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1. Introduction
Concrete is the most widely used construction material in 
the world (Wang et al., 2024a) due to its durability, cost-
effectiveness, and versatility (Arora et al., 2019; Ren et al., 
2019; Cao et al., 2019; Graybeal, 2007). Among the various 
performance indicators of concrete, compressive strength 
is one of the most fundamental metrics (Kaboosi et  al., 
2020; Poorarbabi et al., 2020). It is directly related to the 
safety and quality of construction projects and serves as 
a critical parameter for the lifecycle assessment of build-
ings (Asteris et al., 2021a). Concrete is composed of vari-
ous components, including cementitious materials, aggre-
gates, and admixtures (Yang et al., 2012). These compo-
nents are randomly distributed within the concrete matrix, 
which results in varying strength grades. In many construc-
tion sites worldwide, concrete strength and construction 
quality deeply depend on mix designs informed by past 
experience. Furthermore, compressive strength testing of 
concrete is typically performed by construction person-
nel, and this process can be influenced by subjective judg-

ments and operational methods. Environmental variations 
also exacerbate potential errors. Such complexities pres-
ent significant challenges to the accuracy of concrete com-
pressive strength measurements (Feng & Li, 2016; Feng 
et al., 2016).

The most direct method for obtaining concrete 
strength is through physical testing, which is both accu-
rate and reliable (Zhou & Zhang, 2011). However, this ap-
proach has certain limitations, such as the need to prepare 
a large number of cubic or cylindrical specimens and its in-
ability to cover all curing ages. Concrete strength data ex-
hibit significant uncertainty, posing multidimensional risks 
to construction projects. Studies have shown that system-
atic bias in strength assessment can markedly reduce the 
safety margin of structures under extreme loading condi-
tions (Akalin et al., 2010). From a quality‑control perspec-
tive, construction disputes involving concrete are often at-
tributed to inadequate management of measurement un-
certainty, particularly when early‑age strength test results 
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exceed the dispersion limits recommended by internation-
al standards (Yudhistira et al., 2024). Field evidence further 
confirms a significant positive correlation between fluctua-
tions in strength data and life‑cycle maintenance costs of 
structures (Soilan et al., 2022). Moreover, the fixed‑toler-
ance approach adopted in current standards has been re-
peatedly criticized for its high risk of misjudgment (Chen 
et al., 2023). Consequently, empirical regression methods 
are often introduced to predict the compressive strength 
of concrete at various curing ages based on compressive 
strength tests. Nevertheless, concrete strength exhibits 
significant variability and strong nonlinearity (Zain & Abd, 
2009; Bharatkumar et al., 2001), which make it challenging 
to derive precise regression expressions. Additionally, nu-
merical simulation serves as another means of estimating 
concrete strength (Wang et al., 2024b). However, similar 
to the issues mentioned earlier, the randomness and non-
linear characteristics of strength make it difficult for this 
method to deliver optimal predictive results.

The causes of uncertainty in concrete strength can 
be attributed to three main factors: (1) uncertainty aris-
ing from nonlinearity; (2) the complexity of causal rela-
tionships, which are challenging to express using modern 
mathematical constitutive relations; and (3) scientific prob-
lems with unclear causality. In recent years, with the rap-
id development of artificial intelligence technologies, ma-
chine learning-based predictions of concrete compressive 
strength have become a growing trend (Najafabadi et al., 
2015) and have been widely applied in civil engineering. As 
shown in Table 1, machine learning algorithms, particularly 
Support Vector Machines (SVM), Genetic Algorithms (GA), 
and Artificial Neural Networks (ANN), can capture com-
plex nonlinear relationships from large datasets, which en-
able more accurate predictions. For example, some schol-
ars (Erdal et al., 2018) predicted the compressive strength 
of vacuum-treated concrete using artificial neural networks 
and multivariate regression techniques. Meanwhile, they 
compared the performance of single and multivariate re-
gression models. One other research (Lorenzi et al., 2017) 
demonstrated that ANN-based predictions could achieve 
accurate compressive strength estimates at relatively low 
computational costs. There is a study (Li et al., 2024) that 
proposed an SVM-based model for predicting concrete 
compressive strength, which achieved satisfactory results 
by considering multiple factors such as material compo-
sition and construction processes. Similarly, other schol-
ars (Nguyen & Phan, 2024) utilized deep learning models 
for concrete strength prediction, which introduced Convo-
lutional Neural Networks (CNN) for feature self-learning, 
thereby improving prediction accuracy.

In addition to predictive models, researchers have 
explored the application of uncertainty analysis and ad-
justment methods in concrete strength prediction. For 
instance, a  report (Zheng et  al., 2023) that proposed 
a Bayesian network combined with Monte Carlo simula-
tion for uncertainty analysis in concrete strength, which ef-
fectively quantified experimental data uncertainty and pro-
vided reasonable adjustments to enhance reliability and 
accuracy. Some pundits (Kaboosi et al., 2020) integrated 
Grey Relational Analysis with machine learning to devel-
op a novel concrete strength evaluation model. This ap-
proach improved prediction accuracy through a robust ad-
justment mechanism, even in cases of incomplete or miss-
ing data. Figure 1 (Al-Mughanam et al., 2020; Nazari, 2013; 
Gao, 1997; Asteris et al., 2021b; Moodi et al., 2018; Ji et al., 
2006) summarizes the features used in predictive mod-
els from various studies. Most existing concrete strength 
prediction models are based on material characteristics, 
such as cement, water, coarse/fine aggregates, and admix-
tures, with limited incorporation of curing age as a feature. 
However, in practical engineering, concrete strength pre-
diction faces numerous challenges, including data diversi-
ty, complexity, and uncertainty (Alwash et al., 2016). Con-
crete strength data often contain noise, missing values, 
and measurement errors, which pose challenges to model 
generalization and prediction accuracy. Additionally, cur-
rent machine learning methods generally rely on large 
amounts of training data, which impose higher require-
ments for data collection and processing (Yu et al., 2021).  

