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Abstract. Several degradation factors significantly impact the durability of water pipes in urban areas. However, limited re-
search has comprehensively prioritized these factors to support data-driven maintenance and renewal decisions. Addressing
this gap, this study identifies and ranks the failure factors affecting water pipeline infrastructure. A survey of 125 Egyptian wa-
ter industry experts was conducted, and the collected data were analyzed using partial least squares-structural equation mod-
eling as the decision-making framework. By incorporating insights from previous research and expert opinions, the research
developed a robust failure decision-making model that provided significant insights into the primary factors contributing to
water pipeline failures. Model analysis revealed that the “operational factor”, with an impact value of 0.543, was the most criti-
cal group of factors affecting pipeline failure. Following closely with an impact value of 0.480, was the “static factor”. Natural
disasters (0.373), climate and weather conditions (0.325), and soil conditions (0.300) also contributed considerably. Following
closely were “dynamic loads” (0.276), "aging and environmental factors” (0.250), and "third-party factors” (0.200), which had
the least impact on the failure of the pipeline. This study has developed a novel failure decision-making model by synthesiz-
ing insights from previous studies, expert opinions, and empirical data on water pipeline failure.
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1. Introduction

Water distribution systems (WDSs) are common features
of urban and developed societies. These systems influence
ecosystems, societies, and their economies. Nonetheless,
the dependability and capacity of WDS are premised on
the hydraulic conditions within the pipe networks (Hamed
et al., 2022; Khadr et al., 2022). For context, the cumula-
tive costs arising from water pipe failures in North Amer-
ica were estimated to be over CAD 6 billion in the past
decade, according to Fares and Zayed (2010). WDSs are
complex and failures may occur from known and unknown
causes (Wolfe, 1946). To mitigate the challenges of replac-
ing and maintaining water pipelines, it is essential to have

access to comprehensive and standardized data from wa-
ter utilities, which in most cases, are unavailable (Kleiner
& Rajani, 1999).

Among the several factors responsible for water pipe-
line failures, pipe materials play a significant role. Kleiner
and Rajani (2001) identified split bells and circumferential
failures as critical flaws associated with pipes made from
grey cast iron (GCl). Additionally, corrosion is another type
of degradation in water pipes (Wilson et al., 2015; Shi, 2018;
Jun et al., 2020). Hu and Hubble (2007) and Rajeev et al.
(2014) categorized failure factors into external (e.g., frost
and traffic-induced loads) and internal factors (e.g., internal
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pressures and chemical corrosion), which can lead to longi-
tudinal failures and pinhole and blowout leaks, respectively.

Safe drinking water, which is essential for ensuring
public health and safety, is contingent on the integrity
of water pipelines. Therefore, a cost-effective method to
guarantee public health and safety is to anticipate fail-
ures by estimating structural deterioration (Almheiri et al.,
2020) and thus minimize damage to ancillary facilities like
roads and ground stability (Qi et al., 2018; Abdel-Mottaleb
et al,, 2019). Recent studies by Elshaboury and Marzouk
(2020, 2022), Kerwin et al. (2023), Lu et al. (2023), Shaban
et al. (2023), Taiwo et al. (2023), Latifi et al. (2024), and Mo-
hammed Abdelkader et al. (2025) highlighted the role of
advanced modeling techniques, including machine learn-
ing and hybrid models, in improving the accuracy of pipe
failure predictions and risk assessments. These studies of-
fer valuable insights into how new methodologies can en-
hance the predictive capabilities of deterioration models,
thereby contributing to more sustainable infrastructure
management practices.

Sustainability, comprising environmental, social, and
good governance, is recognized as a crucial driver for
economic prosperity (Lichtenthaler, 2023). Many countries
struggle to achieve sustainable economic development,
as highlighted by Chen et al. (2025). However, develop-
ing countries pose unique challenges to the sustainability
of water projects. These countries’ rapid economic devel-
opment has increased the water industry’s importance in
providing necessities, especially in urban areas (Kineber
et al.,, 2022a). The success of the field indicators is rated by
cost, quality, and construction project time (Yaseen et al.,
2020). Meanwhile, enhancing resource efficiency is a key
aspect of environmental innovation, contributing to sus-
tainable project success (Ul-Durar et al., 2023).

Several emerging countries have reshaped their wa-
ter industries to advance their economies. The literature
suggests developing nations are upgrading their finan-
cial infrastructure (Fang et al., 2020). Many developing na-
tions face enormous challenges with their water sector,
which may include failure to achieve water distribution
targets, inadequate planning with its attendant cost over-
runs, and poor sustainability policies. Therefore, the con-
struction sector in most developing countries significantly
lags its more developed counterpart in terms of meet-
ing the needs of clients, governments, and sustainability
(Jekale, 2004).

In the Middle East, despite the tremendous human re-
sources available in Egypt, its market is characterized as
high-risk due to several challenges not limited to poor
wages, high unemployment, insecurity, and infrastructur-
al deficit (Barakat et al., 2016). Despite efforts to mod-
ernize its water infrastructure, WDSs are constantly under
immense pressure due to aging pipelines, poor mainte-
nance strategies, lack of robust predictive models for fail-
ure assessment and a rapidly growing urbanization drive
to cater for its exploding population. This has led to fre-

quent pipe failures and high maintenance costs (Elsha-
boury et al.,, 2020).

