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Article History:  Abstract. The concepts of environmental impact index and spatial conflict degree have gained prominence in enhancing the 
controllability of collision accidents and mitigating the likelihood of collisions during construction processes. Nevertheless, 
prior studies predominantly focused on exploring collisions in terms of proximity and congestion between pairs of entities, 
thereby overlooking a comprehensive consideration of workers, construction machinery, environmental factors, and the spa-
tial interaction of specific activities.To this end, this study aims to propose an integrated vision-based dynamic collision risk 
assessment framework by setting workers and mobile machinery as targeted research objectives and embedding a compre-
hensive risk assessment model in the proposed framework, thereby comprehensively assessing four types of risk factors (i.e., 
proximity, congestion, environmental impact index, and spatial conflict), and visualize the hierarchy of risk warnings. Firstly, 
a comprehensive risk assessment model was developed by using the fuzzy comprehensive evaluation method. This is fol-
lowed by developing a dynamic risk assessment framework to extract the spatial information of the monitored objects by us-
ing computer vision as the underlying data of the risk factors. Finally, the proposed integrated framework was validated by an 
experimental study. This experiment’s safety risk assessment results are consistent with expectations, which largely illustrates 
the effectiveness of the evaluation model constructed in this paper. For the vision module, the accuracy of classification and 
monitoring is more than 95%, and the speed of the object detection algorithm to process the video is about 10 frames per 
second, which shows the feasibility of this study.
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1. Introduction
Accident fatality and injury rates in the construction indus-
try are two or three times higher than the average of other 
industries (Kang et al., 2017). Of all incidents, collisions are 
considered one of the four most life-threatening construc-
tion injuries, accounting for 17% of the total construction 
site mortality. Of these, 75% of accidents involved heavy 
equipment, such as trucks and cranes, and most of which 
were workspace collisions involving workers and equip-
ment induced (Dagan & Isaac, 2015). The construction in-
dustry is typically labor-intensive. High-frequency move-
ment of workers, materials, and construction machinery 
tends to lead to space congestion, and spatial collisions 
may not only reduce worker productivity but also result in 
safety incidents (Moon et al., 2014).

Traditional safety monitoring methods rely on manual 
inspections, which are time-consuming and labor-intensive 
(Chi & Caldas, 2012). Hence, it is crucial to automate con-
struction operations to prevent incidents related to work-
ers and equipment. Computer vision thus has become one 
of the most popular agendas in construction site safety 
management due to its advantages of user-friendliness, 
reusability, and high-level understanding (Martinez et al., 
2019b). It not only can obtain information about the loca-
tion of the monitored object but also can gain an under-
standing of the complex work patterns by digital images 
to effectively monitor the dynamic environment changes 
(Zhong et al., 2019).
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Furthermore, previous studies on the collision risk of 
the construction site primarily focus on proximity and con-
gestion by analyzing the relationship between pairs of en-
tities (Kim et al., 2016). Existing studies (Kim et al., 2016; 
Son et al., 2019) have indicated that the incidence of col-
lisions is not solely correlated with the proximity to con-
struction machinery and the level of congestion at the 
construction site, but is also influenced by environmental 
factors and the extent of spatial conflict. However, those 
studies emphasize the relationships between paired enti-
ties (Zhang et al., 2020), with minimal attention given to 
the comprehensive effects of environmental factors and 
all surrounding entities in analyzing collision risks on con-
struction sites. In addition, although prior research has fo-
cused on identifying risks and issuing warnings, few efforts 
have been made to investigate how these risks influence 
subsequent activities.

Therefore, it is essential for managers to understand 
the risk factors, how to quantify them, and how they im-
pact subsequent activities. From management practices, 
this research proposes the following research questions:

RQ1. How can risk evaluation factors and spatial con-
flict metrics be systematically identified and quantified 
in environments involving mobile machinery and human 
workers?

RQ2. What are the effective methodologies to assess 
and model interactions between workers and dynamic en-
tities, including their impact on safety-critical activities in 
evolving operational contexts?

RQ3. How can a  dynamic, computer vision-based 
framework be developed to evaluate collision risks by in-
tegrating entity-specific characteristics and real-time spa-
tial-temporal data?

To address the aforementioned research questions, the 
study has the following research objectives.

The research aims to develop a  comprehensive, dy-
namic risk assessment framework that leverages comput-
er vision to monitor and evaluate collision risks involving 
workers and mobile machinery. This involves identifying 
and validating key risk evaluation factors, establishing ro-
bust and quantifiable spatial conflict metrics, and model-
ing worker-entity interactions to understand their implica-
tions on safety and operational workflows. Ultimately, the 
framework will provide a proactive, real-time approach to 
enhancing safety in high-risk industrial environments.

The concept of spatial conflict is first proposed to 
transform the interaction between entities (workers and 
machinery) from distance to area. Then, the environ-
mental impact index is developed to extend the research 
scope from the interaction of person-machine to person-
machine-environment. Thereafter, the authors developed 
a comprehensive automated method for dynamic risk as-
sessment of workers and mobile machinery based on di-
verse entity attributes.

2. Literature review
2.1. Risk assessment methods
Construction projects are inherently complex and risky, 
involving numerous uncertainties that can impact pro-
ject outcomes. Risk assessment is a critical component of 
project management, ensuring that potential hazards are 
identified, evaluated, and mitigated to ensure the safety 
of workers, the integrity of the project, and adherence to 
timelines and budgets. Traditional risk assessment meth-
ods in construction often rely on static analyses, which 
identify potential risks during the planning phase and as-
sess their likelihood and impact. For example, qualitative 
risk assessment involves identifying risks and categoriz-
ing them based on their likelihood and impact. Tech-
niques such as risk matrices and SWOT analyses are com-
monly used (Raveendran et  al., 2022). Quantitative risk 
assessment approach assigns numerical values to risks, of-
ten using probabilistic models to estimate the likelihood 
and impact of potential hazards. Techniques such as Fault 
Tree Analysis (FTA) and Event Tree Analysis (ETA) are ex-
amples of quantitative methods (Raveendran et al., 2022). 
Other methods include Monte Carlo simulation (Zhang 
et al., 2017), fuzzy theory (Seker & Zavadskas, 2017), and 
data fusion (Chen et al., 2019). Given the dynamic changes 
in construction sites, safety risk control procedures should 
be monitored through dynamic safety risk assessment and 
alerts to reduce accidents (Isaac & Edrei, 2016). The valid-
ity of current dynamic risk assessment methods heavily re-
lies on the data that is primarily derived from feedforward 
signals, attempted events, and incident reports (Khakzad 
et al., 2014). Even though common static analysis models 
are often required, more dynamic risk analysis methods 
and automated processing software are still lacking (Pal-
trinieri et al., 2015).

