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1. Introduction
The acceleration of global urbanization and the rapid de-
velopment of the construction industry in recent times has 
led to an increase in construction accidents, becoming a 
significant societal issue that demands attention (Zhu et al., 
2021). These accidents not only incur substantial economic 
losses but, more importantly, seriously threaten the safe-
ty of workers and the general public (Pinto et al., 2011). 
Among all industries, the fatality rate in the construction 
industry remains high (Yi et al., 2012), making it one of 
the most unsafe industries today (Alkaissy et al., 2020; Tam 
et al., 2004). This situation has raised widespread concerns, 
especially regarding the need to effectively prevent these 
accidents, presenting an urgent problem that needs to be 
solved (Chen et al., 2020).

Faced with the complexity of construction accidents 
and the challenges they present for prevention, there is a 

growing emphasis on active accident management (Nini 
et al., 2020; Zhou et al., 2015), especially in the realm of 
accident prevention strategies. Research shows that the 
benefits of preventive measures far exceed the cost of ac-
cident prevention, with a ratio of approximately 3:1 (Ikpe 
et al., 2012). Therefore, it is imperative to provide data 
support for prevention strategies through accident pre-
diction. Accurate predictions can not only help in identify-
ing potential risk areas but also provide a scientific basis 
for formulating effective preventive measures (Fatemeh & 
Vedat, 2023; Wenli et al., 2023).

In 2020, there were a total of 407 construction acci-
dents, representing 59.07% of the total incidents. These 
included 83 object strike accidents, accounting for 12.05%; 
45 incidents involving lifting machinery injuries, making 
up 6.53%; 42 cases of earthwork and foundation pit col-
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lapse, accounting for 6.53%; 26 construction equipment 
injury accidents, amounting to 3.77%; 22 electric shock ac-
cidents, comprising 3.19%; and 64 other accidents, making 
up 9.29% of the total (Ministry of Housing and Urban-Ru-
ral Development of the People’s Republic of China, 2022). 
Compared with other high-risk industries, the construc-
tion sector possesses unique characteristics such as a high 
frequency of general accidents, a low occurrence of ma-
jor accidents1, and diverse sources of hazards, making its 
safety management special. In view of this, strengthening 
research on construction accident prediction and integrat-
ing it into preventive strategies has become the focus of 
both academia and industry (Bing, 2022).

In history, methods for predicting construction acci-
dents have included statistical analysis, machine learn-
ing techniques, expert systems, and so on. These meth-
ods each have their own advantages; Statistical analysis 
provides macro level data trend analysis, while machine 
learning offers complex pattern recognition capabilities. 
However, these methods typically require large datasets 
and high computational complexity. On the other hand, 
expert systems heavily rely on the subjective knowledge 
of experts, which may limit their objectivity and wide ap-
plicability. Grey system theory, as an alternative method, 
is particularly suitable for situations where uncertainty and 
limited information are common in construction accidents. 
Grey system theory, recognized as an effective tool for 
forecasting and decision-making for dealing with uncer-
tainty and limited information, has been widely used in 
various fields, such as economics, sociology, and engineer-
ing (Chen & Tien, 1996; Hsiao & Liu, 2002; Hsu & Wen, 
1998; Hsu, 2003; Lin & Yang, 2003; Song, 1992). For ex-
ample, Deng (1989) applied grey system theory to ana-
lyze the safety status of construction projects, providing a 
new perspective for construction safety assessment. Chang 
et al. (1999) improved the modeling error of grey predic-
tion by combining grey models. The grey prediction mod-
el has been applied to the global integrated circuit indus-
try (Hsu, 2003), flood prediction (Trivedi & Singh, 2005), 
and vehicle mortality risk prediction (Mao & Chirwa, 2006), 
and has achieved good results. These studies have shown 
the potential of grey system theory in handling construc-
tion safety issues with uncertainty and limited data. Explor-
ing the characteristics of accidents within the construc-