To develop efficient and sustainable WDSs to meet the
needs of a developing nation like Egypt, it is essential to
investigate the crucial factors responsible for the deterio-
ration and failure of water pipelines. Available literature
data suggests that most of the research was devoted to
exploring and analyzing pipeline conditions in developed
nations. Limited studies have explored the needs pecu-
liar to developing nations, such as Egypt. Accordingly, the
present study will address this gap by developing a novel
failure decision-making model based on the partial least
squares-structural equation modeling (PLS-SEM) tech-
nique to identify and categorize the critical factors respon-
sible for water pipeline failure in Egypt. The study lever-
aged the insights from 125 water professionals and incor-
porated recent advancements in predictive modeling. The
outcomes of this research offer valuable insights into asset
management strategies in other developing regions facing
similar challenges. Ultimately, by identifying critical factors
and leveraging data-driven methodologies, this study has
contributed to enhancing the sustainability and resilience
of urban water distribution systems.

The remaining sections of this paper are structured
thus: a concise literature review summary is presented in
Section 2, which highlights some previous studies on re-
lated topics. The research methodology is addressed in
Section 3, while study findings are aggregated in Section
4. A comprehensive analysis and discussion of the research
findings are provided in Sections 5, 6 and 7. The final sec-
tion (Section 8) summarizes the key findings, provides
a critical evaluation of the study’s limitations, and propos-
es suggestions for future research directions.

2. Pipe failure: assessment of critical factors

Cast iron (Cl) was widely applied in WDSs prior to the de-
velopment of ductile iron (DI) materials (Mora-Rodriguez
et al, 2014). A study in Kelowna City, British Columbia,
Canada, revealed that during both winter and summer; ap-
proximately 9% of metallic water mains in the WDSs were
at high risk (Kabir et al., 2015a). The choice of material
significantly impacts failure rates (Kutytowska & Hotlos,
2014). Additional research into how the materials used in
water distribution pipelines affect their failure rate is pro-
vided by Pietrucha-Urbanik (2015). The results of this in-
vestigation showed that iron and polyvinyl chloride (PVC)
pipes were equally prone to failure, each contributing to
33% of total pipeline failures. In contrast, Cl pipes account-
ed for 60% of failures in primary water pipes attributed to
corrosion. On the other hand, the most prominent failure
type associated with polyethylene (PE) and reinforced con-
crete pipes were joint failures, as reported by Pratt et al.
(2011). Further analysis revealed that pipe materials influ-
enced failure rates. Hence, Cl had the highest failure rate,
while asbestos cement (AC), galvanized steel, and poly-
meric pipes (PVC and PE) recorded lower failure rate.



In addition to pipe materials, pipe diameter affects wa-
ter mains failure (Zamenian et al., 2017). Smaller diameter
pipes were found to exhibit higher failure rates (Shirzad
et al, 2014; Jun et al.,, 2020; Robles-Velasco et al., 2020).
Other studies concluded that a 10% reduction in pipe
thickness resulted in a 50% reduction in the pipe’s useful
life (Tavakoli et al., 2020). Thus, the relationship between
wall thickness, diameter, and material integrity is critical in
understanding the overall failure rate of pipelines. Water
distribution pipeline failure is also linked to traffic loads
and the pressure of the surrounding soil (Moerman et al.,
2016; Aschilean et al., 2018; Garmabaki et al., 2019). Heavy
vehicle traffic can have a negative effect on water pipelines
less than 300 mm in diameter, as observed by Aschilean
et al. (2018).

Some studies correlated water pipe lengths with their
failure rates (Kleiner et al.,, 2007; Zangenehmadar & Mosel-
hi, 2016a; Almheiri et al., 2020). Longer pipes were report-
edly prone to failure than shorter ones (Yamijala et al,
2009). Furthermore, soil pressure on buried pipes and
depth of burials played significant roles in pipeline failure,
as highlighted by Jun et al. (2020). However, Wilson et al.
(2015) asserted that the type of pipe material appeared to
influence this behavior as Cl pipes were prone to failure
at a shallower depth. In addition, pipe age played a sig-
nificant role in the failure of pipelines (Kleiner & Rajani,
2001; Almheiri et al., 2020). On this, corrosion was the pri-
mary cause of age-related pipe failure in metallic pipes
(Boxall et al., 2007). These findings emphasize the need
for a multi-dimensional risk assessment approach, where
factors like material, length, age, and depth interact to in-
fluence failure rates.

Natural events, such as floods, earthquakes, and heavy
rainfall may contribute to accelerating the deterioration
of pipelines in WDSs (Gassman et al., 2017). Environmen-
tal disasters, therefore, play a significant role in accelerat-
ing pipe failure, emphasizing the need for resilience plan-
ning in water distribution infrastructure. Similarly, climate
conditions, such as minimal antecedent precipitation index
and net evaporation (Gould et al., 2011), affect water pipe-
line failure. Other studies have identified Cl corrosion, pre-
cipitation shortfall, wind speed, and frost depth as factors
responsible for pipeline failure in WDSs (Pratt et al.,, 2011;
Claudio et al,, 2014).

Fluctuation in air temperature accelerated the failure
of asbestos cement water pipes submerged in clayey soil
(Chaudry, 2009). The influence of soil type on water pipe
failure has also been investigated. Higher failure rates
were recorded in acidic and peaty soils compared with
other soil types, according to Farewell et al. (2018). Dry
soil conditions and soil movement in summer increase wa-
ter pipe failure rates (Arsénio et al.,, 2015; Qu et al,, 2019;
Barton et al., 2020). Wols et al. (2014) indicated that se-
vere droughts and high temperatures could accelerate the
degradation of water pipes. A corroborating study found
that carbon steel, DI, and PE pipes experienced higher fail-
ure rates in summer than in cooler months (Chowdhury
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& Rajput, 2016). However, DI, PVC, and GCI pipes were
more likely to fail at lower temperatures while the failure
of PE water pipes showed no correlation with tempera-
ture (Wols et al., 2019). Relating to corrosion, soil resis-
tivity played a crucial role in Cl pipe failure according to
Kabir et al. (2015b). Therefore, soil conditions and weath-
er conditions are factors that greatly impact the failure of
pipelines in WDS.