2.2. Computer vision in construction safety
There are two types of hazards are generally found on 
construction sites (Golovina et al., 2016; Park et al., 2016): 
(1) Static hazards, which are inherent to the building’s de-
sign and include elements such as temporary works, haz-
ardous substance storage, site traffic control, and physi-
cal risks like floor openings for services or stairwells; and 
(2) Dynamic hazards, which involve the spatial-temporal 
movement of resources, such as workers, heavy equip-
ment, and cranes being transported over active work ar-
eas. Construction site safety has long garnered significant 
attention from numerous researchers and stands among 
the most prolific domains for computer vision applications 
(Martinez et al., 2019a). Computer vision has revolution-
ized hazard detection in construction sites by enabling re-
al-time identification of potential dangers. Research has 
primarily focused on how computer vision can be used 
to prevent people from entering work areas while heavy 
equipment is in operation (Kim et al., 2016, 2017). For ex-
ample, Kim et al. (2016) integrated computer vision with 



86 X. Gao et al. An integrated vision-based dynamic collision risk assessment framework of workers and mobile machinery ...

a fuzzy inference method to monitor and evaluate a per-
son’s safety while working near heavy machinery. Notably, 
investigations in this realm primarily concentrate on en-
suring the safety of construction workers, focusing on two 
principal dimensions: the individual worker and the inter-
play between workers and their surrounding environment 
(Zhang et al., 2020). 

One avenue of research involves integrating ergo-
nomics to examine workers’ unsafe behaviors. Han and 
Lee (2013) proposed a vision-based motion capture and 
recognition framework to detect critical unsafe behaviors 
among construction workers on site. By extracting skeletal 
models from video for three-dimensional reconstruction, 
they demonstrated that predefined unsafe behaviors in 
the database can be detected (Han & Lee, 2013). Similar-
ly, Guo et al. (2018) integrated computer vision techniques, 
construction safety knowledge, and ergonomic principles 
to develop a  real-time skeleton-based recognition ap-
proach and constructed an unsafe-behavior database. By 
simplifying dynamic movements into static postures, they 
successfully identified unsafe behaviors (Guo et al., 2018).

For exploring the interplay between workers and their 
surrounding environment, vision-based distance measure-
ment techniques can be broadly categorized into two ap-
proaches. The first approach relies on depth information 
to determine three-dimensional coordinates (Seo et  al., 
2015), while the second approach involves direct mea-
surement using two-dimensional images (Kim et al., 2019). 
Chen et al. identified worker location and posture as two 
key quantitative features and proposed a location–posture 
integration principle for evaluating the safety risk of con-
struction worker behaviors (Chen et al., 2019).

2.3. Spatial conflict
Previous studies highlighted that workers performing tasks 
near working equipment are the main causes of collisions 
(Luo et al., 2018). Therefore, it is necessary to decrease the 
possibility of collisions between people and mobile equip-
ment at construction sites by effective collision monitor-
ing. Computer vision thus can be used to automatically 
and constantly identify, classify, and monitor critical tasks 
and estimate motion, behaviors, and positions at construc-
tion sites. It is capable of providing rich information for 
different research purposes (Zhong et al., 2019). Existing 
studies mainly use it as an automated processing tool to 
assist target identification and tracking and systematically 
retrieve dynamic spatiotemporal data in order to assess 
the risk of physical collisions at construction sites (Zhang 
et al., 2020). Dynamic workspace monitoring can not only 
facilitate safety management in complex construction en-
vironments but also reinforce more accurate and proactive 
safety management.

Moreover, space occupancy is critical to the accuracy 
of conflict detection (Choi et al., 2014). Inter-object prox-
imity and crowdedness were identified as major factors in 
collision research (Hu et al., 2020). The proximity between 

entities can directly cause safety incidents and congestion 
in the construction site may increase the possibility of col-
lision accidents. Information on the location of workers 
and equipment, speed and direction of movement, crowd-
edness of the site environment, and workers’ perceptions 
of risk were found to have significant impacts on crashes 
(Wang & Razavi, 2017). Hinze et al. (2005) thus classified 
causes of accidents into three categories: equipment-re-
lated cases, human factor-related cases, and environment-
related cases.

Furthermore, the construction site environment is al-
ways noisy and crowded (Ballesteros et  al., 2010). Large 
machinery is usually recognized as the main source of 
noise. Due to the labor-intensive nature of the construc-
tion industry, a  large number of workers are exposed to 
noise hazards (Ballesteros et al., 2010). In a noisy environ-
ment, workers often concentrate on their work and ignore 
the dangers and potential collisions in the surrounding en-
vironments (Kim et al., 2016). The safety and productivity 
performance of workers in noisy and crowded worksite 
conditions are usually poor. There is a  lack of effective 
ways to avoid work area congestion during construction 
processes (Zhang et al., 2015). Several previous studies in-
cluded temporal-spatial conflict resolution as one of the 
steps in workspace planning and proposed qualitative and 
quantitative measures in this regard (Kassem et al., 2015). 
The conflict ratio, the ratio of the conflict volume to the 
required space volume, is usually used as a  criterion of 
conflict severity (Akinci et al., 2002). Congestion is gener-
ally defined in collision studies as the number of entities 
within a certain range (Kim et al., 2016).

2.4. Research gaps
Both industry and academia have endeavored to integrate 
computer vision into construction safety compliance and 
hazard detection. Arrowsight Inc. (Europe Construction 
Tech Review, 2020) leverages machine learning (ML) and 
computer vision algorithms, in conjunction with Remote 
Video Auditing (RVA) services, to monitor and analyze risky 
behaviors, resulting in a  remarkable reduction of unsafe 
worker behavior from approximately 50% to below 5%. 
Similarly, Viso Suite™ (Viso.ai, 2024) underscores the adop-
tion of modern machine learning analysis to automate the 
detection of anomalous events, thereby improving safety 
measures on construction sites, including the identification 
of hazardous situations such as individuals in close prox-
imity to heavy construction machinery. However, these in-
dustry approaches primarily focus on identifying potential 
hazards and may not adequately assess and quantify dy-
namic risks.

From an academic standpoint, numerous tools and 
models have been proposed in previous studies to address 
collision issues on construction sites by aiding in the allo-
cation of site space for activities under specific conditions. 
However, commonly used simulation techniques still pres-
ent limitations, as it is impractical to pre-plan the move-
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ment paths of all individuals, materials, and machinery 
before construction commences (Kim et al., 2016). There-
fore, there is a need for a real-time dynamic early warning 
system. Previous studies have endeavored to develop dy-
namic safety assessment systems and proximity alert sys-
tems with the assistance of computer vision. However, the 
primary objectives of these studies were centered solely 
on workers and equipment, and the experimental results 
did not account for the distinctions among various en-
tity types (Hu et  al., 2020). Notably, existing discussions 
predominantly center on proximity and congestion risks 
(Zhang et al., 2020). 