Table 1. Applications of machine learning techniques in concrete studies

Author Akalin et al. (2010) Yuan et al. (2014) K. Rashid and T. Rashid (2017) Wu et al. (2024) Mozumder et al. (2017)

Model 
type

A statistical model of 
second-order polynomials

Genetic algorithm Fuzzy logic (FL) Artificial neural 
network (ANN)

Support vector 
machines (SVM)

Figure 1. Features used in each model (Al-Mughanam et al., 2020; 
Nazari, 2013; Gao, 1997; Asteris et al., 2021b; Moodi et al., 2018; 

Ji et al., 2006)
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Therefore, developing a  robust and efficient concrete 
strength evaluation and adjustment model that integrates 
machine learning techniques with uncertainty analysis in 
highly uncertain environments has become a critical direc-
tion for current research.

In this study, 1,090 concrete compressive strength da-
tasets were collected from actual construction projects, 
which covered various curing ages and strength grades. 
These datasets were used to establish an evaluation and 
adjustment model for construction quality data uncertain-
ty. The study employed two primary modules: data fit-
ting and data prediction, to adjust and cleanse deviations 
caused by environmental factors or human operations, 
thereby improving the reliability and rationality of con-
struction quality data. Firstly, concrete data with a curing 
age of 28 days and different strength grades were select-
ed to explore the mathematical model describing the rela-
tionship between strength and grade. Outliers and deviat-
ing points were cleansed and adjusted. Next, the influence 
of different curing ages on construction quality data was 
analyzed. Although certain rationality and patterns were 
observed, the data exhibited some degree of dispersion 
and significant fluctuations, including a few outliers. Differ-
ences in construction conditions across different locations, 
and the inclusion of fibers or expansive agents to enhance 
crack resistance in certain areas, were found to significant-
ly promote the early strength development of concrete. 
Finally, a detailed analysis of construction quality data un-
certainty at the same construction location was conduct-
ed. This accurately illustrated the strength development 
patterns across various curing ages, which ensured overall 
project quality and safety. This method provides a scien-
tific basis for construction decision-making.

2. Project background and data  
processing methods

2.1. Project background
Sichuan Provincial Building Industry Park Project official-
ly commenced construction on March 21, 2022, in Tianfu 
New Area, Sichuan. This project focuses on research and 
incubation surrounding urban renewal and smart build-
ing technologies. It aims to become the first demonstra-
tion project in Southwest China to integrate three building 
standards: Green Building Three-Star, Nearly Zero Energy 
Building, and Zero Carbon Building.

As a  key municipal project, the total investment 
amounts to 309 million RMB. The site spans 45 acres, with 
a total floor area of approximately 63,000 square meters, 
including 53,000 square meters of above-ground struc-
tures and nearly 10,000 square meters underground. The 
floor area ratio is 1.81, and the building density reaches 
40%. As shown in Figure 2, the project comprises six in-
dividual buildings. The basement includes two entrances 
and one exit, providing 258 parking spaces for motor ve-
hicles. Building 1 serves as the primary office building, fea-
turing conference halls and exhibition spaces. Building 2 is 
an all-prefabricated staff canteen with two private dining 
rooms accommodating 34 people and a  general dining 
area for over 400 people. Building 3  is a  staff dormitory 
with 223 rooms, housing up to 446 people, with standard 
rooms measuring 25.56 square meters. Building 4 houses 
the testing center laboratories, with a first-floor standard 
height of 7.2 meters (with partial areas reaching 16.2 me-
ters), second- and third-floor heights of 4.8 meters, and 
a fourth-floor height of 4.0 meters.

Figure 2. Overall schematic of the project
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This project focuses on urban renewal, retrofitting ex-
isting buildings, zero-carbon and low-carbon architecture, 
smart buildings, intelligent construction, and building safe-
ty and earthquake resistance. It aims to undertake a se-
ries of technical breakthroughs and project incubations. 
By integrating green, healthy, and intelligent building prin-
ciples, the project achieves an overall prefabrication rate 
exceeding 36%, which strived to become a nationally ex-
emplary green and smart industrial park.

2.2. Evaluation and adjustment model
The study collected a  total of 1,090 concrete cube com-
pressive strength test reports for analysis. These reports 
were provided by Sichuan Jianyan Shanjian Technolo-
gy Development Co., Ltd., with oversight from Sichuan 
Construction Engineering Supervision Co., Ltd. The com-
pressive strength tests for the concrete cube specimens 
were conducted in accordance with the national standard 
“Standard for Test Methods of Mechanical Properties of Con‑
crete” (GB/T 50081-2019) (Ministry of Housing and Urban-
Rural Development of the PRC, 2019). Although all 1090 
observations used in this study were obtained from the 
Sichuan Construction Industrial Park project which ensure 
high data quality and internal consistency. However, this 
data set inevitably limits the external validity of the model 
results. To address this limitation, a detailed comparison of 
data from different construction locations within the pro-
ject was conducted, preliminarily verifying the model’s ap-
plicability across multiple construction environments. Fu-
ture research will focus on expanding the data sources to 
encompass projects from various regions and types, there-
by further validating and refining the model’s generality 
and enhancing its reliability in broader engineering ap-
plications.

