison with other 
methods such as ESIM (Cheng, Wu 2009), ANN, and 
SVM was developed to show EFSIM as more accurate 
and reliable. Several performance measures (RMSE, 
MAE, MAPE, and training time) were employed to eval-
uate the proposed model. 

Table 5 summarizes our comparison of Analyses 1 
and 2 results. Optimal EFSIM parameter of Analysis 1 is  
C = 31 and γ = 0.574, founded in fold 3. Meanwhile,  
C = 31 and γ = 0.566 of fold 9 is regarded as the optimal 
EFSIM parameter in Analysis 2. In Analysis 1 earned 
better results in all EFSIM and ESIM performance meas-
ures except for MAPE. On the other hand, Analysis 2 
obtained better results in SVM and ANN. Analysis 1 had 
a higher EFSIM training time than Analysis 2 because of 
its larger number of attributes.

However, the difference between the two analyses 
in terms of the MAPE performance measure was not sig-
nificant. Table 5 shows EFSIM results found both Analy-
sis 1 and Analysis 2 to be significantly more accurate 
than other AI techniques. Longer computation time is 
required for the EFSIM model due to the FL paradigm. 
The more attributes in a training process, the more train-
ing time is needed to obtain the prediction model.

Table 6 shows average Analysis 1 and 2 perfor-
mance values. The best model with the smallest RMSE 
value is EFSIM (2.98%).  Moreover, Table 6 shows a 

Fig. 7. 10-fold cross-validation

Table 5. Performance of predictive techniques for Analyses 1 
and 2

Analysis Predictive 
technique

RMSE 
(%)

MAE 
(%)

MAPE 
(%)

Average 
training 
time (s)

EFSIM 2.83 2.25 30.44 7065.73
ESIM 6.57 5.62 55.40 231.3
ANN 9.24 8.00 76.43 1
SVM 9.12 7.78 60.70 1
EFSIM 3.13 2.51 23.85 5146.83
ESIM 7.12 6.07 48.12 138.2
ANN 8.79 7.55 72.82 1
SVM 8.61 7.23 65.16 1

A
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ly
si

s 
1

A
na

ly
si

s 
2
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direct relationship between RMSE and MAE. MAE 
values are always smaller than RMSE values. EFSIM 
obtains the smallest MAE value (2.38 %) of all models. 
MAPE values are inadequate in all models due to the 
series of small denominator values. MAPE values are 
consistent with other performance measures (RMSE and 
MAE). The best model is obtained by EFSIM (27.15%). 

In terms of training time, both ANN and SVM train data 
relatively quickly, while ESIM requires more time and 
EFSIM requires the most time. This is due to the FL par-
adigm that requires more computational time during the 
training process and to the status of ESIM and EFSIM 
as hybrid AI techniques. Longer computational time is a 
trade off necessary to obtain greater accuracy. Figure 8 
illustrates the performance described in Table 6.

The normalized RI obtained a general measure-
ment by combining all performance measures. Based on 
RI values, EFSIM is the best model, followed in order 
by ESIM, SVM, and ANN. Although EFSIM requires 
the longest training time, it consistently obtains the best 
results on most other performance measures. Thus, by 
fusing FL, SVM, and fmGA, EFSIM predicts change-
order-related productivity loss more accurately than the 
other models considered. 

Table 6. Average performance values of the predictive 
techniques

Predictive 
technique

RMSE 
(%)

MAE 
(%)

MAPE 
(%)

Average 
training 
time (s)

RI

EFSIM 2.98 2.38 27.15 6106.28 0.7500
ESIM 6.84 5.84 51.76 184.75 0.5423
ANN 9.01 7.77 74.62 1 0.2500
SVM 8.86 7.70 62.93 1 0.3303

Fig. 8. Average result for performance measures with 10-fold cross-validation
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4.2. Validation with previous studies
We compared the performance of EFSIM against other 
methods such as the general regression model (Moselhi 
et al. 1991), electrical regression model (Hanna et al.  
1999b), and neural network model (Moselhi et al. 2005). 
Our validation used a dataset of 33 records from Assem 
(2000) as training data and change-order data from the 
literature (Bruggink 1997) as testing data. Attributes used 
in this dataset were (1) timing impact of change orders 
(TPi); (2) work type; and (3) type of impact (TI), which 
could be either change orders only or change orders plus 
1 or 2 additional causes of productivity related impact. 
TPi represents the ratio of actual change order hours to 
planned hours in each of the five construction periods  
(i = 1 to 5) as shown in following equation:

  (7)

where: TPi is the timing impact of change orders in period i; 
HCOi is the actual change order hours during period i; PHi 
is the planned hours during period i; and i is the period 
when change orders occur, where the value of i can range 
from 1 to 5. This data set used NECA (1983) distribution 
for electrical work and the trapezoidal distribution of Bent 
and Thuman (1994) for other types of work to distribute 
the planned hours in each of the five construction periods.