1 According to the Regulations on Reporting, Investigation, and 
Handling of Production Safety Accidents, a general accident is 
defined as an incident resulting in fewer than 3 deaths, or fewer 
than 10 serious injuries, or direct economic losses totaling less 
than 10 million yuan. A major accident involves more than 3 but 
fewer than 10 fatalities, or more than 10 but fewer than 50 seri-
ous injuries, or direct economic losses ranging from more than 
10 million yuan to less than 50 million yuan. A severe accident 
encompasses more than 10 but fewer than 30 deaths, or more 
than 50 but fewer than 100 serious injuries, or direct economic 
losses exceeding 50 million yuan but less than 100 million yuan. 
A particularly severe accident is one that results in more than 
30 fatalities, causes over 100 serious injuries, or leads to direct 
economic losses of more than 100 million yuan.

tion industry reveals significant potential for employing 
a grey prediction model in accident prediction (Y. Li &  
M. Li, 2015). Grey prediction is divided into univariate 
grey prediction and multivariate grey prediction (Cheng 
et al., 2023; Du et al., 2023; Lei & Wang, 2022; H. Wang &  
L. Wang, 2020; Xiong et al., 2021). While the univariate 
model demonstrates notable accuracy in predicting con-
struction accident data with incomplete information and 
limited datasets (Sun & Liu, 2011), the prediction com-
plexity of accident prediction, influenced by numerous in-
terrelated factors, extends beyond the scope of a singu-
lar time series model (Chen et al., 2011; Tien, 2012; Wu & 
Chen, 2005). In order to capture these intricate relation-
ships comprehensively and improve the accuracy and re-
liability of prediction, the adoption of a multivariate grey 
prediction model is an inevitable progression.

Multivariable grey prediction not only addresses sin-
gle-factor prediction challenges but also synthesizes the 
interactions among multiple factors, thereby providing in-
sights into more complex system dynamics. Ye et al. (2024) 
introduced a grey prediction model based on action time 
and intensity for China’s food industry. Cheng et al. (2020) 
meanwhile, employed the GM(1, 3) model to simulate and 
predict clean energy consumption in China, identifying 
economic scale and population size as the main influenc-
ing factors. As an extension of grey prediction, the GM(1, 
N) model is suitable for forecasting scenarios characterized 
by limited data and incomplete information, influenced by 
numerous factors (Shanshan & Hazem, 2022). By discern-
ing and extracting insights from incomplete information, 
the GM(1, N) model facilitates the discovery of patterns 
within complex and ever-changing practical problems, en-
abling relatively accurate predictions. Given these consid-
erations, this study adopts a multivariate grey model (GM 
(1, N)) to address the limitations of traditional models.

Research and improvement of the GM(1, N) mod-
el mainly focuses on optimizing model parameters and 
structure. For example, Lao et al. (2021) analyzed optimal 
parameters by refining the background value, develop-
ing the DBGM(1, N) model, and selecting population and 
GDP as influencing factors to predict China’s energy and 
electricity consumption. Zeng (2018) improved parameters 
based on the fractional accumulation principle and mini-
mized the average relative error of the system character-
istic sequence, applying this approach to predict the out-
put value of high-tech products in China and Guangdong 
Province. In addition, integrating other models to improve 
prediction accuracy is another research direction (Penghui 
et al., 2023). Li and Zhang (2024) combined the grey mod-
el with a neural network to create the NMGM(1, N) model, 
which accurately predicted China’s per capita energy con-
sumption by learning features directly from data samples. 
Some researchers have combined the grey model with a 
genetic algorithm, incorporating seasonal factors and time 
power terms. This adaptation addresses the insensitivity of 
the traditional multivariate grey model to seasonal fluctua-
tions and nonlinear trends (Li et al., 2023). However, these 
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optimizations primarily focus on parameter optimization 
and modeling mechanisms, with relatively limited research 
on variable selection for multivariate models. The GM(1, 
N) model includes one main variable representing system 
characteristics and N–1 variables representing influencing 
factors. Given the model’s reliance on multiple variables, a 
more comprehensive analysis of variable selection is nec-
essary for systems involving multiple influencing factors 
(Jianhong et al., 2024).