During the compressive strength testing of concrete 
specimens, if the difference between the maximum or min-
imum value and the median value exceeds 15%, the me-
dian value is adopted. If both the maximum and mini-
mum values deviate from the median by more than 15%, 
the test data for that batch is considered invalid. Howev-
er, due to various influencing factors such as transporta-
tion, pouring, and curing conditions, significant variations 
may still occur in concrete of the same strength even after 
the same curing duration. Moreover, differences in test-
ing methods, worker proficiency, and instrument calibra-
tion can also impact the test results (Hariri-Ardebili et al., 
2024). Consequently, using a fixed deviation between the 
maximum or minimum value and the median as a criteri-
on for data validity does not fully reflect real-world con-
struction scenarios. This approach may erroneously classify 
valid data as invalid or vice versa. To accurately assess the 
compressive strength of concrete specimens, it is essen-
tial to establish a new strength adjustment method. This 
method should dynamically determine the acceptable de-
viation range of concrete strength based on existing test 
data rather than relying on fixed differences between the 
maximum, minimum, and median values. This approach 

will help identify outlier data, correct deviations, and con-
struct a dynamic model for predicting future compressive 
strength at different curing ages.

Based on the provided compressive strength testing 
database, the data is categorized into two types: one con-
sists of test results for specimens of different strength 
grades at a curing age of 28 days, and the other includes 
results for specimens of the same strength grade across 
different curing ages. To further refine the analysis of spec-
imens of the same strength grade at varying curing ages, 
testing data from the same construction section was se-
lected to evaluate the accuracy of model.

The specific steps for establishing the evaluation and 
adjustment model for construction quality data uncertain-
ty are as follows.

The arithmetic mean of n measurements in Group j  is 
defined as the reference strength and calculated by Eqn (1):
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where avj denotes the mean of measured strength in 
Group j, ai denotes the measured strength of the i‑th 
specimen, and n is the number of specimens.

The maximum and minimum allowable error margins 
within the group which reflects data dispersion, are then 
calculated by Eqns (2) and (3):

2

1

( )
n

i vj

Mj

a a
v

n

-

=
å

;	 (2)

2 2( ) ( )
2

a ab b ab
mj

a a a a
v

- + -
= ,	 (3)

where vMj and vmj represent the maximum and minimum 
allowable error margins for Group j, and aab is the mean of 
the two most similar measurements (aa and ab).

This dynamic approach replaces the traditional fixed 
15% threshold. For example, vMj  = 4.0  corresponds to 
a fluctuation range of ±2.0 MPa.

Using the historical variances from the first j Groups, 
the allowable error margins for the next group is predict-
ed by Eqns (4) and (5):
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where MjV ′  and mjV ′
 
are the predicted maximum and 

minimum allowable error margins based on the previous 
j Groups.

Finally, an iterative “predict-measure-feedback” loop is 
implemented to update the mean and variances by Eqns 
(6), (7), and (8):
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where Avj , VMj, Vmj corresponds to avj, vMj, vmj, and repre-
sent the adjusted mean, maximum, and minimum allow-
able error margins for Group j. ia′ , aa′ , ba′ , aba′  corresponds 
to ai, aa, ab, aab, and represent the adjusted measurements.

2.3. Construction quality data  
adjustment method
As shown in Table  2: (a) When the actual strength falls 
within the minimum allowable error range, it is considered 
a  valid measurement and retained. (b) When the actual 
strength exceeds the maximum allowable error range, it is 
deemed invalid and removed from the dataset. (c) If the 
actual measurement lies outside the minimum allowable 
error range but remains within the maximum allowable 
error range, it requires adjustment. The definitions of the 
different ranges are determined by Eqns (9), (10), and (11).

As shown in Eqn (12), the adjustment method employs 
a weighted approach, combining predicted strength with 
measured strength. The weight for the predicted strength 
is set to 1, while the weight for the measured strength is 

calculated based on its distance from the boundary of the 
minimum allowable error margins. This ensures that the 
date adjustment is more accurate and reliable:
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where Va denotes the adjusted strength. The farther Va lies 
from the minimum allowable error margins, the greater its 
weight in the adjustment. The adjusted strength Vc then 
fluctuates around Vp. For example, if Vp = 35 MPa, Va = 
36.2  MPa, Vmj  = 1  and VMj  = 2, the weight of Va is 0.2, 
and the adjusted strength becomes 35.2 MPa, which falls 
within the minimum allowable error margins. Figure 3  il-
lustrates which portions of the workflow correspond to 
each equation, thereby aiding readers in understanding 
the methodology.

3. Evaluation and adjustment  
of construction quality data  
at different strength grades
In engineering projects, different structural components 
use varying strength grades of concrete, determined by 
a comprehensive evaluation of structural safety, construc-
tion environment, cost-effectiveness, and functional re-
quirements (Iqbal et al., 2024). For load-bearing compo-
nents such as foundations, columns, and beams, higher 
strength concrete is typically chosen to ensure structur-
al stability and long-term safety, as these components 
bear significant loads. In contrast, non-load-bearing com-
ponents, such as infill walls and flooring, can use lower-
strength concrete, reducing construction costs. Addition-
ally, the construction environment imposes varying dura-
bility requirements on concrete. For instance, underground 
environments often demand higher strength and superi-
or anti-corrosion performance to withstand complex sub-
terranean conditions. Functional requirements of specif-
ic components also dictate concrete strength selection, 
with high-load-bearing components necessitating higher-
strength concrete grades.

By appropriately selecting suitable strength grades of 
concrete, structural safety and durability can be ensured 
while enhancing project cost-effectiveness and construc-
tion efficiency. This section investigates and analyzes the 
results of construction quality data processing for concrete 
of different strength grades at a curing age of 28 days.

Table 2. Evaluation methods

Range Graphical representation Treatment and engineering significance

,a p mj p mjV V V V Vé ùÎ - +ê úë û (9) Falls within the green 
interval

Retain original value; Original value lies within the 
expected fluctuation range

, ,a p Mj p mj p mj p MjV V V V V V V V Vé ù é ùÎ - - + +ê ú ê úë û ë û
 (10) Falls within the blue 

interval
Apply weighted adjustment (Eqn (12)); Original value 
is reliable but requires adjustment

0, ,a p Mj p MjV V V V Vé ù é ùÎ - + +¥ê ú ê úë û ë û
 (11) Falls outside these 

intervals
Exclude; Original value contains significant error

Notes: Va denotes the actual measured strength and Vp denotes the model‑predicted strength.