Scant research has been conducted to address safety 
issues by considering the individual attributes of workers 
and mobile machinery at various moments. Existing stud-
ies primarily focus on the relationship between paired en-
tities (Zhang et  al., 2020), while little study has consid-
ered a  comprehensive impact of environmental factors 
and all surrounding entities on construction site collision 
risk analysis. Different from congestion, spatial conflict is 
characterized by the degree of spatial conflict between 
entities’ activities and it is more reflective of the interac-
tion between entities. Hitherto, the spatial conflict has not 
been concertized in safety-based proximity collision stud-
ies (Zhang et al., 2020), and dynamic workspaces have not 
yet been considered. Even though discussions have been 
found in identifying risks and then issuing warnings, little 
attempt has been made to explore the impact of risks on 
subsequent activities. 

This paper aims to propose an integrated vision-based 
dynamic collision risk assessment framework with the con-
sideration of the differences between workers and ma-
chines in terms of physical and work attributes and try 
to differentiate the assessment mechanisms. The concept 
of spatial conflict is introduced in adjacent collisions and 
environmental factors are included in the framework to 

achieve dynamic real-time collision risk assessment for 
multiple entity types with graded early warning.

3. Research methods
The research roadmap involves four major steps, as 
shown in Figure  1. First, data are collected via image, 
video, expert knowledge, and project schedule. Sec-
ond, a  comprehensive assessment model is established. 
This is followed by the development of the dynamic risk 
assessment framework. Last, an experimental study is con-
ducted to validate the integrated vision-based dynamic 
collision risk assessment framework. These steps are de-
tailed in the following sections.

For data collection, the computer vision data are col-
lected via images and videos. The video data were pro-
cessed in the form of video frames with continuous 
screenshots every 0.1 seconds for image processing as the 
base data for case validation. Expert knowledge was ob-
tained using a semi-structured questionnaire, which used 
an intensive sampling method for expert data collection. 
Based on previous studies (Chen et al., 2019; Guo et al., 
2018; Yu et al., 2017), we took 10 sample sizes. Ten ques-
tionnaires were distributed, and ten valid questionnaires 
were returned. The experts involved had an average of five 
years of experience in construction and 3 years of experi-
ence in building safety management. Around 80% of the 
respondents had experience in large construction projects. 
Experts need to determine the weights of the four factors 
in Figure 1 based on the hierarchical analysis (AHP), fol-
lowed by the delineation of the spatial conflict degree and 
the environmental impact index within the given interval. 
Of note, we only adopted the data (reliability coefficient 
greater than or equal to 0.7) that had satisfied consisten-
cy. The project schedule was derived from the construction 
site of a real construction project in Chongqing, China.

Figure 1. Research roadmap
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4. Comprehensive risk assessment model

Fuzzy Comprehensive Evaluation (FCE) is a method based 
on fuzzy mathematics that is capable of quantifying and 
analyzing data that are not easily defined precisely (Liu 
et al., 2018). The application of the FCE method to devel-
op risk assessment models enables quantitative analysis 
of fuzzy and uncertainty factors. By describing fuzzy and 
uncertain decision information, fuzzy sets are introduced. 
The fuzzy set is characterized by the membership function, 
which transforms qualitative evaluation into quantitative 
evaluation according to the fuzzy mathematical theory of 
membership degree (Holecek & Talašová, 2010). The com-
prehensive risk assessment model developed in this study 
involves three steps: (1) identify risk factors, (2) address 
risk factors, and (3) comprehensive evaluation.

4.1. Identify risk factors
The hazards associated with collision risks were first sum-
marized through a  literature review. Firstly, related litera-
ture was obtained from the Web of Science (WoS) Col-
lection by searching the keywords “construction safety”, 

“safety prediction”, and “safety factors” and then classified 
into the following four areas: worker-related, machine-re-
lated, environment-related, and management-related risks. 

Secondly, considering the scope of this study, the se-
lection of risk factors needs to meet the following require-
ments: (1) visual monitorability at the construction site; (2) 
whether to increase the possibility of an accident; (3) re-
lated to a collision accident. Table 1 shows the screening 
results for risk factors.

Finally, according to Table 1, based on the screening 
and summary analysis, four risk factors meet the afore-
mentioned three requirements: proximity, environmental 
impact index, congestion, and spatial conflict. The four se-
lected factors meet the requirements and have been veri-
fied to have significant impacts on safety management.

4.2. Address risk factors
The fuzzy processing of risk factors includes two steps: 
(1) define risk factors and select appropriate methods to 
quantify the factors; (2) grade the factors and generate 
fuzzy sets to serve as basic data for the construction of 
the membership function.

Table 1. Screening table for risk factors

Areas Risk factors
Visual monitorability 
at the construction 

site 

Whether to increase 
the possibility of an 

accident

Related to 
a collision 
accident

Worker-related Worker quality (work experience, safety awareness, etc.) 
(Nguyen et al., 2016; Sawicki & Szóstak, 2020)

Yes

Worker posture (Chen et al., 2019; Guo et al., 2018; Yu 
et al., 2017)

Yes Yes

Proximity to hazard sources (Hu et al., 2020; Son et al., 
2019; Zhang et al., 2017)

Yes Yes Yes

Working height (Hallowell et al., 2017; Nguyen et al., 
2016)

Yes Yes

Personal protective equipment (PPE) (Alruqi & Hallowell, 
2019; Fang et al., 2018)

Yes Yes

Improper technical operation (Poh et al., 2018) Yes
Machine-
related

Control of construction equipment and vehicles (Chen 
et al., 2020; Kanan et al., 2018; H. Kim et al., 2016)

Yes Yes

Condition of construction facilities (Zhu et al., 2016) Yes
Environment-
related

Congestion of the workspace (Chen et al., 2019; Gheisari 
& Esmaeili, 2019; Kim et al., 2016; Ning et al., 2018)

Yes Yes Yes

Construction environment (geohydrology, underground 
pipelines, etc.) (Esmaeili et al., 2015; Zhi-Qiang & Ya-mei, 
2016)

Yes Yes

Space conflict (Dashti et al., 2021; Zhang et al., 2015) Yes Yes Yes
Environmental impact index (Noise, dust, etc.) (Esmaeili 
et al., 2015; Zhi-Qiang & Ya-mei, 2016)

Yes
(source of noise)

Yes Yes

Construction site safety facilities layout (Nguyen et al., 
2016)

Yes Yes

Management-
related

The proportion of workers without safety training 
(Alizadeh et al., 2015; Sawicki & Szóstak, 2020)

Yes Yes

Management structure and staffing (Guo & Yiu, 2016; 
Salas & Hallowell, 2016)

Yes

Construction Technology (Sawicki & Szóstak, 2020; Zhi-
Qiang & Ya-mei, 2016)

Yes
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4.2.1. Define risk factors

(1) Proximity
Proximity embodies the distance relationship with the 
source of danger, which is defined as the smallest dis-
tance between machines or between machines and work-
ers (Kim et al., 2016). In this research, proximity is defined 
as the minimum distance between machines or between 
machines and people, represented by Mindi. Based on this, 
the diagram of proximity is shown in Figure 2a, where the 
proximity of the worker is ( )3 3 2 1d d d d< <  and the prox-
imity of machinery is ( )1 1 2d d d¢ ¢ ¢< . The video from the sur-
veillance camera will be captured. The camera’s frame rate 
will be 30 fps (i.e., frames per second) For real-time moni-
toring, the video from the surveillance camera will be cap-
tured. The camera’s frame rate will be 30 fps (i.e., frames 
per second), which means that 1  2  3  1 2     and, ,  ,d d d d d¢ ¢  are dy-
namically changing. The speed and direction of equipment 
can be reflected and calculated in terms of dynamically 
changing 1  2  3  1 2     and, ,  ,d d d d d¢ ¢ .