Most of the existing grey theory applications in con-
struction safety mainly focus on micro-level analyses. How-
ever, from a macro perspective, understanding the overall 
trends and patterns of construction accidents across the 
entire industry and regions is crucial for formulating com-
prehensive safety policies and strategies. Macro-level re-
search can provide insights into the relationship between 
the construction industry and the broader economic and 
social environment, which is essential for sustainable de-
velopment. Firstly, it provides crucial information for poli-
cymakers and regulatory authorities to formulate and ad-
just safety policies and regulations. By understanding the 
potential trends of fatalities, they can set appropriate safe-
ty standards and allocate necessary resources more effec-
tively, thus enhancing the overall safety level of the con-
struction industry. Secondly, for construction companies, it 
serves as an important reference for them to improve their 
safety management systems. Predictions can help identify 
potential high-risk periods or projects ahead of time, en-
abling them to take proactive measures such as strength-
ening safety training, improving site supervision, and op-
timizing construction processes to reduce the occurrence 
of accidents and fatalities. Moreover, from a social per-
spective, it helps to raise public awareness of construction 
safety. The public can better understand the risks associ-
ated with construction activities and advocate for stron-
ger safety measures, which in turn promotes a safety-con-
scious social environment.

In recent years, data-driven modeling and intelligent 
prediction approaches have gained significant traction in 
fields such as system optimization, classification, and safe-
ty forecasting. Various researchers have explored the in-
tegration of machine learning and feature selection tech-
niques to improve predictive performance, interpretability, 
and system adaptability under uncertainty. Farghaly et al. 
(2020a) proposed a hybrid filter-based feature selection 
approach that combines Mutual Information (MI), Chi-
square (χ²), and Relief-F methods to automatically deter-
mine optimal thresholds for classification tasks. This meth-
od improves classification accuracy while reducing dimen-
sionality and model complexity. Their strategy highlights 
the importance of quantifying feature relevance in predic-
tion systems, which aligns conceptually with our exhaus-
tive evaluation of variable combinations in GM(1, N) mod-
eling based on relative error screening. In another study, 
Farghaly et al. (2020b) developed a hybrid associative clas-
sifier that integrates association rule mining with Support 
Vector Machines (SVM), enhanced by Sequential Forward 

Selection (SFS) and Gini-index based pruning. Their work 
demonstrated that combining interpretable rules with ro-
bust learning algorithms can enhance performance and 
reduce redundancy. While their approach focuses on clas-
sification, the emphasis on input optimization and mod-
el interpretability resonates with our objective to evaluate 
the relative contribution of multiple variables in time-se-
ries grey models. In the energy optimization domain, El-
messery et al. (2024) introduced a deep learning frame-
work combining U-Net segmentation and CNN-based re-
gression to estimate photovoltaic panel cooling efficiency 
from thermal images. The framework achieved high accu-
racy and supported non-invasive, real-time performance 
monitoring. Although the application domain and mod-
eling paradigms differ, the study emphasizes the poten-
tial of data-driven predictive modeling in complex physi-
cal systems. Their work also reinforces the relevance of 
integrating data preprocessing, automated labeling, and 
multi-model comparison, which parallels our dynamic ex-
tension of GM(1, N) using sliding windows and permuta-
tion-based variable selection.

The purpose of this study is to develop a strategy for 
predicting construction accidents and selecting variables 
using the multivariate grey model (GM(1, N)), address-
ing the limitations of traditional univariate grey predic-
tion models in complex data environments. By applying a 
full permutation algorithm and an exhaustive exploration 
strategy, 511 combinations generated by nine potential 
influencing variables are analyzed to predict the number 
of construction accident fatalities from 2017 to 2020. This 
approach seeks to identify the optimal number of predic-
tion variables for the construction accident model. At the 
same time, considering the relationship between predic-
tion accuracy and data size in the grey prediction model, 
this paper explores the optimal data size selection strat-
egy during model construction to enhance the model’s 
adaptability and accuracy. Through these comprehensive 
methods, this study not only optimizes variable combina-
tions and improves prediction accuracy but also provides 
more scientific data to support the prevention of construc-
tion accidents, which is an essential step towards enhanc-
ing construction safety management and safeguarding the 
well-being of workers and the public.