Figure 3. Distribution of computational formulas
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3.1. Prediction and adjustment  
at different strength grades
Figure  4  illustrates the prediction and adjustment re-
sults for construction quality data of concrete at different 
strength grades. The first three groups of concrete data 
(C15, C20, C25) were selected as fitting data. Based on 
their development trends, the data exhibit an initial linear 
relationship, which was used to establish a preliminary fit-
ting model. Through this model, the predicted strength of 
C30 concrete was calculated as 39.24 MPa, with a maxi-
mum permissible error of 2.47 MPa. Since this group con-
tained several identical measurements, the minimum per-
missible error was set to 0.

According to the evaluation methods and adjust-
ment formulas presented in Table 2, the actual measured 
values of C30 were processed. Before adjustment, the 
mean strength of C30 was 38.89 MPa, which increased to 
39.16  MPa after adjustment. This improvement was pri-
marily due to the adjustment method effectively removing 
some outlier data, which reduced the strength distribution 
range and made the adjustment values more accurately 
reflect the actual performance of the concrete.

After obtaining the adjusted C30 strength, the model 
was updated using data from C15, C20, C25, and the ad-
justed C30. This updated model was then used to pre-
dict and adjust the strength of C40 concrete. The fitting 
and prediction process continued up to the C60 strength 
grade, where the coefficient of R2 reached 0.99968. This 
result indicates that the model provides an exceptionally 
high level of explanatory power for the linear relationship 
between concrete strength and strength grade. The fit-
ting results were nearly ideal, capable of describing this 
relationship with remarkable precision. This further con-
firms high reliability in predicting and adjusting concrete 
strength of this model.

Within the range of concrete strength grades from C30 
to C60, the maximum permissible error showed a gradual 
increasing trend. This trend suggests that higher-strength 
concrete may exhibit greater variability or uncertainty in its 
performance during construction. Identifying this permis-
sible error range facilitates a more accurate assessment of 
the rationality of actual strength data and helps to iden-
tify potential outliers, which can improve the precision of 
construction quality management.

3.2. Construction quality data evaluation  
at different strength grades
Figure 5 presents a comparison between the real strength 
data and the adjusted strength data for different strength 
grades. It can be observed that the real strength data for 
different strength grades generally follows a normal dis-
tribution, but the data exhibit considerable dispersion, i.e., 
the variance (σ²) is high. After adjustment, the dispersion 
of the data is significantly reduced, and the distribution 
becomes more concentrated, with a decrease in variance 
(σ²). Taking C30 as an example, which is the first strength 
grade to be predicted and adjusted, the adjusted strength 
increased by 0.27 MPa compared to the real strength. This 
increase is primarily due to the higher dispersion of the 
data below the mean in the real strength dataset. After 

Figure 4. Prediction and adjustment model at different  
strength grades
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adjustment, extreme outliers with low values were cleaned, 
and some data points were adjusted to align with the pre-
dicted values, which significantly reduced the overall dis-
persion and making the result more rational and convinc-
ing.

In the C45  data group, the mean real strength was 
59.71 MPa, whereas the mean adjusted strength dropped 
to 54.26 MPa. This change can be attributed to two factors: 
first, the dataset for this group had fewer data points, and 
the sample distribution lacked regularity. The data points 
were mainly concentrated in the lower-value region, so 
the adjustment process brought the data closer to this 
region. Second, since the mean real strength of C50 was 
59.66 MPa, with the adjusted mean of 59.43 MPa, if the 
real mean strength were used as a sole basis, the strength 
values of C45 and C50 would be nearly identical, which 
does not reflect the actual situation. Therefore, the ad-
justed strength values are more consistent with the real-
world scenario. For the C60 group, there were clearly two 
outliers in the real strength data, which pulled the overall 
mean strength lower. After adjustment, these outliers were 
effectively cleaned, and the strength data returned to nor-
mal levels. Overall, the prediction and adjustment process 
made the strength data more reasonable, which closely 
aligned with actual conditions and enhanced the accuracy 
and consistency of the data.

3.3. Evaluation and adjustment  
model coefficients change  
at different strength grades
Figure 6 presents the trend of changes in the fitting co-
efficients at various strength grades. It is evident that 
coefficient a  increases gradually, while coefficient b  de-
creases continuously. Coefficient a  reflects the sensitivity 
of strength increase to the strength grade during the fit-
ting process, which represents the increment in strength 
caused by an increase in strength grade. In the fitting pro-

cess from C30 to C40, coefficient a  grows most rapidly, 
which can indicate that the strength of concrete increases 
more significantly when transitioning from lower to high-
er strength grades. In the range from C50 to C60, coeffi-
cient a stabilizes, indicating that the performance improve-
ment of concrete in the high-strength grade range be-
comes more gradual, and the linear relationship in the fit-
ting model approaches saturation.

Coefficient b  represents the strength value at zero 
strength grade (theoretically). Although this value does 
not have direct physical significance in practical engineer-
ing, it reflects the baseline offset of the fitting model. As 
the strength grade increases, coefficient b exhibits some 
fluctuations, and it reaches a  local peak at C45, followed 
by a decrease at C55 and C60. This changing trend indi-
cates how the fitting model adjusts at different strength 
grades.

The variations in coefficients a and b reflect the differ-
ences in the mechanical properties of concrete at different 
strength grades, which provide theoretical support for the 
selection of the appropriate strength grade of concrete in 
engineering. In the high-strength grade range, the linear 
characteristics of the model gradually weaken, and that 
is mean that more non-linear analytical methods may be 
needed to accurately describe the performance of high-
strength concrete.