(2) Environmental impact index
Frequently, risk variables include the environmental impact 
index (Esmaeili et  al., 2015; Zhi-Qiang & Ya-mei, 2016). 
Among environmental impact indices, noise is not only 
as dangerous as any other hazardous conditions, but also 
more difficult to control (Lee et al., 2019). In addition, the 
impact of noise needs to be quantified. Moreover, adher-
ing to the previously mentioned criteria for the selection 
of risk factors in this study, it is imperative for these fac-
tors to be subject to visual monitoring at the construction 
site. Given that the source of noise can be visually tracked, 
this study exclusively considers noise as the designated 
environmental index. Subsequently, noise is posited as the 
solitary environmental impact index, serving to character-
ize the influence of environmental risk sources on accident 
occurrences in this study. It is assumed that construction 
machinery is the only source of noise, and the noise will 
decrease along a  straight line of divergence, regardless 
of the diffraction and reflection of noise. Therefore, the 
environmental impact index reflects the extent to which 
the noise hazard interferes with workers’ awareness of the 
risk, characterized by the superimposed effect of the noise 
value that the average noise value of the mobile machin-
ery decreases as the distance to the targeted entity (Lee 
et al., 2019).

For workers, the environmental impact index is the 
noise superimposed value of the average value of all me-
chanical noise according to the decreasing linear distance 
from the worker, denoted by ( )iSV dB . For machinery, it 
is the noise superimposed value of the average noise of 
all machinery (including research machinery) according to 
the decreasing distance from the targeted machinery, ex-
pressed by iSVdB¢  .

The environmental impact index of the targeted en-
tity can be obtained by Eqns (1)–(2) (Ning et al., 2018). In 
formula (1), SV(dB) is the environmental impact index of 
the entity understudy, and i is the number of noise sourc-
es, where i =1, 2, …, n; Lei (dB) is the noise value of noise 

source decreasing by the distance to the entity. In Eqn (2), 
Y(dB) is the attenuation value of noise, and di is the linear 
distance of the center of mass between the noise source 
and the targeted entity. As shown in Figure 2b, the envi-
ronmental impact index of workers is ( )10 20 30, ,SV dB dB dB   , 
and the environmental impact index of machine A  is 

( )21 31 1, ,SV dB dB dB¢ ¢ .

0.1
10

1

10log 10 ;i

n
Le

i

SV ´

=

= å 	 (1)

( )5.548ln 1.042.iY d= - 	 (2)

(3) Congestion
Since lifting, hoisting, and moving materials are common 
activities on construction sites, workers are at risk of be-
ing struck by these moving objects in a congested work 
environment (Gheisari & Esmaeili, 2019). Spatial conges-
tion has been defined in the literature (Kim et  al., 2016; 
Zhang et al., 2020), and this paper defines congestion as 
the number of entities (workers versus machinery) (Kim 
et al., 2016).

(4) Space conflict
Space conflict reflects whether the spatial requirements 
of workers and machinery can be met, and represents the 
severity of the spatial conflict. Workers need to work in 
an environment with no obstacles within an average dis-
tance of 3.5 m to ensure their work safely and efficient-
ly (Zhang et al., 2015). Hence, the space requirement of 
workers is defined as the physical space occupied by work-
ers themselves extending 3.5 m outwards, which includes 
the working space of the workers and also includes the 
buffer space to ensure the productivity and safety of the 
workers.

Referring to the calculation of mechanical hazardous 
space occupancy, the average boundary extension width 
of 9.6 m occupied by the dangerous space of the three-
common machinery (dump trucks, loaders, and excavators) 
is selected as the reference for the space occupation of 
construction machinery (Wang et al., 2019). Regarding the 
space conflict, Akinci et  al. (2002) used the ratio of the 
space conflict volume to the required space volume as 
the standard of conflict severity. To facilitate data acquisi-
tion by computer vision, this study defines the space con-
flict as the ratio of the conflicting space area divided by 
the required space area, that is C

i
R

S
C

S
= , whereby Ci rep-

resents the space conflict degree of a monitoring object, 
and SC indicates the conflict area between the monitoring 
object and the surrounding monitoring entities, SR repre-
sents the working space required by the monitored object 
itself. As shown in Figure 2c, the space conflict of worker 

W1 is 
1 1

5
C

W W
R

S
C

S
= , whereby 1W

RS  represents the space de-

mand of worker W1, and 5
CS  indicates space conflicts. Sim-

ilarly, the space conflict of construction machinery B is cal-

culated by: 
( )1 3 4

.C C C
B B

R

S S S
C

S

+ +
=
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4.2.2. Classify risk factors

(1) Proximity
The level of proximity is described as close, normal, and 
farther, corresponding to high, medium, and low risk. Kim 
et al. (2016) mentioned that the risk classification of the 
proximity between human beings and moving machinery 
was obtained. Since heavy machinery generally occupies 
a large area, based on the proximity of people and mobile 
machinery, consideration was given to adding the length 
of a GENLYON C500 dump truck (about 10 meters) as the 
basis for grading the proximity of mobile machinery, as 
shown in Table 2.

(2) Environmental impact index
The environmental impact index conveys the risk of noise 
from machinery, described as large, medium, and small, 
corresponding to high, medium, and low risk. Due to the 
scarcity of criteria for grading the environmental impact 

indices, a semi-structured questionnaire was used to gain 
knowledge, and the boundaries of the three levels of clas-
sification were determined, as presented in Table 2.

(3) Congestion
The level of congestion is described as scattered, normal, 
and dense, corresponding to high, medium, and low risk. 
according to Kim et al. (2016), the risk classification of the 
congestion among workers and moving machinery was 
obtained as shown in Table 2.

(4) Space conflict
The degree of space conflict reflects the ratio of space 
demand occupied, and the levels are expressed as severe, 
moderate, and mild, corresponding to high, medium, and 
low risk. Due to the lack of criteria for rating the severity of 
space conflict, a semi-structured questionnaire was used in 
this paper to gain knowledge, and three levels of division 
boundaries are obtained, as shown in Table 2.

