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Abstract. As construction projects have become larger and more complex, they develop different features than smaller 
or traditional projects, which characterize them as complex systems. Still, Construction Engineering and Management 
(CEM) researchers have mostly relied on traditional approaches to investigate complex management problems, which 
might produce misleading results. This paper introduces Agent-Based Modeling and Simulation (ABMS) as a research 
method, and addresses how it could be applied to CEM research. With an illustrative example of the application of 
ABMS to CEM research, the theoretical background as well as the design, development, and test processes of ABMS 
are presented. We then made a recommendation on the promising research subjects in CEM area to which ABMS could 
be suitably applied.
Keywords: construction management, computer models, simulation, research methods.

introduction

Construction projects have become larger and more com-
plex (Chan et al. 2004). Not only has the scale of con-
struction projects increased, but their uncertainty and 
difficulty has also grown, due to the large number of par-
ticipating organizations and quantities of resources, which 
are interrelated by contractual, sequential, and managerial 
relationships. The intertwined and multi-layered interac-
tions among organizations and resources often become a 
significant factor in determining project outcomes. This 
adds more complexity to construction projects.

Such large-scale and complex construction projects 
should be thought of as different entities, termed complex 
systems (Bertelsen 2003). A complex system refers to a 
system whose system-level behaviors emerge from in-
teractions among sub-elements, and where the emergent 
properties of a system are greater than the simple sum of 
its subsystems (Bar-Yam 2000). Complex systems have 
very different characteristics from other systems, such 
as emergence, nonlinearity, decentralization, and adapta-
tion. Due to the innate features of complex systems, they 
cannot be understood by traditional approaches, which 
rely on reductionism (North, Macal 2007): reductionist 
thinking may be very misleading when trying to under-
stand a complex system. Even if we can fully uncover 
the micro-level foundations of a system, we may still 

not have a simple way to understand their macro-level 
implications (Miller, Page 2007). Nevertheless, research-
ers in Construction Engineering and Management (CEM) 
area have mostly relied on traditional approaches – usu-
ally, Operational Research (OR) methods – to investigate 
management problems in complex construction projects.

Agent-Based Modeling and Simulation (ABMS) is a 
new computer simulation approach to modeling complex 
systems. Agent-Based Simulations (ABS) are built from 
a ground-up perspective, rather than from a top-down 
perspective. ABMS begins by defining agents, which rep-
resent fundamental elements in the system, and evolves 
as agents locally interact with other agents and the envi-
ronment according to defined protocols; and eventually, 
systematic patterns emerge (Macy, Willer 2002). This 
realistic viewpoint toward complex systems and very 
natural way to represent the dynamic behavior of com-
plex systems provides new ways of gaining insight and 
understanding of complex systems (Miller, Page 2007). 

In this regard, this paper aims to introduce ABMS 
as a research method, and address how it could be ap-
plied to CEM research and practice. To accomplish the 
objectives, we first present a new perspective that regards 
construction projects as complex systems. Then, the the-
oretical background and practical details of ABMS are 
explained. The design, development, and test processes 
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of ABS are specified. As an illustrative example of the 
application of ABMS to CEM research, we consider the 
ABS of construction project teams, which the authors 
have developed in order to understand the effects of or-
ganizational dynamics on project outcomes. The paper 
concludes with specific recommendations on subjects 
and areas where ABMS could appropriately be adopted 
as a research method in the CEM area.

1. construction projects as complex systems

1.1. complex system perspective
The world has become increasingly complex. Not only is 
the number of physical and social systems increasing, but 
the composition of systems is also becoming more com-
plex. Complexity arises when the dependencies among a 
system’s elements become important (Miller, Page 2007). 
Complex systems have common traits, such as (1) ag-
gregation: allowing groups to form; (2) nonlinearity: this 
invalidates simple extrapolation; (3) flow: allowing the 
transfer and transformation of resources and information; 
and (4) diversity: allowing agents to behave differently 
from one another, which often leads to the system prop-
erty of robustness (Holland 1995). The unique charac-
teristics of complex systems often make them hard to 
examine, and difficult to understand.

It is believed that the system-level behavior of a complex  
system emerges from the local activities of lower-level 
components. But the system-level behavior of a complex 
system is very different from those of its components, 
and it cannot be reduced to their sum of difference (Blitz 
1992). It provides a very powerful organizing force that 
can overcome a variety of changes to the lower-level com-
ponents (Miller, Page 2007) – this is termed emergence. 
Emergence is defined as “the arising of novel and coherent 
structures, patterns and properties during the process of 
self-organization in complex systems” (Goldstein 1999).

Complex systems cannot be understood by tradition-
al approaches, which rely on “heroic assumption” (North, 
Macal 2007). Heroic assumption refers to the fact that 
researchers often simplify the level of detail in systems 
under investigation, and reduce the ranges of allowed  
interactions between components – in other words, re-
ductionism. However, even if we fully understand the  
lower-level fundamentals of a complex system, we may 
not be able to use that knowledge to reconstruct a high-
er-level system, because the whole becomes not only 
more than, but very different from the simple sum of 
its components (Anderson 1972). For example, in the 
study of the effect of communication and coordination 
among team members on team performance, simply as-
suming that project team members in a large-scale pro-
ject communicate only through hierarchical relations, and 
that they all work independently of other team members, 
would be a heroic assumption. There would exist infor-
mal communication channels, such as social networks, 
and they may need to collaborate with colleagues to 
achieve  results. If a researcher employs mathematical 

modeling, statistical method, or survey as a research 
method, and is concerned only with each separate indi-
vidual to build a model, while abstracting or excluding 
interrelations among team members, s/he would not be 
able to understand organizational aspects as a whole, not-
withstanding the findings on individuals.