The proposed model dynamically determines upper 
and lower allowable error bounds based on incoming in-
spection data, enabling automatic cleansing and adjust-
ment of outliers. This mechanism allows real‑time adap-
tation to changing field conditions. In contrast, Bayes-
ian‑network approaches (Imam et al., 2021; Ragaa et al., 
2025; Slonski, 2010) and grey relational analysis (Behnood 
& Golafshani, 2018; Gong et al., 2023; Islam et al., 2025; 
G. Singh & N. Singh, 2025) typically rely on preset param-
eters or static thresholds, limiting their ability to respond 
dynamically to data fluctuations.

Figure 6. Variation of coefficient values during the fitting process
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3.4. Multiple index consideration
To further assess predictive performance and generali-
zation ability, three additional error metrics were em-
ployed: root mean square error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE). 
Moreover, a five-fold cross validation procedure was im-
plemented to examine the robustness of the model.

As shown in Figure 7, a systematic analysis was con-
ducted on concrete test data across all strength grades, 
and the results demonstrate that the proposed da-
ta processing method delivers differentiated optimiza-
tion effects. In the medium to high strength range (C30 
through C60), the improvements are most pronounced. 
For C60, the standard deviation was reduced by 94.4% 
and the MAPE dropped from 17.0% to 0.4%, illustrating 
exceptional noise reduction capability. In the C30 to C55 
range, standard deviations decreased by between 63.8% 
and 85.5%, with C45 achieving the greatest reduction of 
85.5%. Error metrics also improved markedly: the MAPE for 
C30 declined from 12.6% to 2.3%, and for C35 from 8.9% 
to 2.2%. Notably, the RMSE for C60 fell from 8.74 MPa to 
0.35 MPa, highlighting the method’s  special efficacy for 
high strength concrete.

From an engineering perspective, these findings indi-
cate that the method significantly enhances the reliabili-
ty and consistency of strength measurements for medium 
and high strength concretes, with especially pronounced 

gains for C45  and C60. Overall, this approach provides 
important technical support for concrete strength testing, 
particularly in quality control applications involving medi-
um to high strength materials.

4. Evaluation and adjustment  
of construction quality data  
at different curing ages
4.1. Prediction and adjustment  
at different curing ages
During the curing process of concrete, the compressive 
strength typically increases as the hydration of the bind-
er materials progresses. Figure 8 shows the strength pre-
diction and adjustment results of concrete with different 
strength grades at various curing ages. Due to the limit-
ed data for C15, C20, C25, C45, and C60 (with fewer than 
three data points for each curing age), these strength 
grades are not included in the detailed analysis.

In the analysis of the C30 data set, a noticeable discrep-
ancy between the fitting points and the prediction model 
was observed, particularly for the second fitting point. The 
strength at this point was even higher than that at later 
curing ages. Specifically, at 21 days of curing, the strength 
reached 39.93 MPa, which surpassed the 39.52 MPa mea-
sured at 33 days. This anomaly may be attributed to the 
fact that the statistical sample includes all C30 concrete 

Figure 7. Prediction performance evaluation: a – RMSE of original and adjusted data; b – MAPE of the original and adjusted data;  
c – Percentage reduction of standard deviation
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specimens, which could have different strengths due to 
variations in transportation time, manufacturing methods, 
and curing conditions. Additionally, some special locations 
may have incorporated crack-resistant fibers to enhance 
cracking performance, which also increased the strength 
of concrete. The model for the C30 data set, affected by 
anomalous data at 12 and 21 days of curing, resulted in an 
R2 value of only 0.945304. This suggests that the relation-
ship between curing age and strength is generally repre-
sented, but is influenced by these outliers.

The fitting results of the C35  and C40  data sets are 
similar. Both exhibit cases where fitting points within the 
fitting range are higher than the prediction model, while 
some fitting points in the prediction range fall below the 

model. This phenomenon may be due to the inclusion of 
micro-expansion fibers in some specimens during ear-
ly curing ages, which can result in rapid strength growth 
that stabilizes in a short period. At the same time, the sta-
tistical samples also include specimens without fiber re-
inforcement, leading to a  trend that fitting points slight-
ly exceed the prediction model. This deviation causes the 
model to predict continued strength growth in the mid-
dle and late curing stages, whereas, in reality, the strength 
plateaus. Nonetheless, the R2 values of the models for the 
C35 and C40 data sets reach 0.98861 and 0.98875, respec-
tively, which can indicate a good fit between the adjusted 
strength values and the actual strength values.

Figure 8. Prediction and adjustment model at different curing ages
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For high-strength concretes C50  and C55, the pre-
diction and adjustment models demonstrate high accu-
racy, with R2 values of 0.99663 and 0.99426, respectively. 
As concrete strength typically grows rapidly during early 
curing ages and stabilizes in the middle and later stag-
es, the models effectively capture this “rapid-growth to 
steady-state” behavior. The distribution of fitting points in 
Figure 8d and 8e is dense and almost entirely within the 
range of maximum allowable error, which indicate minimal 
strength data fluctuations for C50 and C55 concretes. This 
contributes to higher model reliability. The distribution of 
prediction points reveals no significant anomalies or out-
liers, further confirming the high quality of the data. From 
a material perspective, C50 and C55 concretes common-
ly use high-performance cement, optimally graded aggre-
gates, and efficient admixtures, which improve the uni-
formity and stability of concrete strength. These material 
characteristics provide a solid foundation for the high fit-
ting accuracy of the models. Additionally, the preparation 
of C55 concrete may involve optimized curing measures 
(e.g., high humidity), which help ensure strength growth 
aligns closely with the model predictions. 