2. Model construction
2.1. Data source
There are various indicators used to characterize accidents, 
such as the number of fatalities, the number of accidents, 
and the death rate per 100,000 people. Municipal housing 
engineering constitutes an important segment of the con-
struction industry. This section provides statistics on acci-
dent data from the Chinese construction sector, issued by 
the Ministry of Housing and Urban-Rural Development of 
the People’s Republic of China (Ministry of Housing and 
Urban-Rural Development of the People’s Republic of Chi-
na, 2022). It uses the death toll in housing municipal en-
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gineering as the dependent variable to predict fatalities 
in construction accidents, thereby reflecting the state of 
construction safety. Many variables represent the devel-
opment level of the construction industry, including indi-
cators that reflect the overall construction economy, the 
scale of the construction industry, and the treatment of 
construction employees.

The data used in this study covers a ten-year period 
from 2010 to 2019. The data collection is focused on the 
Chinese construction market, which is one of the largest 
and most active construction markets globally, providing 
a rich and diverse dataset for analysis. The selection of 
this geographical scope is based on the availability and 
comprehensiveness of data, as well as the significance of 
the Chinese construction industry in the global context. 
By analyzing data from such a large and dynamic market, 
the results are expected to have broader applicability and 
representativeness.

Through correlation analysis between the collected 
variables and the number of fatalities caused by construc-
tion accidents, nine variables were identified with a grey 
correlation coefficient greater than 0.5. These variables fall 
into three categories: overall construction industry vari-
ables, construction project supervision variables, and sur-
vey and design industry variables, as shown in Figure 1. In 
traditional grey system theory applications, the selection 
of these influential variables has been primarily based on 
grey relational analysis, which measures the relationship 
between reference data and comparison data. However, 
this study introduces an innovative approach by employ-
ing a full permutation algorithm to identify the most sig-
nificant variables affecting the model. This method allows 
for an exhaustive exploration of all possible combinations 
of variables, providing a more objective and comprehen-
sive assessment of their impact on the model’s predic-
tive accuracy. The overall construction industry variables 
include the total output value, the number of enterprises, 

and the number of employees. The total output value in-
dicates the industry’s economic contribution, the number 
of enterprise units represents enterprise distribution and 
market competition, and the number of employees reflects 
the industry’s human resource scale. These variables reflect 
the economic vitality and market competition within the 
industry. The interaction of these factors influences engi-
neering quality and safety standards. For example, intense 
market competition may lead some enterprises to neglect 
safety standards in efforts to cut costs, thus increasing the 
risk of accidents (Song et al., 2011). Table 1 shows the re-
sults of the ANOVA of the number of deaths versus year 
from 2000 to 2020, and the model corresponds to a p-val-
ue of < 0.0001, which is much smaller than the common 
significance level of 0.05, indicating that the independent 
variable as a whole has a significant effect on the depen-
dent variable in the ANOVA. Figure 2 shows the corre-
sponding heat map. The variables of the construction en-
gineering supervision industry include operating income, 
the number of enterprises, and the number of registered 
practitioners. Operating income indicates the economic 
vitality of the supervision industry, the number of enter-
prises reflects the distribution of businesses in this sector, 
and the number of registered practitioners represents the 
professional workforce. These variables reflect the health 
and specialization of the industry, which directly affects 
the quality control of construction projects. An increase 
in the number of professionals contributes to better proj-
ect quality, thereby reducing the accident rate (Gregersen 
et al., 2003; Simard & Marchand, 1994). 

Table 1. ANOVA results for variable categories

Source TSS df MS F p-value

Model 1023196.6933 3 341065.56443 22.90928 <0.001

Error 253090.25908 17 14887.6623 – –
Total 1276286.95238 20 – – –

Figure 1. Grey correlation coefficients of nine predictor 
variables in three categories
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Figure 2. Heatmap of correlation of deaths with year  
from 2000 to 2020
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For the survey and design industry, the variables in-
clude operating income, the number of institutions, and 
the number of employees. Operating income reflects the 
industry’s economic benefits, the number of institutions 
indicates the market activity, and the number of employ-
ees shows the industry’s overall human resource scale. 
These variables demonstrate the scale and professional 
ability of the industry. High-quality design plays is cru-
cial for construction safety, as excellent design can reduce 
structural defects and accident risks (Fonseca et al., 2014; 
Toole & Gambatese, 2008).