The cases were analyzed using EFSIM and results 
were compared with previous studies found in Moselhi  
et al. (2005). Table 7 shows comparisons among all 
methods. Results demonstrate that the EFSIM model pro-
posed in this study outperforms all other models in terms 
of estimating the impact of change orders on productiv-
ity. EFSIM obtained the smallest average error (7.90%) 
and lowest average absolute error of any model. This 
shows that EFSIM improves prediction model accuracy 
and reliability.

Conclusions

This research proposes a hybrid AI technique, EFSIM, to 
predict productivity loss caused by change orders. The 
EFSIM, developed by fusing complementary AI tech-
niques including FL, SVM, and fmGA, achieves predic-
tion results superior to traditional techniques.

The developed model reduces the level of human 
intervention necessary to elicit MF shapes from question-
naire surveys and expert judgment; it also successfully 
identifies optimum penalty and kernel parameters. EFSIM 
is easy to apply and convenient for new users, and may 
be used by professionals without AI domain knowledge.

Test results show that EFSIM prediction perfor-
mance is superior to other prediction methods such 
as ESIM, ANN, and SVM. Although EFSIM requires 

Table 7. Actual versus estimated productivity loss (Moselhi et al. 2005)

Case No. 
(j)

Actual 
productivity 

loss (h)

Moselhi et al. (1991) Hanna et al. (1999) Moselhi et al. (2005) Proposed model 
(EFSIM)

Estimated 
productivity 

loss (h)

Estimating 
errorb (%)

Estimated 
productivity 

loss (h)

Estimating 
errorb (%)

Estimated 
productivity 

loss (h)

Estimating 
errorb (%)

Estimated 
productivity 

loss (h)

Estimating 
errorb (%)

1 801 731 8.74 650 18.85 940 –17.35 822 –2.68
2 1,073 1,050a 2.14 713 33.55 1,245a –16.03 1,113 –3.75
3 1,593 884 44.51 1,467 7.91 1,240 22.16 1,749 –9.78
4 1,741 2,070 –18.90 2,041 –17.23 2,674 –53.59 1,799 –3.32
5 2,660 1,744 34.44 2,966 –11.50 2,699 –1.47 2,550 4.14
6 5,139 N/A N/A 2,485 51.64 5,078a 1.19 4,912 4.42
7 13,713 11,469 16.36 10,644 22.38 15,169 –10.62 13,822 –0.79

8 10,575 5,073 52.03 2,438 76.95 7,077 33.08 8,350 21.04

Average errorc (%) 30.45 40.50 17.83 7.90
Average absolute 
errord (%) 25.30 30.00 19.44 6.24

Notes: N/A = not applicable (i.e. off model range);
aTwo additional types of impact are considered in the estimate (i.e. TI = 3);

b Estimating errorj = 
j

jj

lossActual
lossEstimatedlossActual )( − , where j represents case 1 to 8;

c Average error =  
∑

∑
=

=
−

8

1

8

1
||

j j

j jj

lossActual

lossEstimatedlossActual
;

d Average absolute error = 
8

||8

1∑ =j jlossEstimated
 .
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more computation time, EFSIM prediction results are  
significantly more accurate than competing methods. 
Validation results with previous studies in predicting the 
impact of change orders on productivity loss also indicate 
that EFSIM provides the smallest margin among com-
peting methods. These results exhibit great potential for 
EFSIM as a tool to accurately predict change-order-related 
productivity loss. Moreover, the developed model manages 
to help the project manager to make an adjustment related 
to productivity loss caused by change order. Furthermore, 
this research paper succeed in demonstrating a hybrid Arti-
ficial Intelligence paradigm, FL-SVM-fmGA, for facilitat-
ing the decision making in the construction industry.
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