1.2. complex systems in construction projects
As construction projects have become larger and more 
complex, due to their scale, uncertainty, number of par-
ticipating organizations, and quantity of resources, they 
develop different features than smaller or traditional pro-
jects (Table 1).

Several researchers have put forward a new perspec-
tive that the production system, construction process, and 
project teams in a construction project should be under-
stood as a complex system. Bertelsen (2003) stated that 
the construction sector forms an interwoven network of 
high complexity and great dynamic due to its contract-
ing practice, and thus the construction production system 
has the characteristic of a complex system. He gave a 
detailed explanation of a complex system’s characteris-
tics that the construction production system exhibits – 
autonomous agents, undefined values, and nonlinearity. 
He also pointed out that the construction process has the 
properties of a complex system similar to the production 
system. Particularly, construction has a co-evolution of 
product development and production processes through 
self-modification and learning (autonomous agents); pro-
ject values are established during the initial stages, but 
they are kept developing further through the project life 
cycle (undefined values); the process outcome is obvi-
ously characterized by the whole being more than the 
sum of the sub-elements (nonlinearity).

More importantly, construction project teams 
should be thought of as complex systems. Due to 
the one-off nature of construction projects, pro-
ject teams come to have the properties of temporary  
organizations, and have a purpose, composition, and 
working method that are unique to the construction in-
dustry (Cornick, Mather 1999) (Table 2). Therefore, they 
need to be re-engineered and re-structured over the life 
of the project as it progresses, so that they can cope with 
numerous interdependent tasks (Ballard 2005; Morgan 
1997). The program teams working on a project consist 
of individuals (autonomous agents), and establish values 
(undefined values) through communication and cooper-
ation among members, which is emergent phenomena 
(nonlinearity) (Bertelsen 2003).

2. research methods in ceM research

As described in the previous section, some sub- 
systems comprising large and complex construction pro-
jects, such as production system, construction process, 
and project team, should be considered from a complex 
system perspective. The advocacy of a complex system 
perspective has something to do with the researchers’ 
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Table 1. Comparison between large-scale and small-scale construction projects (inspired by Ballard (2005))

Small-scale/Traditional construction Large-scale/Complex construction
Product

Size Small Very large
Volume Massive Unique
Repetition Repetitive One-off
Reliability High Relatively low
Complexity Low High

Process
Number of activities Hundreds Thousands
Difficulty Low High
Uncertainly Low High
Interdependency among activities Low High

Organization
Number of involving 
organizations Tens Hundreds

Project team continuation Temporary Temporary
Required level of skills Relatively low High
Required level of collaboration Relatively low High

Management
Number of resources to be 
managed Manageable Intractable

Primary strategic challenge Price/Inventory Bidding/Delivery

Primary operational challenge
(1) Quality
(2) Schedule
(3) Cost

(1) Schedule/Cost
(2) Quality

understanding of the limitations of reductionism, which 
has been a dominant approach in science, including phys-
ics, chemistry and biology, for the last several decades. 
Reductionism or reductionist thinking refers to a way of 
understanding systems by reducing them to simpler or 
more fundamental parts of which the systems are com-
posed, while positing that a whole system is nothing but 
the sum of its subsystems. Reductionism ignores the ef-
fects of the relations and interactions among subsystems 
on a whole system. It may be valid for systems where 
only the total mass of a system matters, or for collections 
of small weakly interacting particles; however, it is not 
generally true in systems where the behavior of a system 

arises from interactions among subsystems, and the emer-
gent properties of a system are greater than the simple sum 
of its subsystems (Bar-Yam 2000) – e.g. complex systems. 
Reductionist thinking may be very misleading when try-
ing to understand a complex system (Miller, Page 2007).

Existing CEM research and practice has adopted tra-
ditional research methods based on reductionism to study 
subjects, where they might have produced more useful re-
sults using a complex system perspective. However, note 
that we do not mean that the existing research has construct-
ed wrong knowledge by using inadequate approaches, but 
rather that they might be able to create more relevant and 
explicit knowledge using a complex system perspective.

Table 2. Comparison between construction project teams and traditional manufacturing firms (Cornick, Mather 1999)

Construction project team Traditional manufacturing firm

Purpose
Determined by a client who is not a part of the 
design and construction supply side

Determined by the manufacturing firm, on the 
basis of its extensive experience of design, 
production, and marketing

Composition

Not necessarily selected because of their ability 
to form a effective team, but because of their 
attractive design and competitive price for 
construction

Comprised of team members who are mostly in-
house employees, with shared company philosophy

Method of Working

Based on the conventions of how each entity, 
including owners, architects, and contractors, 
carry out their normal practice through traditional 
contractual arrangements