Water quality, construction methodologies, and main-
tenance schedules played critical roles in the failure of wa-
ter mains (Hu & Hubble, 2007). Other crucial failure fac-
tors in the literature included groundwater, water quality,
oxygen concentration, pipe placement and materials, and
stray electrical currents, as reported by Zangenehmadar
and Moselhi (2016b). According to Robles-Velasco et al.
(2020), the primary factors influencing pipeline failures, in
order of significance, are pipe material, length, age, and
past breaks. On the other hand, Almheiri et al. (2020) iden-
tified the critical factors affecting pipeline failures as elec-
trical resistivity, installation depth, pipe length, landslides,
improper operations, earthquakes, and flow velocity. Jun
et al. (2020) emphasized that water alkalinity, pipe age, re-
sidual chlorine, pipe thickness, water pH, pipe depth, pipe
diameter, and water temperature significantly impacted
the structural stability of steel pipes. These diverse con-
tributing factors highlighted the multifaceted nature of
water pipe failures and underscored the need for com-
prehensive, multi-variable approaches in failure prediction
models.

3. Originality of the study

This study enhances infrastructure management by identi-
fying key factors contributing to pipeline failures, helping
stakeholders reduce costs, improve quality, and enhance
sustainability. After reviewing the existing literature sever-
al critical research gaps emerge, highlighting the need for
a more targeted investigation into water pipeline failures.
While prior research has examined pipeline failures in de-
veloped nations, a critical gap remains in Egypt's construc-
tion sector, where projects often face budget overruns, de-
lays, and sustainability challenges (Kineber et al., 2022a).
As a result, a significant knowledge gap exists in identify-
ing the factors contributing to water pipeline infrastructure
failures, particularly in the context of Egypt's construction
sector. The significance of this study is underscored by
the fact that existing models may not apply to the Egyp-
tian context since they were premised on the data de-
rived from a different environmental perspective, material,
and operational conditions. As such, applying such mod-
els may lead to inaccurate assessments and inadequate
maintenance strategies. Furthermore, the significance of
these related factors within their respective clusters has
not been thoroughly investigated. A more detailed ex-
amination of how these failure causes interact would al-
low for a deeper understanding of their combined effects
and help prioritize mitigation strategies. To bridge these
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knowledge gaps, this research seeks to develop a data-
driven decision-making model that systematically identi-
fies and quantifies the primary factors contributing to wa-
ter pipeline failures in the Egyptian context. The primary
objectives of this research are to:

1. Identify and classify the critical factors contributing
to water pipeline failures within the Egyptian con-
struction sector.

2. Analyze the interrelationships among these factors
and determine their relative significance within their
respective clusters.

3. Develop a predictive model using PLS-SEM to eval-
uate the impact of these factors on pipeline dete-
rioration.

4. Provide actionable insights for infrastructure manag-
ers, policymakers, and industry stakeholders to op-
timize asset management and maintenance strate-
gies.

This study employs a rigorous mathematical meth-
odological approach, specifically utilizing PLS-SEM. Un-
like traditional statistical techniques, which may struggle
to capture the complex interdependencies between mul-
tiple variables, PLS-SEM enables the modeling of the rela-
tionship between the primary factors contributing to water
pipeline failures. By offering a region-specific, data-driven
approach, this research contributes to bridging the gap
between global deterioration models and localized infra-
structure challenges. Consequently, the study introduces
a cost-efficient, environmentally sustainable approach to
pipeline failure assessment, applying PLS-SEM for the first
time to evaluate failure factors in water distribution sys-
tems. This data-driven methodology optimizes mainte-
nance strategies and infrastructure investments.

Though conducted in Egypt, the findings apply to oth-
er developing nations with similar challenges, offering
a scalable framework for improving pipeline sustainabil-
ity. By integrating predictive modeling with failure risk as-
sessment, this research demonstrates how advanced tech-
niques can drive sustainable infrastructure development in
resource-constrained environments. With the availability
of data, mathematical modeling can be used to support
global sustainability initiatives to mitigate the risk associ-
ated with water pipeline failure (Farrokhirad & Gheitarani,
2024). PLS-SEM is an important tool that can explain the
complex relationship between the various factors respon-
sible for pipeline failure. Furthermore, populating PLS-SEM
with data on pipe degradation, environmental constraints,
operational controls, and maintenance schedules could re-
sult in models for facilitating resource optimization and
scheduling proactive maintenance practices. Overall, such
models could effectively ensure the longevity of pipelines
in WDSs.

Additionally, the current study identifies some of the
challenges unique to pipeline failure in developing coun-
tries like Egypt, where rapid urbanization, aging infrastruc-
ture, and economic constraints exert considerable pres-
sure on existing WDS networks. Existing literature on wa-
ter pipeline failures is biased towards developed nations

(Kineber et al., 2022a; Mohandes et al., 2022), highlight-
ing the need for studies that address the distinct needs
and circumstances of developing countries. Therefore, this
study fills such a gap by leveraging PLS-SEM to offer prac-
tical recommendations for improving pipeline infrastruc-
ture and resilience. Ultimately, this study contributes to
informed policymaking and infrastructure planning by as-
sessing the economic, environmental, and operational im-
plications of pipeline failures. Its findings are expected to
guide engineers and policymakers in formulating and im-
plementing evidence-based solutions for sustaining WDS
in developing nations.