The dataset covers China’s construction industry sta-
tistics from 2010–2019, with the last year (2020) reserved 
for testing. We employed a rolling-window validation ap-
proach rather than random splitting to maintain temporal 
relationships. We have created Table 2 below.

2.2. Construction of multivariate grey static 
model for construction accidents
The GM(1, N) model is well-suited for prediction scenarios 
involving small data volumes and incomplete information, 
and it is affected by multiple factors. It is also widely used 
for predicting multivariate variables. In this model, “1” rep-
resents the single dependent variable, while “N” denotes 
the N independent variables involved, signifying the first 
order of the grey model with N variables. This model is 
suitable for analyzing the state of the system and the dy-
namics of variables, with a modeling and calculation pro-
cess similar to the GM(1, 1) model. The modeling process 
is as follows.

Given a multivariate time-series dataset:
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In a discrete form, the differential term can be writ-
ten as:
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Then, Eqn (7) is abbreviated as:

Y = B*b. (11)

In this system of equations, Y and B represent the 
known quantities, while b serves as the undetermined pa-
rameter. Therefore, the least squares approximation can be 
obtained using the least squares method.

Table 2. Overview of variables and their associated categories

Feature Description Value/Range Data Type Time Period

Total observations Number of yearly data 
points

10 years (2010–2019) Time series 2010–2019

Dependent variable Construction accident 
fatalities

500–900 deaths/year Continuous Annual

Independent variables 9 economic/industry 
indicators

See Table 3 Mixed (continuous, count) Annual

Grey correlation 
threshold

Minimum correlation for 
inclusion

>0.5 – –

Variable combinations Total permutations analyzed 511 combinations – –
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The solution can be determined as follows:
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By substituting the obtained b̂  back into Eqn (4), there 
are:
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Equation (14) represents the time response function 
model of the GM(1, N) model, serving as a concrete cal-
culation formula for the grey prediction of the GM(1, N) 
model. The grey prediction model of the original series

( )0
1 x  is expressed as ( ) ( ) ( ) ( ) ( ) ( )

Ù Ù Ù

+ = + -
0 1 1

1 1 11 1x k x k x k .

2.3. Construction of multivariate grey 
dynamic model for construction accidents
In the dynamic modeling approach of the multivariate grey 
prediction model, the model does not solely depend on all 
the original data. Instead, it takes into account multivari-
ate factors that affect the prediction over time. Therefore, 
the model utilizes specific data sets to establish the initial 
prediction model and dynamically reconstructs it. By us-
ing part of the data set, the model can focus on the most 
representative information for the current prediction cycle. 
To update the data in the dynamic model, this process can 
be described using the following specific formula, ensur-
ing that the model incorporates new data and replaces the 
old data at each step.

Define the data set within the sliding window, encom-
passing the data of n time units counted forward from the 
current time point t:

{ }- + - += ¼1 2, , , .t t n t n tD X X X
 

(15)

Here, Dt denotes the data window at time t, and Xt–i 
represents the observed data at time t – i. Upon the arrival 
of new data Xt+i, update the data window by removing the 
oldest data Xt–n+1 and adding the latest data:

{ } { }+ + - += È1 1 1\ .t t t t nD D X X
 

(16)

This approach ensures that the window always retains 
the most recent n data points. This selective data usage 
strategy is similar to the sliding window method, where 
the data set progresses forward over time, constantly re-
placing the oldest data with new entries. This approach 

not only improves the prediction’s responsiveness and 
correlation but also provides a self-adjusting mechanism 
for the model to accommodate the potential complexities 
of nonlinear and multivariable systems.

The structure of the model needs to reflect the inter-
play among the multivariate variables and their impact 
on the prediction outcome. The modeling process of the 
GM(1, N) dynamic model, illustrated in Figure 3, encom-
passes four key steps: data preprocessing, parameter es-
timation, prediction output, and the iterative process of 
data updating. In the iterative update phase, old data is 
replaced with new data, ensuring that the model reflects 
the latest system state and the dynamic relationships be-
tween variables. When selecting a dynamic model, both 
the model’s prediction efficiency and the influence of the 
dataset’s size on prediction accuracy must be taken into 
account. Unlike static models, which rely solely on fixed 
datasets, optimizing dynamic models entails determining 
the optimal dataset size to maximize prediction accuracy.