Not necessarily hidebound by a convention of 
how separate organizations work together; no 
contractual conditions between parties
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For example, current construction planning prac-
tices, usually based on the Critical Path Method  
(CPM), may be of little value to actual operations, 
and cause inefficient schedules and poor productivity  
(Hendrickson, Au 1989). Also, CPM has not been very 
effective in preventing cost and schedule overruns in 
large projects (Majid, McCaffer 1998). This is because 
CPM is not capable of modeling the complex and dynam-
ic processes present in large-scale construction projects 
(Majid, McCaffer 1998). In particular, CPM does not  
ensure continuity for the construction crew, relies on 
data prepared by heuristic decision-making processes, 
and assumes that interferences and variability rarely oc-
cur (Laufer, Tucker 1987). CPM also lacks the capabil-
ity to manage dynamic and complex feedback caused 
by iterative error and change, which is common in con-
struction projects (Lee 2006). In addition, CPM is inad-
equate to cope with non-precedence constraints, such as 
contract constraints and information constraints. CPM 
cannot associate schedule information with the descrip-
tion of the physical building; it is unsuitable for analyz-
ing constraints at operational levels (Sriprasert, Dawood 
2002). CPM also does not take into account information 
dependencies among concurrent activities, nor the im-
pacts of actor interactions (Jin, Levitt 1996); and cannot 
represent the coordination overhead of executing flex-
ible and interdependent activities in parallel (Levitt et al. 
1999). Consequently, estimating activity durations with 
CPM often produce unrealistic values, due to its for-
malized methodology. The duration estimate is achieved 
by adjusting historical productivity values based on the 
planner’s heuristic learning from prior experience, edu-
cated guesses, and advice from colleagues in accord-
ance with project conditions. This methodology might 
work appropriately for planning and managing small or  
medium-scale construction projects; however, it often 
creates a simplistic and static plan that is inadequate to 
manage large-scale construction projects that involve 
higher complexity and uncertainty.

Furthermore, there has been considerable effort to 
understand organizational issues in the construction man-
agement field. Research subjects have concentrated on 
several matters, including organizational performance 
(Dikmen et al. 2005; Cheng et al. 2007), partnering  
(Anvuur, Kumaraswamy 2007; Chan et al. 2008; Ozorhon  
et al. 2008), innovation (Gray, Davies 2007; Keast, 
Hampson 2007), leadership (Hensey 1999), culture 
(Maloney, Federle 1990), and the learning organization 
(Chan et al. 2005; Chinowsky, Carrillo 2007; Chinowsky  
et al. 2007). These studies present general understandings 
on the subjects, and have led organizational study in con-
struction management. However, by and large they have 
relied on research methods, such as statistical analysis,  
interview, and survey, and therefore have not provid-
ed project managers with concrete managerial lessons 
and analytical ability regarding organizational pro-
cesses and their effect on project performance from a  
comprehensive viewpoint.

3. Agent-based modeling and simulation

ABMS is a new approach to modeling complex systems 
that is comprised of autonomous and interacting agents 
(Macal, North 2005). ABMS is particularly useful to in-
vestigate complex systems where: (1) individual behav-
ior is nonlinear, and can thus be modeled by threshold 
models, production systems, or differential equations;  
(2) individual behavior exhibits memory, path-dependence,  
non-Markovian characteristics, or temporal correlations, 
including learning and adaptation; (3) interactions among 
individuals are heterogeneous, and can generate network 
effects; and (4) the system is linearly stable, but unstable 
to larger perturbations (Bonabeau 2002).

The idea of ABMS was developed in the late 1940s, 
and it begun attracting researchers’ attention in the early 
1990s, because of the development of multi-agent mod-
els, which offered the promise of simulating autonomous 
individuals and the interactions between them (Gilbert, 
Troitzsch 2005). Prior to the use of ABMS, many dif-
ferent simulation methods had been devised and used. 
They were mainly discrete-event simulations, or system 
dynamics simulations. Other methods that have affect-
ed the development of ABMS include Simulmatics and 
Microsimulation. Simulmatics was designed for under-
standing voter behavior in presidential elections in the 
1960s; its idea and formulation was very close to those 
of the present ABMS. Microsimulation, which thrived in 
the 1980s, is a simple individual-based simulation based 
on stochastic processes. Recently, artificial intelligence 
has had a significant effect on the growth of ABMS. In 
particular, the area of machine learning in artificial intel-
ligence, which is concerned with how to allow computers 
to evolve behaviors by learning from empirical data, has 
developed computational models of human cognition and 
decision-making.

The increasing use of ABMS is primarily due to 
its realistic viewpoint toward complex systems. ABS 
(Agent-Based Simulations) are built from a ground-up 
perspective, rather than from a top-down perspective. In 
particular, ABMS begins by defining agents – represen-
tations of individuals or groups – that are identifiable, 
situated in an environment, goal-directed, autonomous, 
and that have the ability to learn and adapt (Macal, North 
2005). An agent-based model (ABM) evolves as agents 
locally interact with other agents and the environment 
according to defined protocols, and eventually system-
atic patterns emerge (Macy, Willer 2002). This ground-up 
approach is most appropriate to systematically explore 
complex systems, which are characterized by a high de-
gree of localization and distribution (Van Dyke Parunak 
et al. 1998). The attractive features of ABMS for explor-
ing complex systems are presented in Table 3 and the 
following paragraphs: 

 – Descriptive realism: An ABM is expressed with 
unambiguous mathematical and computational 
formalisms, so that once it has been fully described, 
its predictions are clear, quantitative and objective 
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(Goldstone, Janssen 2005). In other words, it is al-
most universal that entities being modeled in the tar-
get system are mapped onto corresponding agents 
in the ABM; consequently, the boundaries of the 
entities and their interactions correspond to those 
of the agents.

 – Process-oriented: ABMS requires process-oriented 
thinking. Every aspect of agent processes, such as 
how agents recognize the environment, how agents 
use information, and how agents interact with each 
other, must be explicitly and well specified. Such 
issues are often ignored in equation-based models, 
which rely on only a few parameters to represent 
problems.

 – Constructive: ABMS inherently produces construc-
tive proofs to propositions. The ability to fully gen-
erate a phenomenon from the bottom-up provides 
new ways of gaining insight and understanding 
(Miller, Page 2007).

 – Self-organizing: Because the models are typically 
either simple or informed by real-world data, they 
are appropriately constrained, and cannot fit any 
conceivable pattern of data (Goldstone, Janssen  
2005).