4. Research design and methodology

This study aims to investigate and determine the most crit-
ical factors responsible for water pipeline failures in a de-
veloping nation with an emphasis on Egypt. To achieve
this aim, the research deployed a three-pronged quantita-
tive approach: (1) reviewing the existing literature to sum-
marize and determine the key factors influencing pipeline
failure (Inputs), (2) designing and administering a ques-
tionnaire to gather empirical data, and (3) applying SEM
to explore the relationships between the identified fac-
tors (Outputs). An overview of the methodology is pre-
sented in Figure 1. PLS-SEM was chosen primarily due to
its robustness in handling complex relationships between
multiple variables in infrastructure-related studies and its
ability to handle small to medium-sized (Hair et al., 2011).
This method is well-suited for exploring causal relation-
ships and assessing the relative influence of various fac-
tors affecting pipeline failure. Compared to conventional
regression analysis, PLS-SEM offers a distinct advantage
suitable for an adaptable and precise modeling framework.
The methodology design is appropriate and justified, giv-
en the study’s focus on assessing the current state of wa-
ter pipeline deterioration and providing insights for im-
mediate action. Adapting the research of Almheiri et al.

Figure 1. Structure of the methodology



(2023), a comprehensive summary of the causes of wa-
ter pipeline failure is presented in Table 1. A questionnaire
was administered to 125 water pipeline stakeholders, in-
cluding experts and professionals involved in the plan-
ning, designing, and management of water pipeline in-
frastructure. Each respondent rated the severity of pipe-
line deterioration factors using a Likert scale. To gather
informed perspectives, this study employed stratified sam-
pling across Egypt's water pipe sectors, targeting profes-
sionals with decision-making roles in water projects. Using
the primary informant method, participants were selected
based on: (1) their expertise in water piping projects, (2)
current hands-on experience, and (3) significant project in-
volvement. These criteria followed established guidelines

Table 1. Key factors contributing to water pipeline failure

A. F. Kineber et al. Developing a data-driven failure decision-making framework for sustainable urban water management projects

in construction research (Ranesh, 2014; Kim et al., 2016;
Hu et al., 2016). Results of the systematic review were uti-
lized to construct research hypotheses that were validated
using PLS-SEM as a confirmatory analysis tool (Shields &
Tajalli, 2006).

4.1. Structural equation modeling (SEM)

SEM was selected as the modeling technique in this re-
search based on its successful deployment in many build-
ing-based research studies (Durdyev et al., 2018; Yin et al,,
2022). The interrelationships between the different failure
factors were analyzed using the PLS model, which included
both reflective and formative factors. PLS-SEM has proven
effective in establishing relationships between factors that

Main Factor | Code Sub-Factor Main Factor Code Sub-Factor
S1 Pipe material ND1 | Seismic activity
S2 Pipe lining/coating ND2 | Extreme rainfall events
S3 Pipe installation Natural ND3 |[Floods
S4 Dissimilar metals disasters ND4 |Landslides
Static S5 Type of joint ND5 |Earthquakes
S6 Pipe diameter ND6 |[Environmental disturbance
S7 Pipe length o1 Pipe age
S8 Depth of installation 02 Wall thickness
S9 Pipe location Aging and 03 Groundwater
S10 Pipe manufacture environmental 04 Stray electrical currents
D1 Internal and external corrosion 05 Time
Dynamic D2 Prior pipe breaks 06 Ferrous corrosivity scale
loads D3 Frost loading OP1 | Water pressure
D4 Traffic loads OP2 | Operation and maintenance practices
SC1 Soil type OP3 [Leakage
SC2 Backfill material OP4 | Water pH
SC3 Soil pH OP5 | Inadequate design
SC4 Soil movement OP6 |Improper installation
Soil SC5 Soil corrosivity OP7 | Water hammer
conditions SC6 Soil moisture . OP8 | Manufacturing defects
- - Operational -
SC7 Soil weights OP9 | Operating pressure
SC8 Soil moisture deficit OP10 |Replacement rate
SC9 Electrical resistivity OP11 | Cathodic protection
SC10 | Soluble salts (NaCl) OP12 | Water flow velocity
Cw1 Temperature/season variations OP13 | Water quality
CW2 | Days air frost OP14 | Oxygen content
CW3 | Soil moisture deficit OP15 | Water alkalinity and conductivity
CW4 [ Mean daily temperature OP16 | Residual chlorine
CWS5 | Frost heave T Regulations and policies
Climate CW6 | water temperature T2 Urbanization
3vr:ither CW7 | Rainfall Third-party T3 Restrictions
conditions CW8 | Ground temperature T4 Social needs
CW9 | Net evaporation T5 Cost
CW10 [Minimum antecedent precipitation index
CW11 [Wind gust
CW12 |[Rain deficit
CW13 | Frost depth
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were previously considered independent or unconnected
(Sarhadi & Rad, 2020). In the PLS-SEM analysis, the fol-
lowing critical evaluations were performed: assessment of
common method variance, validation of the measurement
model, and evaluation of the structural model, based on
the recommendations by Kineber et al. (2023).