4.2. Construction quality data evaluation  
at different curing ages
Figure 9  illustrates the actual and adjusted compressive 
strengths of concrete with different strength grades at 
various curing ages. It can be observed that the actual 
strength shows a  relatively scattered distribution across 
different curing ages, especially around the critical age of 
28 days, where significant fluctuations and some outliers 
are present. These variations may be attributed to testing 
conditions, material uniformity, or construction process-
es. In contrast, the adjusted strengths exhibit clear advan-
tages. After model adjustments, the date adjustment dis-
play a more concentrated distribution, a smoother overall 
trend, and a strong correlation with curing age, particu-
larly beyond 28 days, where the results demonstrate ex-
cellent stability. This indicates that the adjustment model 
effectively eliminates random errors in the data, enhancing 
the reliability and representativeness of the strength data. 
The adjusted strength values are closer to the actual con-
ditions, which avoided overestimation or underestimation 
caused by experimental variations or errors. This provides 
a more accurate basis for assessing construction quality 
and prediction concrete strength in engineering projects. 
However, certain limitations of the model should be not-
ed. Since the model is derived from existing data, it may 
not fully account for special conditions, such as extreme 
environments or anomalies in raw materials, which could 
impact strength.

Consequently, the model may exhibit deviations under 
extreme circumstances or in unique environments. Addi-
tionally, the model with heavy reliance on historical data 
could introduce systematic errors if the data samples are 
insufficient or contain numerous outliers. Despite these 
challenges, the model significantly improves the quality 

of concrete strength data. To ensure comprehensive and 
accurate predictions, the model should be dynamically ad-
justed and validated using real-world experimental results. 
This approach can further enhance adaptability and reli-
ability of the model, ensuring it meets the practical needs 
of diverse construction scenarios.

4.3. Evaluation and adjustment model 
coefficients change at different curing ages
Figure  10 illustrates the variations in this model coeffi-
cients across different strength grades. Coefficient a  di-
rectly influences the strength growth rate of concrete 
specimens at different curing ages. As shown in Figure 10, 
the value of a  increases with the strength grade of the 
concrete. This indicates that, in the early curing stages of 
high-strength concrete, strength increases more rapidly 
with age, which aligned with the typical trends observed 
in concrete strength development. Coefficient b, on the 
other hand, is a constant that represents the theoretical 
initial strength or baseline strength of concrete at a cur-
ing age of 1 day. As the strength grade increases, the ac-
celerated hydration rate of concrete leads to higher ear-
ly-age strength values, which is consistent with the trends 
depicted in the figure.

Coefficient a  reflects material properties and is close-
ly related to the early strength development of concrete. 
Factors such as the hydration rate of cement and curing 
conditions significantly influence early strength growth. 
Coefficient b, however, represents the initial state of the 
material and is considered indicative of the impact of ini-
tial conditions on strength, such as the starting level of 
early strength or the inherent baseline properties of the 
concrete, which are tied to its strength grade.

From a  mathematical perspective, coefficient a  cap-
tures the sensitivity of strength changes to age progres-
sion, while b represents the initial strength level. This mod-
el effectively characterizes the typical strength develop-
ment behavior of concrete. Its form is well-suited to re-
flecting the inherent trends in concrete strength growth 
over time, which makes it a valuable tool for both uncer-
tainty evaluation and the adjustment of the model.

4.4. Multiple index consideration
As shown in Figure 11, a comprehensive analysis was per-
formed on strength test data for C30–C55 concretes at 
multiple curing ages to elucidate the age dependent opti-
mization behavior of the proposed data processing meth-
od. The results indicate significant variation in optimization 
efficacy both among different strength grades and with-
in the same grade across curing ages. For C30 concrete, 
the reduction in standard deviation ranged from 54.7% to 
66.1%, with the maximum reduction of 66.1% observed at 
23 days. Early age reductions in MAPE were particularly 
notable, decreasing from 6.3%–11.9% to 2.1%–4.6%, which 
demonstrates the method’s capability to accurately predict 
early age strength development.
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Figure 9. Statistical chart of construction quality strength at different curing ages

Figure 10. The coefficient changes for each model
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In the case of C35 concrete, optimization efficacy in-
creased with curing age: the standard deviation reduction 
reached 74.3% at 61d, compared to 54.5% at 37d. Across 
all strength grades, peak optimization was achieved at ap-
proximately 40-days. At this age, standard deviations for 
C30, C35, C40, and C50 concretes were reduced by 64.5%, 
57.8%, 81.4%, and 81.6%, respectively. This convergence 
corresponds to the stabilization phase of strength gain 
and provides critical technical support for long term struc-
tural quality assessment. Following data processing, MAPE 
values for all grades fell below 3%, with C50 concrete at-
taining the lowest MAPE of 0.8%–0.9%, thereby confirming 
the method’s high predictive precision.

These findings confirm that the proposed data pro-
cessing method effectively accommodates the strength 
development characteristics of concrete at different cur-
ing ages, furnishing robust data support for engineering 
quality control.

5. Evaluation and adjustment of 
construction quality data at the same 
construction location
As revealed in Section 4.2, concrete strength is influenced 
by various external factors, such as transportation time, 
specimen preparation methods, and curing practices. Ad-
ditionally, certain special construction locations may re-
quire the incorporation of admixtures or fibers, which can 
further affect the strength data. To eliminate the interfer-

ence of these external variables, a single construction lo-
cation was selected for study. By focusing on the concrete 
construction quality data from this specific site, the goal 
is to achieve more accurate and representative predictive 
results.

5.1. Prediction and adjustment at the same 
construction location
Figure 12 shows strength test data selected from the da-
tabase, where multiple testing ages are available for con-
crete from the same construction locations. These loca-
tions represent various strength grades, including the fol-
lowing: basement pile cap (C20), basement stairs (C30), the 
surrounding basement retaining wall and top slab of the 
auxiliary building for Building 1 (C35), foundation slab for 
foundations 3, 4, and 5 (C40), basement KZL, columns, and 
retaining walls (C50), and basement KZL, columns, and re-
taining walls for Building 1, unit 2 (C55).