 – Precision and flexibility: ABMS can attain a bal-
anced trade-off between flexibility and precision. 
Flexibility occurs when the model can capture an 
extensive class of behaviors; precision requires the 
model elements to be exactly defined. ABMS is re-
markably flexible in its ability to capture a variety of 
behaviors, and at the same time ABMS also requires 
a high degree of precision (Miller, Page 2007).

 – Relevance and reliability: Improving the reliability 
of formal modeling may be accomplished at the ex-
pense of its relevance to the target systems, because 
of the augmented abstraction to the target systems; 
that is, the more abstract the model, the more reli-
able, but also the less relevant. ABMS allows the 

application of formal models to complex systems 
without the loss of relevance, due to its “descriptive 
realism” (Edmonds 2001).

 – Inherently dynamic: Most analytic methods em-
phasize equilibrium states in systems. However, in 
the case of complex systems, this approach is like 
trying to understand running water by catching it 
in a bucket. ABMS provides a very natural way to 
represent the dynamic behavior of systems (Miller, 
Page 2007).

 – Recoverable and repeatable: Whenever anomalies 
are detected, ABMS can be rerun and re-probed, 
to identify the cause of the anomalies. This ability 
facilitates the rapid development and refinement of 
theoretical ideas. ABMS is also repeatable, in that 
it allows multiple observations of a system (Miller, 
Page 2007).

 – Greater contingency in inference: Because ABMS 
is indeterministic, path-dependent, and emergent, it 
can generate a wide range of consequences. Single 
runs of ABMs are not representative of the systems’ 
general behavior, and thus examining each single 
run is often required to distinguish what is happen-
ing in each, so that one can begin to determine how 
to classify the simulation trajectories (Edmonds 
2001).

 – Multi-level analysis: ABMS provides true bridging 
explanations that link two distinct levels of analysis, 
the properties of individual agents, and the emergent 
group-level behavior.

 – Adaptive and boundedly rational agents: The flex-
ibility of ABMS and development of computational 
study such as artificial intelligence enabled ABMS 
to be suitable for incorporating agents who are 
boundedly rational and can adapt their behaviors 
(Miller, Page 2007).

 – Heterogeneous agent: Many social and economic 
theories and analytical tools have been developed 

Table 3. Modeling potential (created from Edmonds (2001) and Miller and Page (2007))

Traditional tools Agent-based models
Abstracted Descriptive
Little process Process-oriented
Instructive Constructive
Regulated Self-organizing
Precise Flexible
Reliable Relevant
Static Dynamic

Recoverable/Repeatable
Less contingent Contingent
Single-level Multi-level
Optimizing/Perfect rationality Adaptive/Bounded rationality
Homogenous Heterogeneous
1, 2, or infinite agents 1, 2, ..., N agents
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with the assumption of homogeneous agents. How-
ever, this homogeneity is not a feature that can be 
observed in the real world, but is rather a necessity 
imposed on us due to inadequate modeling tech-
niques. ABMS is able to incorporate heterogeneous 
agents, who have a different set of properties and 
behave differently (Miller, Page 2007).

 – Scalability: ABMS can be easily scaled: once the 
behavior of a single agent is described, it can be 
easily scaled to a system consisted of agents of an 
arbitrary size, by simply adding as many agents to 
the system as desired.
ABMS has recently become popular to investi-

gate complex systems in many areas, such as sociology  
(Gilbert, Abbot 2005), economics (Tesfatsion 2002), sup-
ply chain (Swaminathan et al. 1998), management sci-
ence (Rahmandad, Sterman 2008), anthropology (Kohler 
et al. 2005), and physical science (Troisi et al. 2005). 
Likewise, a few simulation tools in the CEM area have 
been developed using ABMS. Virtual Design Team 
(VDT) (Jin et al. 1995) is a computational model of pro-
ject organizations to analyze how activity interdepend-
encies raise coordination needs, and how organization 
design and the introduction of communication tools may 
change the coordination capacity of project teams, with 
resulting impacts on design project performance. Virtual 
Coach (Rojas, Mukherjee 2006) is an education-purpose 
situational simulation application, whose main objective 
is to help learners further develop their decision-making 
skills in a problem-based learning environment. Kim, K. 
and Kim, K. J. (2010) developed a multi-agent-based 
simulation system to evaluate the traffic flow of construc-
tion equipment in a construction site. Azar and Menassa 
(2011) developed an agent-based simulation to model en-
ergy consumption in commercial buildings by accounting 
for the diverse and dynamic energy consumption patterns 
among occupants. Recently, Du and El-Gafy (2012) pro-
posed the use of agent-based modeling to study the in-
teractions of organizational and human factors and their 
effects on construction performance.

As such, there have been a few ABMS studies de-
veloped for specific purposes, such as analyzing non-
value adding activities in construction project execution, 
optimizing construction operation, and analyzing total 
energy consumption in building. Still, ABMS is generally 
not recognized as a research method, despite its merits, 
and its theoretical background and development process 
is not well established in the CEM area. In the next sec-
tion, a typical ABS development process is explained, 
and the ABS of construction project teams is presented 
as an illustrative example.

3.1. ABs development process
ABM design and development processes appear quite sim-
ilar to that of object-orient programming (OOP), because 
technically, ABMS is rooted in OOP. Thus, ABM is like-
ly to be considered the same as object-orient simulation 

(OOS). However, while simulated entities in OOS are 
purely reactive and simple-minded, agents in ABMs have 
more sophisticated representation of mind and abilities, 
such as learning ability and goal-oriented decision-making 
(Davidsson 2001). This makes the ABS development pro-
cesses more complicated than standard simulation studies, 
because it requires the following additional steps for build-
ing an agent model (Macal, North 2006) (Fig. 1):

 – Identify the agent types and other objects (classes), 
along with their attributes (micro level);

 – Define the environment the agents will live in and 
interact with (macro);

 – Specify the methods by which agent attributes are 
updated in response to either agent-to-agent inter-
actions or agent interactions with the environment 
(meso level);

 – Add the methods that control which agents interact, 
when they interact, and how they interact during the 
simulation (meso).