Figure 2. Schematic definition of proximity, environmental impact index and congestion
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Table 2. Level of proximity, environmental impact index, congestion, space conflict

Risk factors Entity type
Risk level

Low Medium High

Proximity workers Farther (≥10.5 m) Normal (4~14 m) Close (0~6.5 m)
mobile machines Farther (≥20.5 m) Normal (10~27 m) Close (0~16.5 m)

Environmental impact index workers Small (<81 dB) Medium (78~99 dB) Large (>94d B)
mobile machines Small (<85 dB) Medium (82~107 dB) Large (>99 dB)

Congestion workers Scattered (0~4 entities) Normal (2~7 entities) Dense (>5 entities)
mobile machines Scattered (0~4 entities) Normal (2~7 entities) Dense (>5 entities)

Space conflict workers Mild (0~0.4) Moderate (0.31~0.74) Severe (≥0.57)
mobile machines Mild (0~0.35) Moderate (0.25~0.70) Severe (≥0.49)
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After the fuzzy expression of the risk factors, the factor 
set for fuzzy comprehensive evaluation can be expressed 
as U = (Proximity, Environmental Impact Index, Conges-
tion, Space Conflict), ( )1 2 3 4, , ,pU f f f f=  for the factor set 
for workers, and ( )1 2 3 4, , ,mU f f f f¢ ¢ ¢ ¢=  for the factor set of 
machinery. The weight set indicates the relative signifi-
cance of the four factors. Table 3 displays the weight ratio 
of the risk factors obtained from expert interview statistics.

The weight set for workers are 
( ) ( )

1 2 3 4
, , , 0.29, 0.15, 0.16, 0.40p f f f fW w w w w= = , 

( ) ( )
1 2 3 4
, , , 0.29, 0.20, 0.12, 0.39m f f f fW w w w w¢ ¢ ¢ ¢= =  

for machinery, and the evaluation set as 
( )High, Medium, LowV = , recorded as ( )1 2 3, ,V v v v= .

Table 3. Level of proximity, environmental impact index, conges-
tion, space conflict

Proximity Environmental  
Impact Index Congestion Space Conflict

The weight ratio of risk factors for workers
29% 15% 16% 40%
The weight ratio of risk factors for mobile machinery
29% 20% 12% 39%

4.3. Comprehensive evaluation
According to the classification description of risk factors 
and the results of obtaining expert knowledge in Sec-
tion 4.2.2., the membership function proposed by Mar-
dani et al. (2015) is performed in Python 3.7, as shown in 
Figures 3–6.

As such, the fuzzy relationship matrix R  (see Eqn (3)) 
from factor set U to comment set V is obtained:

( ) ( ) ( )
( )
( )
( )

( )
( )
( )

( )
( )
( )

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

4 1 4 2 4 3

,

f w f w f w
f w f w f w

R
f w f w f w
f w f w f w

é ù
ê ú
ê ú
ê ú
ê ú=
ê ú
ê ú
ê ú
ê úë û

	 (3)

whereby, ( )1  if w  represents the membership of the prox-
imity of the monitoring entity, and ( )2 if w  represents the 
membership of the congestion of the monitoring entity. 
The fuzzy comprehensive evaluation is obtained through 
the matrix synthesis operation:

,B W R= ´ .	 (4)

B  is a  fuzzy distribution, showing the membership of 
each risk level of a monitored entity, namely the feature 
vector of the fuzzy level. A processing method of magni-
fying the fuzzy number by a certain multiple is adopted 
to calculate the final evaluation base (Liu & Tian, 2019). 
This paper constructs three comprehensive risk levels 
( )High, Medium, and Low  and five Pre-Warning levels (I, 
II, III, IV, V). the median of Pre-Warning Level I, III, and V is 
selected. We used Eqn (5) to calculate the final risk value 
(V) using the fuzzy distribution method:

1 3 51 2 3median median median ,V V VV B B B= ´ + ´ + ´ 	 (5)

whereby V1 represents the risk range for Pre-Warning 
Level I, V3 denotes the risk range for Pre-Warning Level 
III, V5 indicates the risk range for Pre-Warning Level V, 

Figure 3. Membership function of proximity

Figure 4. Membership function of environmental impact index
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and V represents the ultimate risk value which is used as 
input to the hierarchical warning mechanism and vision 
expression.

5. Dynamic risk assessment framework
In this study, computer vision is used to solve the problem 
of dynamic collection and automated updating of safety 
information at construction sites. It is combined with the 
traditional dynamic risk analysis methods for risk model-
ing. The dynamic risk assessment framework includes four 
aspects: (1) define monitoring scope and objects; (2) select 
target detection algorithms; (3) data collection and pro-
cessing; and (4) visual warning layer. These four aspects 
are shown in Figure 7.

5.1. Define monitoring scope and objects
Machinery in working condition is usually surrounded by 
an area of activity where workers are exposed to the risk 
of collision, and the area is referred to as a hazardous area. 
Take 30m as the range of the hazardous area centered on 
mobile machinery in this paper (Wang et al., 2019).

The key monitoring objects are workers and moving 
machinery. Besides, materials are also considered, because 
they will occupy the construction site and affect the inter-
action between workers and the surrounding environment, 
but the stacking of materials is relatively static.

5.2. Select target detection algorithm
The computer vision technology is indeed a deep learning 
algorithm. Among the deep learning algorithms, R-CNN 
(Lou & Cui, 2007), Faster R-CNN (Sun et al., 2018), YOLO 

(Li et al., 2018), and SSD (Shu et al., 2019) are the most 
widely used in object detection.

All existing object detection algorithms can achieve dy-
namic monitoring, but due to different performances and 
different speeds of processing pictures, there is a huge dif-
ference in the time interval. The safety of workers on the 
construction site must consider the value of time, and the 
image processing speed is relatively high. In addition, the 
monitoring range is relatively large, and the probability of 
small targets is relatively high. Since YOLOv3 excels in de-
tection speed and small target capture, it was decided to 
use the YOLOv3 in object detection.

5.3. Data collection and processing
Training the target detection model requires a  large 
amount of image data, there are high requirements for 
hardware equipment, and ordinary laptops usually cannot 
complete high-quality model training. Therefore, an open 
source YOLOv3 model (Redmon & Farhadi, 2018) trained 
on the public COCO dataset (Veit et al., 2016) was used. 
Some materials for the test were collected using the MA-
VIC MINI drone, which is only 249 grams and with a max-
imum rotation angle of 83  degrees and 12  megapixels. 
It can realize GPS hovering stably, which is powerful and 
convenient. Drones have been used in the field of con-
struction for quality inspection, safety inspection, building 
inspection and measurement, progress monitoring, and 
on-site monitoring (Gheisari & Esmaeili, 2019). It is tech-
nically feasible to conduct safety monitoring on construc-
tion sites. In addition, mobile phones and cameras were 
also used to collect the data. In this experiment, the model 
configuration details are shown in Table 4.