4.2. Common method bias (CMB)

To identify potential errors and biases in the data-gath-
ering process, a common method bias (CMB) assessment
was performed. This is crucial for identifying common
method variance (CMV)-related problems and interpret-
ing error investigation results accurately (Kineber et al.,
2022b). Consistent with Harman'’s approach (Oke et al,
2022), a systematic and in-depth analysis of a single fac-
tor was performed. CMB was mitigated through the inclu-
sion of multiple data sources and ensuring anonymity in
survey responses, thus enhancing data quality and reduc-
ing the risk of biased reporting.

4.3. Measurement model

As noted by Al-Ashmori et al. (2020), the measurement
model specifies the explicit relationships between observ-
able variables (factors) and their corresponding latent con-
structs. Validation could be defined as reviewing and as-
sessing the measurement model (Zaid Alkilani, 2018). The
PLS method was used to assess the reliability and validity
of the measurement (factor) sets. To examine the reflective
first-order model, estimates of indicator reliability, com-
posite reliability (CR), average variance extracted (AVE),
and discriminant validity were obtained (Leguina, 2015).
A robust assessment of construct reliability was achieved
through the use of Cronbach’s alpha, composite reliabil-
ity, and AVE. Cronbach’s alpha (o) was used to evaluate
the consistency of a construct (Aibinu & Al-Lawati, 2010).
Al-Otaibi and Kineber (2023) defined Cronbach'’s alpha (o)
thus:
N—c

TN T M

with N being the total count of factors and ¢ representing
the mean correlation between the factors.

To ensure greater reliability and validity in the context
of our study, composite reliability was equally performed
in addition to Cronbach'’s alpha, as it accounted for factor
loadings. The following expression describes the compos-
ite reliability (p.) (Wong, 2013):

(=)
Pc= > I (2)
(SA) +Svar(e)

where p. represents the composite reliability score, A; de-
notes the loading of each item on the latent construct, and
var(si):1—)\i2 describes the variance in the loadings. To
ensure reliability, p. > 0.7 is required for any research, al-
though a slightly lower threshold of 0.6 is acceptable for
exploratory studies.

Additionally, the AVE was used to test the latent vari-
ables’ convergent validity (Henseler et al.,, 2016). As de-
scribed in Egn (3), the AVE is a popular metric for proving
that parts of a model converge.

W

SN +Xvar(e,)
where A, represents its component loading on a latent con-
struct and var(s_[) =1- )\1-2. The AVE, calculated through the

variance explained by each item, was found to meet the
established threshold for convergent validity.

AVE 3)

4.4. Structural model

The structural model employed in this study facilitated the
simultaneous comparison and assessment of multiple in-
terrelated pipeline failure factors. Furthermore, it was used
to build the framework for testing the reliability of wa-
ter pipelines (Amos et al., 2021). This research employed
a structural model that was primarily based on two key
approaches:
= Collinearity analysis focuses on the extent to which
one or more variables (factors) can explain or pre-
dict the effect of another (Hair et al., 2011). To pre-
vent inaccurate results due to collinearity, the vari-
ance inflation factor (VIF) was determined. A VIF <
5 indicated acceptable model stability (Aibinu & Al-
Lawati, 2010).
= The bootstrapping analysis was employed to es-
timate the variance of data points within sub-sam-
ples rather than relying on parametric assumptions.
Bootstrapping is a resampling method frequent-
ly used in sampling research, whereby a subset of
a larger variable dataset is used to determine statis-
tical properties, such as structure or regression co-
efficients. Therefore, in this study, the bootstrapping
technique was applied with 5,000 resamples to en-
sure the robustness of the estimated coefficients. In
this instance, the internal relationship between £, y,
and €1 in the structural model can be expressed as
a linear equation (Zaid Alkilani, 2018):

|J.=B£+ €1, (4)

where B is the path coefficient, while €1 signifies the
residual variance. This implies that the magnitude of
coefficients obtained from multiple regression analy-
sis is directly comparable to those from standardized
regression analysis.

5. Results

5.1. Common method bias

A single-factor analysis was conducted to assess the var-
iability explained by the proposed model, utilizing the
standard method outlined by Strandholm et al. (2004) as
a basis for comparison. Notably, Oke et al. (2022) found
that the typical technique bias did not significantly affect



results when the combined variance of variables was less
than 50%. Given that the common method bias was be-
low 50%, the study’s conclusions remain unaffected. The
results show that the first set of components explains
28.65% of the overall variance (Durdyev et al., 2018).

5.2. Measurement model

5.2.1. Convergent validity

The measurement model assesses the coherence and con-
sistency of multiple factors that collectively capture a sin-
gle underlying concept. The evaluation of construct valid-
ity is conducted concerning the measurement model. The
suggested constructs’ convergent validity can be assessed
in PLS-SEM using the following tests (Aibinu & Al-Lawati,

Table 2. Validity and reliability analyses
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2010): “composite reliability scores (p.), Cronbach’s alpha
(o), and average variance extracted (AVE)". According to
Table 2, the composite reliability scores for all factors ex-
ceeded the minimum acceptable level of 0.60, confirming
their reliability (Amos et al., 2021). The results presented in
Table 2 indicate that all factors exhibit adequate reliability,
as evidenced by composite reliability scores surpassing the
recommended threshold of 0.60. The AVE was also utilized
to evaluate the construct variables’ convergence validity.
If the AVE is greater than 0.5, the measurement variables
capture at least 50% of the variance (Amos et al., 2021;
Tangi et al., 2021). As can be seen in Table 2, the AVE es-
timates in this study are more than 50% across the board.
The measurement model is proven to have converged and
be internally stable by these findings. This also ensures