1. Agent’s attributes and internal behavior modeling (mi-
cro level)

An agent is a fundamental decision-making com-
ponent in ABMS. Agents in ABMS can be any type of 
independent components in real worlds, such as software, 
model, and individual. Agents are defined by abstracting 
their attributes and behavior, which determine internal 
and external interaction with other agents and the envi-
ronment. Agents are heterogeneous and dynamic in their  
attributes and behavior rules. Behavior rules vary in their 
sophistication, how much information is considered in 
the agent decisions, the agent’s internal models of the  
external world including other agents, and the extent of 
past events the agent retains and uses in its decisions; 
agents also vary by their attributes and accumulated  
resources (Macal, North 2005) (Fig. 2).

Macal and North (2005) stated that agents have cer-
tain characteristics:

 – An agent is heterogeneous: it is a discrete individ-
ual, with a set of characteristics and rules govern-
ing its behaviors and decision-making capability. 
Agents are self-contained. The discreteness require-
ment implies that an agent has a boundary and one 
can easily determine whether something is part of 
an agent, is not part of an agent, or is a shared char-
acteristic.

 – An agent is situated: living in an environment with 
which it interacts with other agents. Agents have 
protocols for interaction with other agents, such 
as communication protocols, and the capability to 
respond to the environment. Agents have the abil-
ity to recognize and distinguish the traits of other 
agents.

 – An agent is goal-directed: it has goals to achieve 
(not necessarily objectives to maximize) with  
respect to its behaviors. 

 – An agent is autonomous and self-directed: An agent 
can function independently in its environment and 
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in its dealings with other agents, at least over a lim-
ited range of situations.

 – An agent is flexible, and has the ability to learn and 
adapt its behaviors over time, based on experience. 
This requires some form of memory. An agent may 
have rules that modify its rules of behavior.

Abstracting complicated human behavior and 
mindset, and designing human-like rational agents in 
the ABMS is one of most significant efforts to generate 
more plausible behaviors in simulation (Norling et al. 
2001). ABMs can be built of primitive representations 
of agents and interaction rules between them at the sim-
plest level. Even a simple ABM can exhibit complex 
emergent patterns (Reynolds 1987), and provide valu-
able information about the target systems. Simple rules 
have several advantages. In particular, simple reactive 
decision rules allow focusing on core mechanisms, per-
mit models to be quickly developed, shorten verification 
and validation times, and enable rapid model applica-
tion (North, Macal 2007). As mechanisms in a model 
are more succinct, the operation of each rule becomes 
more apparent. More sophisticated agents, which can 
perceive the world, make decisions in complex situa-
tions, and learn from feedback, can be developed by 
incorporating advanced techniques or other learning 
techniques, in order to allow realistic learning and ad-
aptation (Bonabeau 2002); for instance, game theory 
and machine learning.

2. Defining interaction rules among agents (meso level)

Defining interaction rules among agents is a step 
that specifies the social behavior of agents. In particular, 

Fig. 1. ABMS process (modified from Banks et al. (2004))

Fig. 2. An agent (Macal, North 2005)
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depending on the purpose of simulation, underlying 
mechanisms to determine relations among agents are 
designated, such as how agents get to know each other, 
how an agent communicates or cooperates with others, 
and what makes agents communicate and cooperate. As 
mentioned, there is not an established set of standard for-
malisms or procedures for model development; defining 
interaction rules among agents is a context-specific task.

As in the preceding step for defining internal be-
havior, simple rules or sophisticated mechanisms can 
be used. In other words, agents could be simple reac-
tive ones as in most existing literature, or socially re-
alistic ones which have features like a myopic view in 
networks, self-interested and profit-seeking behavior, and 
forming coherent subgroups. For instance, social pro-
cesses are often modeled as a few mathematical equa-
tions (Yu et al. 2008), and relations are regarded as the 
conduits of material, information, and cash flow between 
agents (Swaminathan et al. 1998). Whereas in some lit-
erature, such social processes are represented in more 
realistic and explicit manner: forming and breaking rela-
tions are based on expected marginal benefit, marginal 
cost, and trust (Hanaki et al. 2007). Agents’ behaviors 
are influenced by their indirect relations as well as by di-
rect relations, and having limited information constrains 
agents to make myopic decisions in the context of dy-
namic networks (Jackson, Watts 2002). Several theories 
and methods may help to define interaction rules; for in-
stance, social network analysis (SNA) and game theory.

3. Global environment modeling and defining interaction 
rules between environment and agents (macro level) 

The global environment in an ABM provides agents 
with essentially an abstracted model of the real world 
where they play. The target of global environment mod-
eling could be organization (Levitt et al. 1999), software 
development society (Smith et al. 2006), supply-chain 
(Min,  Bjornsson 2008), or transportation system (Dia 
2002), according to the subject under study. As a result of 

interaction, not only are agents’ properties changed, but 
also the current states of the environment are updated. 
In particular, once agents perceive inputs from the envi-
ronment, they evaluate them, decide what they need to 
do at the current moment, and then execute the actions 
they have chosen (North, Macal 2007); these steps are 
performed by an internal behavior model. The actions 
taken by agents iteratively influence the properties of 
themselves and other related agents as well as the states 
of the environment, as in Figure 3. This is one cycle of 
ABS; this continues until the end of the simulation.