Figure 5. Membership function of congestion

Figure 6. Membership function of space conflict
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Figure 7. Dynamic risk assessment framework based on computer vision
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The object detection algorithm was performed using 
YOLOv3. The recorded dataset was processed by this al-
gorithm. A  total of 32 videos (each video is around 40 
seconds) were acquired for training in this dataset. The 
frame rate of the camera used was 30 fps (i.e. frames per 
second). For the object detection algorithm, the extracted 
mAP is 91.3%. For the dataset, a  simple cross-validation 
method is used in this paper to classify the training and 
test datasets to avoid overfitting. The train_test_split func-
tion of sklearn was used to divide the dataset into two 
subsets: training and test dataset. The ratio is set to 7:3. 
The learning rate corresponding to a single batch_size is 
set and will increase linearly according to the batch_size 
and the number of Graphic Processing Unit.

The data processing layer include two modules. The 
visual extraction module is based on the open-source py-
thon library named ImageAI, MySQL Database and the YO-
LOv3 target detection model. It enables to identify and ob-
tain spatial information about the monitored objects, and 
the location information is the basis of safety data. Take 
the upper left corner of the image as the coordinate ori-
gin, adding to the right as the x axis, and adding down-
ward as the y axis. The position coordinates of each mon-
itoring object can be expressed as ( )min min max max, , ,x y x y , 
whereby ( )min min,x y  are the coordinates of the upper left 
corner of the monitoring object, ( )max max,x y  is the coor-
dinates of the lower right corner of the monitoring object. 
Meanwhile, the project schedule was imported into the 
MySQL database and manually matched to the construc-
tion sections that are currently at risk, the successor of the 
current construction activity will be affected. The collision 
risk assessment module uses the attributes and spatial in-
formation of the monitored object in the proposed fuzzy 
comprehensive risk assessment model. The module out-
puts the attributes of the monitored object, spatial infor-
mation, and the values of four risk factors, i.e., proximity, 
environmental impact index, congestion, and spatial con-
flict, and the comprehensive risk value.

5.4. Visual warning layer
The early warning module is important for implement-
ing risk mitigation measures after a  risk assessment and 
can be used as a basis for discovering potential hazards 
and guiding safety decision-making. In view of provid-
ing project managers with automated safety management 
tools for construction sites, the early warning mechanism 
in this paper is designed in the form of providing visual 
early warning information to rank risks in different col-
ors. In addition, the design of the early warning mecha-
nism can be determined according to the risk preference 
of the safety manager and the actual situation of the proj-
ect. Table 5 provides a visual representation of the hier-
archical alerting. The module is divided into five levels, 
namely I  (extremely dangerous), II (strongly dangerous), 
III (moderately dangerous), IV (relatively dangerous), and 
V (slightly dangerous), referring to the warning signals of 
red, orange, yellow, blue, and green, respectively.

6. Experimental study
To operationalize the framework, a prototype is developed 
and serves as the practical implementation of the frame-
work. The experimental study shows the feasibility of the 
developed prototype. The prototype in the experiment is 
carried out to (1) verify the usability of the selected target 
detection algorithm using data collected from real scenar-
ios, and (2) assess whether the design of the assessment 
model is reasonable and effective based on the results of 
the comprehensive risk assessment.

6.1. Experimental settings
This study collected data from the experiment at the con-
struction site of a construction project in Chongqing, Chi-
na. Data was collected using mobile phones and drones. 
The entire experiment was conducted under Windows 10. 
Anaconda was installed to create a  Python 3.7  environ-
ment, while TensorFlow-GPU1.15.0, keras2.3.1, CUDA10.0, 

Table 4. Model configuration details

Model Configuration Details

Running Environment TeslaGPU_P4_8G video memory single card_12 core CPU_40G memory
The version of the deep learning framework Paddle Paddle 1.7.1
Programming language version Python3.7
Deployment method Public Cloud API
Object detection YOLOv3

Table 5. Visualized warnings at different levels

Early warning level Risk value Early warning signal Severity

Ⅰ 8~10 Red Extremely Dangerous (ED)
Ⅱ 6~8 Orange Strongly Dangerous (SD)
Ⅲ 4~6 Yellow Moderately Dangerous (MD)
Ⅳ 2~4 Blue Relatively Dangerous (RD)
Ⅴ 0~2 Green Lightly Dangerous (LD)
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and cuDNN7.6 were installed to complete the configura-
tion of YOLOv3’s  operating environment. The algorithm 
was executed on a  laptop configured with Intel(R) Core 
(TM) i5-10210U CPU @ 1.60GHz 2.11GHz and NVIDIA Ge-
Force MX350. The specific experimental steps are as fol-
lows:

Step 1: Prepare the tools for picture and video data 
collection. There are four main requirements for the set-
tings of camera equipment: first, the placement of the 
camera is critical to ensure that the desired construction 
elements are captured. The camera should be placed in 
a location that provides an unobstructed view of the con-
struction site and the elements that need to be captured; 
Second, under the condition of satisfying the needs of ob-
taining required data, the camera settings should be ad-
justed to ensure that the captured images or videos are of 
high quality and that the desired construction elements are 
clearly visible; The third is to specify specifications for the 
camera equipment’s durability and accuracy, i.e., that the 
image or videos must be sufficiently clear and have a res-
olution that satisfies the minimal requirements for video 
recognition, and the equipment should also be durable, 
able to resist bad weather such as sunshine, heavy rain, 
frost and cold on the construction site; Fourth, the data 
captured by the cameras should be processed in a timely 
manner to ensure that the desired construction elements 
are extracted accurately. This includes using computer vi-
sion algorithms to identify and extract the relevant ele-
ments from the images or videos captured by the camera. 
In this paper, MAVIC MINI drones and smartphones were 
mainly used. The higher the pixel of the acquisition tool, 
the better the recognition result. The drone aerial camera 
used in this paper had 12 megapixels and the smartphone 
had 40 megapixels.

Step 2: Select the scene where workers and construc-
tion machinery work together as the monitoring object. 
The monitoring range was estimated with the construction 
machinery as the core, starting from the outer boundary 
in the overhead view of the farthest reachable operation 
mode of the construction machinery and extending out-
ward for 30 m, leaving clear markings at the boundary. The 
boundary was marked in the same way along the move-
ment path of the construction machinery. To cover the far-
thest boundary mark on the screen, when fixing the visual 
equipment. Defining the monitoring scope helps identify 
workers who may appear in the hazardous area, discover 
potential collision risks, and reduce accidents. Once the 
monitoring range has been determined, the height of the 
visual equipment can be essentially fixed. Finally, we can 
adjust the visual device to select a better viewing angle 
and monitor position.