Main Cronbach’s Composite Main Cronbach’s Composite
factor Factors alpha reliability AVE factor Factors alpha reliability AVE
S1 ND1
S2 ND2
S3 ND3
Natural 0.74 0.84 0.58
S4 disasters ND4
X S5 ND5
Static 0.7 0.78 0.55
S6 ND6
S7 O1
S8 02
S9 i o3
Aging and 0.86 0.82 0.63
S10 environmental 04
D1 o5
i D2 06
Dynamic 0.75 0.87 0.65
loads D3 OP1
D4 OP2
SC1 OP3
SC2 OP4
SC3 OP5
SC4 OP6
i SC5 OP7
soil 0.79 0.76 0.54
conditions SC6 oP8
Operational 0.745 0.83 0.64
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that the measurement components used to evaluate each
construct measure that construct and not another in the
research model. Although Wong (2013) recommends aim-
ing for a score of 0.70 for external load, a value of 0.50 or
higher is also acceptable if they are justified by analysis.
Table 2 and Figure 2 display the data collected from the
first model’s external loads.

5.2.2. Discriminant validity

Assessing discriminant validity has become a crucial as-
pect of SEM research (Shah & Goldstein, 2006). This as-
sessment verifies the empirical uniqueness of the construct
under investigation, ensuring it is distinct from other re-
lated concepts (Shook et al., 2004). To evaluate discrimi-
nant validity, this research employs the following method-
ologies: Fornell-Larcker criteria, Hetrotrait-Monotrait cri-
terion ratio (HTMT), and cross-loadings. Table 3 presents
data that validates the discriminant validity of factor con-
structions using the Fornell and Larcker method. Specifi-
cally, the square root of the AVE exceeds the correlations
between the construct and its indicators/variables, as rec-
ommended by Durdyev et al. (2018).

The HTMT criterion ratio offers an alternative means of
assessing discriminant validity in variance-based SEM. By
estimating the correlation between two constructs, assum-
ing measurement accuracy, the HTMT method provides
a correlation between constructs. Following the recom-
mendation in the research of Tenenhaus (2008), this study
employed HTMT to evaluate discriminant validity. Scores
between 0.85 and 0.90 indicate a distinct difference be-
tween constructs, whereas values less than 0.85 or greater
than 0.90 imply dissimilarity or similarity, respectively. The
results, presented in Table 4, confirm that the examined
components exhibit sufficient discriminant validity.

5.3. Structural model

The occurrence of unexpected correlations among meas-
urements of formative measurement models is a common
phenomenon, while the factors in this study are conceptu-
alized as formative. The results indicate that all VIF values
are below the recommended threshold of 3.5. To evalu-
ate the statistical significance of the model’s hypotheses,
the researchers have utilized the bootstrapping technique
(Das et al., 2021; Mohandes et al., 2022). Connection co-

Figure 2. The PLS model



Table 3. Discriminant validity analysis
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.| Dynamic Soil Climate and Natural Aging and . .
Construct Static loads | conditions wea.ther disasters | environmental Operational | Third-party
conditions

Static 0.665

Dynamic loads 0.383 0.789

Soil conditions 0.275 0.254 0.76

Climate and weather conditions | 0.344 0.515 0.226 0.677

Natural disasters 0.375 0.401 0.169 0.604 0.635

Aging and environmental 0.339 0.165 0.191 0.202 0.192 0.538

Operational 0.145 0.262 0.077 0.217 0.337 0.071 0.814

Third-party 0.292 0.245 0.137 0.292 0.736 0.156 0.371 0.835
Note: for clarity, the bold digits in the text represent the square root of the average values.
Table 4. Discriminant validity (HTMT)

Constructs Crgs:sv;ty Ev;l}:;:st;on F:r;cat;cem d’\ilsa;stjtrearls Operational | Static | Third-party \;v;r:zmcéf

Creativity phase

Evaluation phase 0.339

Function phase 0.247 0.288

Natural disasters 0.301 0.84 0.291

Operational 0.321 0.844 0.203 0.786

Static 0.617 0.303 0.253 0.3 0.301

Third-party 0.271 0.301 0.105 0.279 0.383 0.193

Workshop dynamics 0.23 0.284 0.164 0.337 0.726 0.224 0.421

efficients represent the magnitude of influence between
paths (Adabre et al., 2021). Standard errors of path coef-
ficients were estimated using bootstrapping in SmartPLS
3.2.7 based on the confirmatory factor analysis. Therefore,
5000 subsamples corroborate a proposition by Henseler
et al. (2016). The PLS model's single structural equation
(Egn (1)) captures the internal relationships among the
constructs. This study investigated the significance of the
path coefficients for the endogenous construct, utilizing
standardized p-values (Wong et al., 2020). Figure 3 pre-
sents these findings, including the results of the bootstrap-
ping analysis. It is speculated that several factors can be
attributed to the sum of these thoughts. Figure 3 shows
that there are eight first-order subscales for the failure
factors, namely static, dynamic loads, natural disasters, cli-
mate and weather, soil conditions, aging and environmen-
tal, operational, and system integration. These subscales
demonstrate a significant path coefficient B for third-par-
ty involvement.

6. Discussion

The quality of infrastructure projects, especially water pro-
jects, in Egypt has been plagued with issues and para-
doxes, as it has been in many other developing countries.
This flags the need for principles to identify and explore
the failure of water projects. All eight failure factors’ com-

ponents significantly impact the implementation of water
projects, as shown by the presented model. The next sec-
tions show how the suggested model can be used to elim-
inate each of these variables.