4. illustrative example

To convey a clearer idea of ABMS application and de-
velopment process, an illustrative example is presented. 
This is a model of the evolution of collaboration in pro-
ject teams of large-scale projects, which the authors have 
developed on the extension of existing studies, such as 
Jackson and Watts (2002), and which was implemented 
using ABMS. Because the primary purpose of this pa-
per is to explore the possible application of ABMS in 
the CEM area, and for brevity of discussion, detailed de-
scriptions of the model and technical aspects are not in-
cluded. For further detail, refer to Son and Rojas (2011).

4.1. Modeling concept
Project teams are viewed as dynamic information  
processing networks composed of members who are 
self-interest seeking and myopic to recognizing whole 
networks (Fig. 4). Team members, who are modeled as 
agents possessing individual characteristics and network 
properties, keep seeking maximum payoff through not 
only dealing with information and decision, but also com-
municating and coordinating with each other via existing 
paths in networks. Collaboration processes are modeled 
as the sequential co-evolution of behavioral dynamics 
at the micro level, and network dynamics at the macro 
level. Agents’ decisions are influenced by both global 

Fig. 3. Integrated cycle of agent-based simulation and behavior models (inspired by Rand (2006))
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and local network properties, and the network proper-
ties emerge from local interactions among individuals. 
Consequently, agents’ payoffs are determined according 
to their current network properties, while the work capa-
bilities of agents are assumed to be equal, and thus do not 
affect payoffs. Equality of work capabilities of agents is 
later discussed as one of the limitations of this research. 
However, considering that the primary purpose of this 
research is to understand how team networks evolve over 
time and affect performance, the authors argue that this 
is a valid assumption in order to isolate network effects.

4.2. Agent design
Agents are designed to have different values of sociabil-
ity and familiarity. Sociability refers to the extent that 
agents are outgoing, so that they have a chance to meet 
new candidate partners. Familiarity refers to the extent 
that agents are close to other agents in the network. 
Agents participate in social interactions with a prob-
ability of sociability. If agents are not social enough to 
meet new agents, they seldom have an opportunity to 
improve their payoff through forming a new relation or 
replacing an unproductive partner with a promising one. 
In social interactions that agents are involved, they make 
new contacts with agents who are not currently in their 
relations. The likelihood of which agents meet is decided 
by the probability distribution of familiarity to others. 
Therefore, agents more frequently meet one to whom 
they maintain higher familiarity.

In each time step, agents meet a candidate partner, and 
choose either to cooperate with (i.e. share information with), 
or to defect from it. Whether agents cooperate or defect is 

determined by comparison between the current payoff that 
they are attaining from the combination of existing partners, 
and the potential payoff that they could achieve by form-
ing a new relation with the candidate partners and severing  
least efficient relations. The resulting payoffs are deter-
mined by a payoff function (Eqn (1)) inspired by the pro-
duction function developed by Cobb and Douglas (1928):

 (1)

where: ui – the payoff of i; gt – a network at time t; ωit – 
the number of within relations which i agent has at time 
t; βit – the number of between relations which i agent 
has at time t; a – the elasticity of ωit to payoff; b – the 
elasticity of βit to payoff; c – cost to maintain a relation.

Yet, having more relations does not necessary result 
in higher payoff because payoff is also subject to both: 
(1) the synergistic effect generated from the advantage 
of having both within relations which agents form with 
others from the same organization – hereafter insiders –  
and between relations that agents form with others 
from different organizations – hereafter, outsiders – and  
(2) the cost to maintain relations. When agents have be-
tween relations as well as within relations at the same 
time, they end up with higher payoff than others who 
have only between relations or within relations. This is 
grounded in the fact that those, who can access diverse 
task-related information and occupy powerful positions 
connecting divided subgroups in networks, could use po-
sitional advantages to improve their payoffs (Reagans, 
Zuckerman 2001). Also, sustaining relations incurs a cost 

Fig. 4. Conceptual model of simulation
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proportional to the number of relations that agents have. 
The maintenance cost for within relations (within cost) 
is assumed to be lower than that for between relations 
(between cost).

When meeting new candidate partners, agents com-
pare payoffs of all possible combinations of relations 
in a network at the next time step and choose the best 
option available. However, agents cannot have infinite 
relations, due to limited cognitive capability. Therefore, 
in this model, it is assumed that the maximum number 
of partners that agents concurrently collaborate with is 
limited to three.

Behavioral dynamics of agents and overall network 
dynamics co-evolve, while interacting with each other. 
In particular, the properties of the whole network emerge 
from the goal-seeking behaviors of distributed agents in 
order to accomplish maximum payoff; while the agents’ 
behaviors are constrained by structural configurations of 
the network. Unlike a traditional perspective in econom-
ics and social network study, where one of these two 
are regarded as an exogenous factor, the network dynam-
ics are endogenized in agents’ strategic behaviors in this 
study. After some time period, a network reaches a state 

where no additional relations are formed or severed; this 
state is called a stable state.

4.3. implementation
The simulation is implemented using Java programming 
language in Eclipse, an integrated development environ-
ment (http://www.eclipse.org) (Fig. 5).

4.4. experiments and results
It is assumed that there are two types of agents that can 
be thought of as two different organizations in project 
teams, such as an architecture firm and a general contrac-
tor. The total number of agents (n) in the game is 100. 
The values to describe personality and model parameters, 
such as sociability and familiarity, are initialized as dis-
crete number and appropriate distributions. A simulation 
runs for 200 time steps, and is repeated 100 times for 
each setting.