From the overall fitting trend in Figure  12, it is evi-
dent that the fitted of this model and data prediction are 
closely aligned. The coefficient of R2 for all six construction 
locations exceeds 0.997, and the fitting points are distrib-
uted with slight fluctuations above and below the predic-
tion curve, which indicate that the model effectively cap-
tures the strength growth patterns for concrete at vari-
ous locations, and it provides a reliable predictive tool. In 
the early curing ages, the strength increases rapidly, and 
the curve’s slope is steeper. As the curing age progresses, 

Figure 11. Model evaluation indexes at different curing ages
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the growth rate gradually slows, and the curve flattens. 
This logarithmic growth trend reflects the rapid strength 
development during early stages of hydration, followed 
by a decrease in strength growth as hydration completes 
in the later stages. The maximum and minimum allow-
able error values ensure that reasonable upper and lower 
limits for strength are provided during prediction process 
of the model. These thresholds offer clear reference stan-
dards for construction quality. By establishing these stan-
dards, a  reasonable strength range can be defined dur-
ing construction, which helps to identify any unreasonable 
strength data and thus preventing potential quality issues.

In the analysis of Figure 12, it can be observed that 
the maximum allowable error for low-strength concrete 
grades (e.g., C20, C30) shows minimal and stable varia-

tion within the prediction range. This indicates that the 
strength behavior of low-strength concrete is more con-
sistent across different testing ages, with lower data dis-
persion. Therefore, in actual construction and quality con-
trol, low-strength concrete is easier to predict and control, 
and its fitting accuracy is higher. As the concrete strength 
grade increases (e.g., C50, C55), the range and fluctuation 
of the maximum allowable error increase. This reflects that 
the actual test data for high-strength concrete is more dis-
persed and is influenced to a  greater extent by various 
variables such as construction conditions, material propor-
tions, and environmental factors. Therefore, while high-
strength concrete has advantages in long-term strength 
performance, more attention and adjustments are required 
during the early stages of construction and quality control.

Figure 12. Prediction and adjustment of construction quality data at the same construction location
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Additionally, the fitted curves in Figure  12 not only 
provide an effective predictive tool but also offer targeted 
analytical references for different construction locations. 
By identifying the strength development differences be-
tween low-strength and high-strength concrete at various 
curing ages, this can guide engineers in selecting more 
suitable materials during construction and implementing 
different quality control measures at various curing stag-
es. For instance, in the case of low-strength concrete, early 
strength monitoring can be emphasized, while for high-
strength concrete, particular attention should be paid to 
the sustained growth and stability of strength in later stag-
es. These differentiated quality control measures for vary-
ing strength grades help improve construction quality, re-
duce the risk of rework, and provide a  solid foundation 
for overall construction quality and reliability. This study 
also provides valuable insights for real-time comparison, 
hazard identification, and precise traceability of large-scale 
construction quality data.

5.2. Construction quality data evaluation  
at the same construction location
The comparison between the actual strength and adjust-
ed strength for different construction locations is shown 
in Figure 13. Concrete of all strength grades demonstrates 
the general trend of strength increase with curing age. Af-
ter the 28-day curing period, the strength of all concrete 
grades stabilizes. This reflects the fact that the early hydra-
tion stage after construction is a critical period for strength 
development. After 28 days, the rate of strength increase 
significantly slows down, which aligns with the basic prin-
ciples of the concrete hydration reaction. High-strength 
concrete grades exhibit greater data fluctuations across 
different curing ages, likely due to the more complex mix 
proportions and the use of admixtures, which lead to high-
er dispersion in compressive strength during actual con-
struction. Additionally, high-strength concrete relies more 
on good curing conditions in the early stages to ensure 
stable strength growth, that means small differences in 
construction conditions can trigger fluctuations. In con-
trast, the test results for low-strength concrete grades are 
more stable. Even across different curing ages, the data 
remains relatively concentrated with smaller fluctuations. 
This may indicate that low-strength concrete is less sen-
sitive to mix proportions and curing conditions in actual 
construction. The hydration process for low-strength con-
crete is simpler, which results in more uniform strength 
development.

Within the same strength grade and curing age, 
the date adjustment effectively reduces the fluctuations 
caused by testing errors. This indicates that the adjustment 
process successfully adjusted the discreteness in the origi-
nal data, and it made the results more consistent with the 
theoretical prediction curve. For each strength grade, the 
date adjustment displays a clearer strength growth trend, 
which helps to more accurately understand the strength 
development pattern of concrete. The adjustment pro-

cess is particularly important for high-strength concrete 
grades, where the original data exhibits greater discrete-
ness. The date adjustment significantly reduces the impact 
of outliers, especially in the early curing ages. The adjusted 
strength data aligns more closely with the prediction curve 
that reflects a more precise strength development trend. 
For low-strength concrete grades, the date adjustment is 
very compact, with random deviations in the original test 
data being brought back within the prediction range. Since 
low-strength concrete demonstrates higher stability dur-
ing the early hydration stage, the changes brought about 
by the adjustment are mainly subtle adjustments, which 
further enhances the accuracy of the prediction curve.

5.3. Evaluation and adjustment model 
coefficients change at the same  
construction location
Figure 14 shows the variation of the model coefficients for 
different construction locations. It can be observed that as 
the concrete strength grade increases, both coefficients 
a and b  increase as well. In high-strength concrete (e.g., 
C50 for the basement KZL, columns, and retaining walls, 
and C55 for the basement KZL, columns, and retaining 
walls in Building 1, unit 2), these coefficients are signifi-
cantly higher than those for low-strength concrete loca-
tions. This indicates that strength grade directly affects the 
growth characteristics of concrete at different curing ages. 
High-strength concrete experiences faster strength growth 
in the early stages, with a steeper curve in the initial phase, 
that means these concretes develop strength more quickly 
in the early curing period. In contrast, low-strength con-
crete (e.g., C20 for the basement pile cap and C30 for the 
basement stairs) shows a more gradual early strength de-
velopment.