The PLS-SEM analysis indicates that “operational” fac-
tors are the most significant contributors (coefficient of
0.543) to the failure of water pipelines. Pipeline failure or
deterioration may result when actual demand outstrips
planned demand at the various nodes (Bouchart & Goul-
ter, 1991). Other sub-factors related to “operational” fac-
tors include poor connection, technical incompetence,
and installation of substandard pipes. When these factors
are triggered, leaks may occur that can have a direct im-
pact on water loss and water quality (Pietrucha-Urbanik,
2015; Yazdekhasti et al., 2017). Studies have shown that the
number of connections in a WDS is inversely proportional
to the rate of water loss (Alkasseh et al., 2013).

6.1. Static

The influence of “static” factors is quite significant and is
ranked the second most influential group of factors on
pipeline failure having an external coefficient of 0.480. Re-
lating to “static factors” are pipe material, joint type, instal-
lation depth, and pipe locations, which greatly influence
pipeline failure (Pietrucha-Urbanik, 2015). When pipelines
in WDS fail, leakages may occur while water quality dete-
riorates (Pietrucha-Urbanik, 2015; Yazdekhasti et al., 2017).
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Figure 3. Path analysis

However, studies have shown that the rate of water loss
does not directly correlate with the number of connec-
tions in a WDS (Alkasseh et al., 2013). Additionally, studies
have established variability in the behavior of pipe mate-
rials under different atmospheric and geographical condi-
tions. Therefore, it is important to investigate the response
of each material type to the diverse conditions (Almhei-
ri et al.,, 2023). Except for air-conditioning pipes, research
indicates that lower average air temperatures are associ-
ated with higher failure rates in water pipes (Wilson et al.,
2015, 2017).

6.2. Natural disasters

Factors categorized as “third-party” have a significant con-
tribution to the failure of pipeline. With a significant coef-
ficient of 0.373, this group of factors is ranked third on the
scale of severity of failure factors. Barton et al. (2020) iden-
tify some of the factors contributing to iron pipe failures
including air frost duration, pipe diameter, temperature,
and soil moisture. Moreover, the failure of water pipes can
be influenced by a range of other factors, such as oxygen
levels, groundwater, manufacturing processes, water qual-
ity, pipe location, and electrical currents (Zangenehma-
dar & Moselhi, 2016b; El-Abbasy et al., 2019). Research
by Almheiri et al. (2023) establishes a strong relationship
between corrosion-based water pipe failures and various
dynamic factors, such as precipitation levels, and ground
temperature. To better understand the dynamics of water
pipe degradation, the current study discretizes failure eval-
uation with each discrete representing one month.

6.3. Climate and weather conditions,
soil conditions and others

The fourth, fifth, and sixth causative factors are related
to “climate and weather conditions”, “soil condition”, and
“aging and environmental” with an external coefficient of
0.325, 0.3, and 0.25, respectively. Rowe (2005) emphasiz-
es the importance of accounting for “climate and weather
conditions” when designing, maintaining, and operating
pipelines in WDSs. Stress can be induced in pipes due to
simultaneous expansion and contraction when tempera-
tures vary widely. Therefore, such stress buildup can even-
tually lead to pipe cracks or leaks (De Villiers, 2015). Addi-
tionally, soils have varied responses to moisture and tem-
perature fluctuations leading to different expansion and
contraction rates. These soil movements can exert signifi-
cant forces on buried pipes, leading to shifts, misalign-
ment, or even damage to the pipes.

6.4. Dynamic loads

The seventh factor is related to "dynamic loads” with an
external coefficient of 0.276. Dynamic loads refer to forces
and stresses that are not constant but change over time
(Harris, 1958). These loads can result from various sources
that affect pipelines like water hammer. A water hammer is
a sudden increase in pressure within a pipeline caused by
an abrupt stop or change in water flow direction. A water
hammer can stress pipe walls and joints significantly, po-
tentially leading to leaks or even pipe ruptures (Ghidaoui
et al., 2005). To mitigate water hammer, engineers use



various techniques, such as installing surge tanks, pres-
sure relief valves, or water hammer arrestors (Choon et al,,
2012). On the other hand, pipelines buried beneath roads
or near heavy traffic areas can experience dynamic loads
from passing vehicles (Wang et al., 2019). These loads can
lead to soil settlement and compaction, affecting the pipe-
line's integrity.

6.5. Third-party

The least severe impact on pipeline failures is attributed
to “third-party” factors, which exhibit an external path co-
efficient of 0.20. These “third-party” factors include social
needs, excavations, urbanization, regulations, cost, and
other restrictions, which can affect the integrity of pipe-
lines (Garmabaki et al., 2019). Therefore, pipeline manage-
ment requires a holistic approach that will factor in the
influences of this group of factors. Successful manage-
ment requires technical expertise in pipeline engineering
and effective communication and collaboration with stake-
holders, including government agencies, communities, and
third-party organizations.