As the simulation progresses, agents start looking 
for partners, and thereby relations among agents are cre-
ated. A majority of ordinary agents form relations with 
partners in several time steps in a way that they increase 
payoff, and ultimately achieve maximum payoff. For ex-

Fig. 5. Simulation implementation



1008 J. Son et al. Application of agent-based modeling and simulation to understanding complex management problems...

ample, agent 9 accomplished maximum payoff by form-
ing relations with agents 81, 79, and 35 at time 4, 6, and 
9, respectively, in the case of within familiarity of 50 and 
between cost of 1.0. In the meantime, sociable agents 
quickly and more frequently join the partner searching 
process, while less sociable agents are reluctant to par-
ticipate. Accordingly, sociable agents begin to achieve 
higher payoff right after a simulation gets started, and 
also achieve maximum payoff earlier. To illustrate, agent 
17 formed a relation at each first three time step, and 
attained maximum payoff at time 3. On the contrary, 
agent 29’s network development was delayed. It is not 
until time 19 that agent 29 formed a first relation, and he 
attained maximum payoff at time 23 (Fig. 6).

While sociable agents quickly and more frequently 
join the partner searching process, less sociable agents 
are reluctant to participate. Accordingly, sociable agents 
begin to achieve higher payoff right after a simulation 
gets started. For instance, in a simulation with within 
familiarity of 50 and between cost of 0.2, the network 
unfolds as shown in the sociograms shown in Figure 7. 
At time 1, only 37 agents who are mostly sociable get 
a partner, and thus they achieve higher payoff [1.2182] 
than those who do not have a partner [1.0]. Among 
them, agents who maintain a higher between familiar-

ity show a higher payoff [1.2195] by forming a between 
relation, than those who have a within relation [1.2142]. 
Beyond time 16, when agents have the highest number 
of within relations, 1.8603, a tendency arises to replace 
within relations with more beneficial between relations 
through random social contact. Consequently, at time 38, 
agents have the number of between relations, 1.5009, 
which is equivalent to the number of between rela-
tions, 1.4971. Then, the network reaches a stable state 
at around time 92, where all agents attain the maximum 
payoff [2.2319].

Due to the effect of different between cost, the 
networks come to have remarkably different character-
istics. It is noteworthy that the higher the between cost, 
the stronger the tendency of cohesion. In particular, 
the clustering coefficient increases as the between cost 
gets higher, which implies that local neighborhoods in 
networks with higher between cost are denser than oth-
ers, and thus there seems to be a stronger tendency to 
form local cohesive subgroups. Also, networks differ in  
diameter and average distance; while those values in net-
works with between cost 0.2 and 0.6 are almost equiv-
alent, networks with between cost 1.0 exhibit bigger 
diameter and longer distance. The outcomes represent  
the fact that overly high between cost prevents agents 

Fig. 6. Individual network development

Fig. 7. Evolution of network (within familiarity: 50, between cost: 0.2)

The color of nodes symbolize the types of nodes

The size of nodes represent the payoff they earn

t = 1 t = 16 t = 38 t = 92
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from having between relations by fully offsetting the 
advantage of having between relations, whereas mod-
erate between cost partially cancels the advantage. The 
resulting subgroups are visually illustrated in Figure 8.

4.5. Validation
Agent behavior and interaction mechanisms in this 
research represent real life as closely as possible, in 
the sense that they are grounded in theories in ex-
perimental game theory studies and findings in soci-
ology and economics, such as a production function 
model (Cobb, Douglas 1928), collaboration (Reagans,  
Zuckerman 2001), and maintenance cost (Jackson,  
Wolinsky 1996). In addition, the model is tested with 
comprehensive sets of plausible variables to see whether  
they change model results in useful and confident ways 
to the model purpose – sensitivity analysis. The change 
in variables changes the numerical values of the results 
(numerical sensitivity), and the patterns of the model 
behavior (behavior mode sensitivity).

5. ABMs application for ceM research

In the model of the evolution of collaboration, knowledge 
creation processes in project teams are modeled and simu-
lated using the ABMS approach. The behaviors of indi-
vidual team members who are autonomous, goal-directed, 
and situated in networks are abstracted, and interaction 
rules among individuals are defined. Consequently, sev-
eral findings were brought out, while taking advantage of 
the modeling potential of ABMS, which are embodied in 
the example. These are summarized in Table 4.

As in the illustrative example, CEM research can 
also make use of the unique features and advantages of 
ABMS to make its research processes and results much 
more useful. This would especially be the case when they 
are studying systems that have the properties of complex 
system explained earlier, such as aggregation, nonlinear-
ity, flow, and diversity – e.g. production systems, con-
struction processes, and project organizations. In the next 
paragraphs, research subjects in the CEM area that are 
expected to offer the most promise to apply ABMS as a 
research method are recommended.

First, a system that involves multi-human or multi-
organization decision-making in its transition, and where 
relations among them are significant factors determin-
ing system states, could be effectively investigated with 
the ABMS approach. Decision-making in the construc-
tion industry in general requires extensive information 
exchange and sharing, communication, and coordination 
among stakeholders. Also, a decision made by one side 
would influence a decision to be made by another party, 
and vice versa. The resultant state of the system would 
be shaped by how they interact with each other in the 
global environment, as well as by each individual’s de-
cisions. For instance, whether the international construc-
tion market grows and shrinks at the macro level emerges 
from decisions on investment and consumption made by 
related parities, such as countries and firms at the micro 
level. They make an effort to obtain as much information 
as possible via all available sources, in order to make 
a perfect decision: they are only able to get partial in-
formation. In turn, their decisions and updated market 
information also influence other parties’ decisions. Inter-
national construction market research has been studied 
through statistical data analysis (Crosthwaite 2000), and 
by developing a theoretical framework (Ofori 2003). We 
believe that applying ABMS to subjects in this catego-
ry – including project organization, knowledge network, 
learning organization, collective intelligence, and inter-
national construction – could considerably contribute to 
improving our understanding of them.