From the analysis of data from these construction lo-
cations, it can be concluded that low-strength concrete is 
suitable for applications where early strength is required 
but long-term load demands are relatively low, such as in 
basement stairs or foundation pile caps. Concrete in these 
locations can reach sufficient strength quickly after con-
struction to support subsequent operations. High-strength 
concrete, on the other hand, is more suitable for critical 
structures with long-term load-bearing requirements, 
such as basement KZLs, columns, and retaining walls. Its 
strength growth is more stable, which provides strong du-
rability and safety guarantees for long-term use.

5.4. Multiple index consideration
Figure 15 shows the model evaluation indexes of differ-
ent construction location. For the basement frame beams, 
columns, and retaining walls, the standard deviation of 40-
day strength data decreased by 67.1%, while the MAPE fell 
from 7.9% to 2.0%, representing a 74.7% reduction in er-
ror. In the basement frame beams and columns, the 48-day 
data exhibited an even greater reduction in standard devi-
ation of 82.3%, with MAPE decreasing from 7.1% to 1.4%.  
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Figure 13. Statistical chart of concrete construction strength at the same construction location

Figure 14. Coefficient changes at the same construction location
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These findings demonstrate that the method not only ef-
fectively tightens the spread of measured values but also 
substantially enhances prediction accuracy. Notably, for 
the foundation slabs, the standard‑deviation reductions 
for data at 62-day and 78-day remained consistently be-
tween 55.3% and 60.5%, illustrating the method’s stability 
in processing data across extended curing periods.

From an engineering application perspective, the pro-
posed data‑processing method offers three principal 
advantages. First, its optimization effect is consistently 
strong across different structural components. Second, it 
performs robustly for both early‑age and long‑term cur-
ing data. Third, it significantly improves predictive pre-
cision, thereby reducing the risk of erroneous engineer-
ing decisions. These characteristics underscore the meth-
od’s  considerable value for quality control in concrete 
construction.

6. Conclusions
Based on the research project of the Sichuan Provin-
cial Building Industry Park, Sichuan, this paper establish-
es a methodology for uncertainty evaluation and adjust-
ment of construction quality data. This evaluation method 
mainly dynamically determines the deviation range of con-
struction quality data based on existing detection data and 
makes adjustments based on historical data. This process 
helps clean up anomalous data and improves the reliability 
of construction quality data. Through the control of indi-
vidual variables, uncertainty analysis of construction qual-
ity data for different concrete strength grades and curing 
ages was conducted. The results indicate that construction 

quality data exhibits slight dispersion and significant fluc-
tuations, with some outliers. Therefore, further research 
on the concrete construction quality data from the same 
construction location showed a significant improvement in 
the accuracy of the uncertainty evaluation and adjustment 
model. By analyzing these different locations in detail, en-
gineers are able to better understand the strength devel-
opment patterns of each part over time, which ensure the 
overall quality and safety of the project. The specific anal-
ysis of each location provides scientific basis for construc-
tion decisions, that makes project management more pre-
cise and scientific. The specific research conclusions and 
their engineering applications are as follows:

	■ Date adjustment not only reduce the fluctuation of 
the original data but also significantly improve the 
fit of the prediction model, with R2 values approach-
ing 1, indicating that the model more accurately de-
scribes the strength development pattern. The date 
adjustment allows the model to precisely reflect the 
strength development trend at different curing ages, 
providing more reliable prediction results for practi-
cal engineering applications.

	■ The date adjustment provides clear reference stan-
dards for quality control during construction. For 
each strength grade of concrete, the date adjust-
ment defines reasonable strength ranges, especially 
by delineating the maximum and minimum permis-
sible error values. This allows construction personnel 
to more effectively assess whether the actual perfor-
mance of the concrete meets the expected require-
ments. This is crucial for improving construction ef-
ficiency and ensuring the quality of the project.

Figure 15. Model evaluation indexes at the same construction location
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	■ The adjustment process effectively identifies and ad-
justs anomalous data, which prevents overall mis-
judgments caused by individual test biases. This not 
only enhances the accuracy of data analysis but also 
reduces potential risks in construction decisions, 
providing a basis for real-time comparison of con-
struction quality big data, hazard identification, and 
precise traceability.

7. Deficiency and prospect
On the basis of the primary findings, the applicability of 
the proposed concrete‑strength adjustment and predic-
tion model in varied engineering contexts was further in-
vestigated. The results demonstrate that, in standardized 
construction projects with ample data and stable condi-
tions, the model excels at cleansing outliers and narrow-
ing data fluctuations, thereby significantly improving pre-
dictive accuracy. However, under extreme construction 
conditions (such as abnormal temperature and humidity, 
drastic changes in construction procedures, or the use of 
special materials) the model may not fully capture all in-
fluencing factors, potentially leading to prediction bias. In 
such cases, it is recommended to integrate real‑time field 
monitoring data and a secondary calibration mechanism 
to achieve higher predictive precision and practical utility.

Future research will concentrate on model optimiza-
tion, cross-material applicability, and field validation. Spe-
cifically, the data preprocessing and outlier detection 
mechanisms will be further refined, with the incorporation 
of additional influencing factors such as environmental 
parameters and detailed construction techniques, to en-
hance model accuracy under specific conditions. The gen-
eralizability of the model to other construction materials 
will be examined to assess its potential in predicting me-
chanical properties and facilitating quality control across 
diverse material types. Furthermore, integration with real-
time monitoring systems will enable dynamic calibration 
and feedback, ensuring sustained predictive accuracy in 
variable construction environments and providing time-
ly, reliable data support for engineering decision-making.
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