Step 3: Calculate the ratio between the actual distance 
and the pixels according to the fixed visual equipment. 
A 1 m long ruler was used as a marker in the monitoring 
screen. The placement position must be aligned with one 
side of the monitoring screen. The actual distance repre-
sented by each pixel was calculated by conversion. This 

ratio needs to be transformed into the risk assessment 
model to ensure the accuracy of the calculation.

Step 4: The distance pixel ratio was adjusted according 
to the filming data, and the video and picture data of the 
construction site were processed with YOLOv3 to output 
detection results. Using the pymysql library, the construc-
tion schedule is imported into the database, and subse-
quent construction activities that may be affected were in-
ferred based on the risk of current construction activities. 
Collision risk was assessed only for workers and construc-
tion machinery, and visual warning signals were expressed 
in grades with colors and scores.

6.2. Experimental results
As part of the framework implementation, the prototype 
comprises the following components: a visual extraction 
module and a collision risk assessment module.

6.2.1. Visual extraction module

The performance of the visual processing module could 
affect the operation of the entire framework. As shown in 
Figure 8, scene 1a–1b is obtained by adjusting the param-
eter named minimum percentage probability of the target 
detection model from 25% to 40% for the same image. 
In scene 1b, the presence of machinery was not detect-
ed, and the safety level of workers working in the vicinity 
would be far lower than the actual situation.

Scene 1: The picture size is 1300 × 672 pixels, the 
range of picture capture is 37 m × 17 m, and each pixel is 
approximately 0.02 m. The experimental results are shown 
in Figure 9.

The visual extraction module classifies workers and 
construction machinery. In this paper, this module was 
simplified and the performance of the training set has not 
yet been evaluated. The validation of the vision module 
focused on the object detection performance of the new 
test data; the detection results of 600 images were ana-
lyzed by taking continuous screenshots of the videos col-
lected at the construction site every 0.1 s. The classifica-
tion accuracy almost reached 100%, with errors only show-
ing up when the view was heavily obscured or the image 
was too blurred. Therefore, the validation of vision systems 
primarily focused on object detection performance rather 
than classification.

Precision and recall are widely used metrics to test de-
tection performance. Precision is defined as the amount of 
true and positive detected objects (TP) divided by TP plus 
the number of false and positive detected objects (FP), re-
call is expressed as the sum of the TP divided by the TP 
and the number of false and negative objects (FN). Since 
high precision can guarantee monitoring performance 
while being less affected by low recall rate and the level 
of security of the monitored objects is related to the sur-
rounding entities, the object’s loss rate FN is a very impor-
tant indicator of the accuracy of the test data is 94.58% 
and the loss rate is 11.6%.



96 X. Gao et al. An integrated vision-based dynamic collision risk assessment framework of workers and mobile machinery ...

Figure 8. Experimental results of scene 1

Figure 9. Experimental results of scene 2 at the moment t1 – t4

a) b)

a)

b)

c)
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6.2.2. Collision risk assessment module

Figure 9 shows the experimental results at different mo-
ments in a certain scenario. In Scene 2, the proximity of 
worker 2 at moment t1 is 12.42 m, the environmental im-
pact index is 62.24 dB, the congestion is 2, the spatial con-
flict is 0.08, and the risk level is V. In the process of ap-
proaching the construction machinery, the proximity of 
worker 2 gradually decreases, the environmental impact 
index increases as the distance decreases, the degree of 
congestion changes as worker 3 enters the scene, the spa-
tial conflict gradually increases, and the risk level increases 
from V–IV–III. In addition, at moment t4, the proximity of 
Worker 2 was 6.84 m, the environmental impact index was 
64.13 dB, the degree of congestion was 3, the spatial con-
flict was 1.00, and the risk level was III.

Furthermore, the congestion of the loader at moment 
t2 is 2 and the spatial conflict is 0.16. At moment t4, due to 
more spatial conflicts with workers and the appearance of 
worker 3, the congestion becomes 3 and the spatial con-
flict turns to 0.23. When the index remains unchanged, the 
risk value of 4.28 changes to 4.68. Table 6 shows the spe-
cific security risk assessment data. Judging from the eval-
uation results, the fuzzy comprehensive evaluation model 
constructed in this paper can accurately assign security 
levels to monitoring entities.

Scene 2: The picture size is 1300 × 672 pixels, the 
range of picture capture is 37 m × 17 m, and each pixel is 
approximately 0.02 m. The experimental results are shown 
in Figure 9 and the monitoring data are shown in Table 6.

7. Discussion
The proposed dynamic collision risk assessment frame-
work in this paper considers the environmental factors and 
the interaction between multiple entities, introduces the 
concept of spatial conflict degree, and outputs four risk 
factors and comprehensive risk values, allowing for a nu-
anced understanding of collision threats.

In Scenes 1  and 2, the spatial interactions between 
construction machinery and nearby workers were demon-
strated, with proximity and congestion factors calculated 
respectively, followed by the output of corresponding risk 
values. The reliability of the risk assessment results de-
pends, on one hand, on the rationality of the membership 
functions constructed within the comprehensive risk as-
sessment model, and on the other hand, is closely tied to 
the performance of the object detection algorithm.

As previously noted, the comprehensive evaluation 
model is influenced by the design of membership func-
tions. In constructing these functions, expert questionnaires 
were employed to gather knowledge and simulate human 
reasoning processes, thereby introducing an inevitable de-
gree of subjectivity. For instance, in this study, a distance of 
less than 4 meters between a worker and moving machin-
ery is regarded as a definite high-risk zone due to noise 
exposure. However, some safety managers argue that this 
threshold should not fall below 5 meters. At present, there 
is no unified standard for threshold design or classifica-
tion of risk levels. As safety risk perceptions vary across 
construction sites, the anticipated levels of risk associat-
ed with monitored entities may differ. Consequently, risk 
management decisions largely depend on the judgment 
of safety managers. According to differing risk preferenc-
es, the internal parameters of the evaluation module must 
be adjusted to achieve the desired level of risk control.

The classification and monitoring accuracy within the 
vision module exceeds 95%, underscoring its high reliabil-
ity in detecting potential hazards. Furthermore, the object 
detection algorithm operates at a speed of approximately 
10 frames per second, proving the technology’s  feasibil-
ity for real-time safety monitoring. In actual construction 
settings, it is essential to schedule the entry of personnel, 
materials, and machinery in a logical order, while also op-
timizing site layouts and managing space effectively. These 
measures significantly enhance onsite safety management 
by reducing potential conflicts and facilitating more effi-
cient supervision.