Next, complex production systems and supply chains 
in the construction industry could be effectively modeled 
with ABMS, in the sense that they have distinct prop-
erties of complex systems. Heterogeneous members in 
the production system and supply chain consist of whole 
networks, where they behave as autonomous agents. The 
performance of production systems and supply chains 
arises as the outcome of local interactions among compa-
nies, which have limited knowledge of the whole system. 
In these regards, ABMS has been used in manufacturing 
to study supply chains (Kaihara 2003; Van der Zee, Van 
der Vorst 2005). However, the main approaches to study 
supply chains in construction have been in developing 
the supply chain management system (Tserng et al. 2006; 
Polat et al. 2007) and the performance evaluation matrix 
(Meng et al. 2011). Considering that the main advantage 
of applying ABMS is multi-level analysis through realistic  Fig. 8. Sociograms of cohesive subgroups
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and relevant representation of system components from 
the bottom-up, it could help managers make better and 
timely decisions in complex production systems and sup-
ply chain management.

Last, disaster response and recovery in urban areas 
is characterized by complex, dynamic, massive, and un-
familiar work demands, occurring in a widely distrib-
uted area. The participation of numerous responders from 
multiple organizations, such as firefighters, policemen, 
medical personnel, and government employees, who 
have different traits, such as role, function, protocol, 
and work procedure, is required. They need to collect, 
share, and process information regarding buildings and 
infrastructures, and communicate with each other dur-
ing dynamic disaster response operations. The described 
characteristics of disaster response and recovery bear a 
close resemblance to those of complex systems. Natu-
rally, ABMS becomes a legitimate approach that reflects 
all necessary aspects of disaster response and recovery, 
and thus is useful in developing and testing new response 
scheme and technologies. While existing research on  

disaster response and recovery has centered on fragmentary 
development, such as evacuation operations (Massaguer  
et al. 2006), logistics planning (Yi, Özdamar 2007), and 
sensor networks (Lorincz et al. 2004), ABMS is expected 
to be a virtual, comprehensive, and economically repeat-
able test-bed for disaster response and recovery, analo-
gous to a flight simulator in the aviation industry.

conclusions

As construction projects have become larger and more 
complex, it becomes difficult to understand them   using 
traditional research approaches, due to the innate fea-
tures of complex systems. In this study, we suggested 
ABMS as a complementary alternative to traditional re-
search methods. The realistic viewpoint of ABMS to-
ward complex systems, and its natural way to represent 
the dynamic behavior of complex systems, is expected 
to provide new ways of gaining insight and understand-
ing of complex construction projects. How ABMS can 
be made practical use of in CEM research is explained, 

Table 4. Modeling potential embodied in the example

Modeling potential Example

Descriptive realism/Process-
oriented

Agents are mapped onto corresponding entities in the target system, project team members. 
Agents’ properties, behaviors, and processes of interactions with other agents and the 
environment are expressed with mathematical and computational formalisms. This enabled 
the construction of a model that can be more naturally understood, tested, and expanded, 
which might not be possible with equation-based approaches.

Constructive/Self-organizing/ 
scalable

The simulation was constructed by defining an agent, and by adding as many agents to the 
system as was desired. The system behavior emerged from interactions among agents at the 
micro level, rather than from abstracting system properties. This unique characteristic of 
ABMS provides ways to understand the target system from the bottom-up.

Precision and flexibility Since computational or mathematical formalism, or both, were selectively employed as 
needed to develop the simulation, a variety of agents’ behaviors were able to be captured.

Relevance and reliability The ABMS approach enabled the building of a computational model of project teams, 
without the loss of relevance to the target system, due to its descriptive realism.

Recoverable and repeatable Whenever detecting anomalies, the simulation was refined through debugging processes. This 
facilitated the development process, and helped to verify the model. The completed model 
was executed as many times as required, with different parameters and settings, in order to 
obtain multiple observations on a system.

Greater contingency in inference The simulation runs ended up with a great diversity of networks because of the unique 
characteristics of ABMS, such as indeterminism, path-dependence, and emergence. Besides, 
it produced unexpected behaviors; for example, the occurrence of cohesive subgroups, 
and delayed network development. Therefore, examining each single run was required, to 
understand what was happening in each.

Multi-level analysis It was able to identify the behavior of distinct levels of network in the simulation. The 
behavioral dynamics of each individual agent was observed, and at the same time the overall 
network dynamics, which emerged from the interactions among agents at the lower level, 
were obtained.

Adaptive and bounded rational 
agent

Bounded rational behaviors of agents are incorporated in the simulation. This enhances the 
credibility of the results, as well as the explanatory power of the model. In particular, agents 
could not achieve maximum probable payoff in all cases. A primary reason for failing to 
accomplish maximum probable payoff is their inability to recognize the whole network and 
the mutational actions – this is not included in this paper; for further detail refer to Son and 
Rojas (2011).

Heterogeneous agent Agents, of which each has a different set of properties, are incorporated. This also 
significantly enhances the explanatory power of the model.
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by presenting the theoretical background, a development 
process, and an application example. We then made a 
recommendation on the promising research subjects in 
CEM area to which ABMS could be suitably applied.

We concede that developing ABS might be cost-
ly, and more time-consuming than before. Researchers 
might also need to accept some of the drawbacks that 
ABMS has – e.g. data unavailability, difficulty of valida-
tion, lack of generality, causal spread, and greater subjec-
tivity. Despite the expected disadvantages, we argue that 
ABMS, when applied to appropriate cases in a valid way, 
would produce useful information and valid insight on 
the system under study that would more than compensate 
for the additional investment.
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