7. Implications

7.1. Managerial implications

The findings of this study have highlighted the impor-
tance of categorizing pipeline failure factors to establish
a benchmark framework for successfully implementing wa-
ter projects, especially in developing countries. The exist-
ing environmental and sustainable performance frame-
work, established in 2011 post-Arab spring (Aboelmaged,
2018), can be updated with a more modern framework.
For Egypt to achieve economic sustainability, water pro-
jects must be efficiently implemented (Laukkanen & Tura,
2020). The findings of the current research can be adopt-
ed to achieve Egypt's economic development strategy,
which prioritizes the establishment of a sustainable, sta-
ble, and competitive economy among the world's top 30
(Daoud et al., 2018). Although the methodology utilized in
this study focuses on Egypt, it can nevertheless be repli-
cated in other developing nations, particularly those with
comparable infrastructure development strategies, to fa-
cilitate the implementation of water projects (Aghimien
et al, 2018). Developing nations face unique challenges
in addressing environmental concerns due to substantial
financial burdens (Pham et al., 2020). The model present-
ed here has the potential to support these nations in in-
corporating sustainability into WDS construction project
design to promote environmental responsibility (Zainul-
Abidin & Pasquire, 2003; Abidin & Pasquire, 2007). This
study makes significant contributions and has far-reaching
implications for the construction sector, some of which are
discussed below:
= It provides a database of the critical elements and
factors contributing to water pipeline infrastructure
failure, which can aid owners, consultants, and con-
tractors in evaluating water projects.
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= The scientific evidence presented here could serve as
a roadmap for Egypt and other developing nations
to implement water infrastructure projects.

= Developed countries (Australia, United Kingdom,
Hong Kong, and the United States) and other coun-
tries (Saudi Arabia, Malaysia, and China) have been
the main research focus into various critical factors
influencing water pipeline infrastructure failure. As
a result, there is a dearth of studies on the imple-
mentation of water projects in a developing country
and no research exists on the critical factors influenc-
ing water pipeline infrastructure failure in the Egyp-
tian infrastructure sector. This study explains why
Egyptian water projects can now be linked to the
country’s infrastructure. The reliability of local wa-
ter projects can thus be improved, and the knowl-
edge gap can be filled by discussing the use of in-
frastructure.

= This research provides a useful tool that can aid de-
cision-makers in the objective creation of water proj-
ects. This research is the first to propose using PLS-
SEM to predict the likelihood of success or failure in
the Egyptian water pipeline infrastructure. Therefore,
this strategy can potentially revolutionize water proj-
ects, especially in underdeveloped nations. Although
this study focused on Egypt, the anticipated para-
digm shift is expected to have similar implications
for other developing nations, presenting comparable
challenges and constraints.

= This research provides valuable insights that can
contribute to the improvement and expansion of
Egypt's water infrastructure. Our research explains
why it is important to allocate resources to water
projects the right way and cut costs where they are
not needed. As a result, the project’s cost, timeline,
and effectiveness can be centered on thanks to the
design and implementation of the planned methods.
Improving a project’s sustainability greatly benefits
society over time.

= A rule of thumb or standard has been established
because of this study that can be used to lessen is-
sues arising over a project’s implementation. Expen-
ditures, project completion, and hazy requirements
were all factors. The findings of this study offer
valuable insights for business owners and manag-
ers, enabling them to develop a comprehensive un-
derstanding of the proposed model and its practi-
cal applications. This knowledge can inform strategic
decision-making and ultimately enhance the pros-
pects of successful project outcomes.

7.2. Theoretical implications

Recent trends highlight the growing popularity of envi-
ronmentally friendly business models (Broccardo & Zicari,
2020) though this concept is not completely new (Baldas-
sarre et al., 2020). The model proposed in this study high-
lights and ranks the severity of the critical factors influ-
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encing the failure of water pipeline infrastructure. In the
Egyptian context, previous studies have not examined the
critical factors influencing water pipeline infrastructure fail-
ure. Therefore, the model developed here can be deployed
to overcome the present obstacles militating against the
effective implementation of water projects in Egypt. To
begin with, the critical factors influencing water pipeline
infrastructure failure are experimentally identified in this
study to aid in implementing water projects in the con-
struction business. Researchers can pivot on this study
to learn more about the critical factors influencing water
pipeline infrastructure failure in developing countries. The
theoretical components of this research provide a founda-
tional mathematical framework for understanding the criti-
cal factors influencing water pipeline infrastructure failure,
with significant implications for Egypt and other develop-
ing nations. Using a novel PLS-SEM methodology, this re-
search identifies and ranks eight key factors influencing
water pipeline infrastructure failure in Egypt. The approach
utilized in this study will equip policymakers with a valu-
able tool for effective decision-making and implementa-
tion in water pipeline works.

8. Conclusions

Rapid urbanization, occasioned by a growing population,
has exerted significant pressure on WDS, making pipeline
management more complex and challenging. To identify
and analyze the critical factors contributing to the degra-
dation of water distribution pipelines in Egypt, this study
developed a novel failure decision-making model based
on the PLS-SEM technique. The study leveraged previous
research and insights from 125 water professionals, incor-
porating recent advancements in predictive modeling. Re-
sults indicated that "operational” factors were the most
significant contributors to pipeline degradation, providing
valuable direction for future infrastructure management
strategies.

The implications of this study extend beyond aca-
demia. The identified factors and the developed model
offer a practical framework for decision-makers in urban
water management, particularly in prioritizing mainte-
nance and resource allocation. This model has the poten-
tial to enhance water asset management practices in Egypt
and other developing countries facing similar challenges
of urbanization, aging infrastructure, and limited resourc-
es. It can support optimized maintenance schedules, ex-
tend infrastructure lifespan, and reduce costs related to
unplanned failures.

While this research provided key insights, it also pres-
ents opportunities for future studies. Several relevant fac-
tors — such as pipe lifetime, pipe flow volume, number of
junctions and connections, and surface cover conditions —
could not be included in the current model due to data
limitations. Future research should incorporate these vari-
ables to develop a more comprehensive failure analysis.
Additionally, assessing the impact of climate change and

extreme weather events, disaggregating responses from
various stakeholder groups, and utilizing a larger sample
size could further enhance model robustness and appli-
cability.
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