Table 6. Monitoring data for scene 2

Moment Monitoring 
entity Spatial information Proximity 

(m)
Environmental Impact 

Index (dB) Congestion Space 
Conflict

Risk 
Value

Risk 
Level

t1 Worker 1 [661, 33, 697, 152] 1.44 67.80 2 1.00 6.44 Ⅱ

Worker 2 [1210, 193, 1260, 309] 12.42 62.24 2 0.08 1.52 Ⅴ

truck [305, 108, 589, 424] ∞ 76.50 2 0.12 4.28 Ⅲ

t2 Worker 1 [686, 5, 722, 128] 2.88 67.57 2 1.00 6.44 Ⅱ

Worker 2 [1082, 223, 1137, 337] 10.80 63.09 2 0.28 2.06 Ⅳ

truck [332, 57, 542, 357] ∞ 76.50 2 0.16 4.28 Ⅲ

t3 Worker 1 [627, 13, 664, 137] 1.94 68.39 3 1.00 6.84 Ⅱ

Worker 2 [984, 243, 1041, 355] 9.08 63.76 3 0.82 5.68 Ⅲ

Worker 3 [1215, 108, 1264, 205] 13.70 62.02 3 0.31 1.50 Ⅴ

truck [311, 36, 530, 375] ∞ 76.50 3 0.18 4.68 Ⅲ

t2 Worker 1 [552, 18, 590, 143] 1.08 68.63 3 1.00 6.84 Ⅱ

Worker 2 [840, 268, 902, 392] 6.84 64.13 3 1.00 5.68 Ⅲ

Worker 3 [1097, 139, 1147, 255] 11.98 62.25 3 0.42 3.63 Ⅳ

truck [174, 24, 498, 302] ∞ 76.50 3 0.23 4.68 Ⅲ
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This study establishes an integrated risk assessment 
mechanism that synthesizes proximity and congestion 
factors, digitizing the evaluation process within the model. 
The internal parameters can be readily modified to accom-
modate various construction scenarios and risk preferenc-
es, demonstrating the model’s adaptability and scalability. 
This renders it a valuable reference for more complex safe-
ty management tasks. The experimental risk assessment 
results align closely with expectations, thereby affirming 
the effectiveness of the proposed evaluation model. 

To compare this study with existing literature, the in-
tegration of spatial conflict degree in this study quanti-
fies both proximity and congestion, which marks a  sub-
stantial improvement over previous models that typically 
treat these factors independently. For instance, Teizer and 
Cheng (2015) proposed a proximity-based hazard indica-
tor focusing on near-miss incidents but did not consider 
spatial congestion as a quantifiable risk factor. The uni-
fied spatial risk quantification in this study stands out by 
blending these concepts into a single model that is both 
dynamic and sensitive to site variability.

In addition, this study goes beyond simple detection 
by integrating the results into a fuzzy logic-based evalua-
tion engine, yielding interpretable risk scores. This makes 
the proposed system not only real-time but also opera-
tionally actionable, addressing a gap noted by Gan et al. 
(2024), who pointed out that many models fail to connect 
detection outputs with strategic site safety controls.

The proposed model’s use of customizable member-
ship functions derived from expert questionnaires intro-
duces both a strength and a discussion point. While Kim 
et al. (2016) and Shin and Kim (2022) used fuzzy inference 
systems with fixed thresholds, they lacked adaptability. The 
proposed model’s capacity to reconfigure risk perception 
based on project-specific expert input enhances practical 
applicability, particularly in environments where safety cul-
ture and spatial norms differ. This adaptability is critical, as 
safety perception is not universal – what one site considers 
a safe distance may be unacceptable elsewhere.

Finally, while previous research like that by Zhang 
et al. (2025) addressed collision risks using spatial mod-
eling and trajectory prediction, their frameworks lacked 
the proposed framework’s degree of customization and 
interoperability. The proposed framework has the ability 
to adjust internal parameters based on different construc-
tion site profiles or safety management styles gives the 
framework superior transferability across contexts, a  fea-
ture rarely addressed in prior work.

8. Conclusions
The construction site environment is always noisy and 
crowded, and a  large number of workers are exposed to 
the risk of collision with machinery. To solve this prob-
lem and reduce the possibility of accidents, a  Fuzzy 
Comprehensive Evaluation (FCE) model based on com-
puter vision is proposed in this study. It identifies four im-
portant factors that affect worker safety, namely proxim-
ity, environmental impact index, congestion, and spatial 

conflict. The integrated vision-based dynamic collision risk 
assessment framework can dynamically monitor workers 
and machinery by computer vision to obtain spatial infor-
mation on monitored objects. Then, the collected spatial 
information was used as the basic data for safety risk as-
sessment. Next, a  fuzzy comprehensive evaluation model 
was utilized to integrate the four factors. Finally, we visual-
ized the evaluation results to assist construction site man-
agement and verified the technical feasibility and model 
validity by undertaking an experimental study.

The findings of this study contribute to the existing 
body of knowledge of computer vision by (1) establish-
ing a dynamic collision risk assessment framework based 
on the difference of entity attributes (workers and mobile 
machinery), which is scalable and modifiable; (2) proposing 
a spatial conflict and environmental impact index in colli-
sion studies and establishing a more comprehensive multi-
index risk assessment model. This model considers the in-
teraction between workers, machinery, and the environ-
ment; (3) assesses the influence between entities (workers 
and machinery) from distance interaction to area interac-
tion; and (4) extrapolates the subsequent construction ac-
tivities that may be affected based on the risk of current 
construction activities. Also, this study extends fuzzy logic 
principles to a dynamic construction environment by in-
corporating spatial conflict degrees and real-time object 
detection metrics, broadening the scope of fuzzy evalua-
tion methodologies. In addition, this study employs expert 
elicitation for membership function design and combin-
ing it with advanced computer vision techniques bridges 
gaps between theoretical safety assessment models and 
practical construction-site realities. By demonstrating how 
dynamic interactions among workers, materials, and ma-
chinery can be systematically quantified and monitored, 
the study offers a new lens for understanding and man-
aging collision risks, thus enriching theoretical discussions 
on proactive accident prevention.

Regulatory bodies and industry associations should 
work toward establishing standard safe-distance thresh-
olds and risk-level classifications that reflect local contexts, 
thereby minimizing ambiguities in on-site safety manage-
ment. At the same time, governments and professional 
organizations can encourage the adoption of risk assess-
ment methods by offering research funding, tax incen-
tives, or technology transfer programs, thereby foster-
ing a broader culture of safety within the construction in-
dustry. Industry-wide certification and specialized training 
programs would further ensure that safety managers are 
well-versed in fuzzy logic principles and vision-based de-
tection systems, empowering them to interpret risk analy-
ses accurately and adjust parameters as needed.

For future studies, with the continuous optimization 
of deep learning algorithms, target detection can achieve 
faster speed, higher precision, and accuracy. With the im-
provement of the data set, future studies can focus on 
obtaining more details on-site management, such as (1) 
identifying the worker’s  identity information; (2) tracking 
the worker’s work path; and (3) identifying different types 
of vehicles as well as transport material information.
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