The flexibility and updating ability of the model are 
crucial when implementing dynamic modeling for multi-
variate grey predictive models. Compared to traditional 
static models, dynamic models are more adept at handling 
rapidly changing environments and complex multivariable 
systems. Therefore, the dynamic modeling strategy for the 
multivariate grey prediction model is not merely about da-
ta elimination but focuses on optimizing the model’s re-
al-time performance and accuracy. In the context of basic 
experiments using MATLAB R2021b, second-hand work-
stations with minimal hardware configurations (costing ap-
proximately 200~300 $) are adequate. For more demand-
ing high-performance tasks, systems with multi-core CPUs, 
substantial RAM, dedicated GPUs, and SSD storage (rang-
ing from 700~900 $) are recommended. Remarkably, the 
program developed for this study is capable of perform-

Figure 3. Dynamic modeling process of the GM(1, N) model
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ing batch processing of data, achieving significant compu-
tational efficiency. It can process and generate results for 
over one hundred data points within approximately 6 sec-
onds, thereby demonstrating both cost-effectiveness and 
high-speed processing capabilities. The implementation 
details of the GM(1, N) model are provided in Appendix.

2.4. Construction process of multivariate  
gray model for construction accidents
The proposed multivariable grey prediction framework 
GM(1, N) adopts a comprehensive and systematic archi-
tecture to enhance predictive accuracy, model robustness, 
and analytical depth, as illustrated in Figure 4. The mod-
eling process begins with data input and preprocessing, 
wherein historical data from 2010 to 2019 are collected 
from authoritative sources such as government statisti-
cal yearbooks and industry safety reports. The dependent 
variable is defined as the annual number of fatalities in 
municipal housing engineering projects, while nine inde-
pendent variables are rigorously selected based on grey 
relational analysis with a correlation threshold above 0.5, 
ensuring statistical significance and practical relevance. 
The data are normalized and structured into a multivari-
ate time series format to eliminate scale discrepancies, re-
duce noise, and improve model stability. To exhaustively 
explore the input space, a full permutation algorithm is 
employed to generate 511 unique combinations of inde-
pendent variables. Each combination is used to construct 
a static GM(1, N) model involving grey accumulation, least 
squares parameter estimation, and derivation of the time-
response function to forecast the 2020 fatality trend. To 
address temporal variability and enhance adaptability, a 
dynamic GM(1, N) extension is introduced by incorporat-
ing a sliding time window mechanism that enables contin-
uous parameter updating as new data become available. 
The evaluation and optimization module applies relative 
error metrics to assess model performance, retaining only 
those combinations with errors below 5% as optimal. Fur-
ther statistical analyses are conducted to determine the 
ideal number of predictors, evaluate the influence of data-
set size, and quantify the contribution of each variable. In 
the final output and interpretation phase, empirical find-
ings are synthesized into actionable insights, identifying 

dominant risk factors and offering evidence-based recom-
mendations for construction safety governance, including 
targeted resource allocation and preventive strategy de-
velopment. Through the integration of static and dynamic 
modeling with rigorous validation, this framework ensures 
high predictive precision, adaptability, and practical value 
in real-world applications.

3. Predictive results

In a previous study, the construction process of the multi-
variable grey prediction model (GM(1, N)) was extensively 
investigated. In order to leverage these findings to en-
hance construction safety, we can identify key influencing 
factors from the predictive results and formulate target-
ed preventive measures accordingly.In general, the pur-
poses of macro prediction in the construction field can 
be divided into: preparation, planning, and hazard iden-
tification. During the preparation stage, through predic-
tion, risk factors that may lead to serious accidents can be 
identified in advance, and targeted preventive measures 
can be formulated. Thus, during the pre-construction and 
construction processes, targeted technical improvements, 
safety training, equipment upgrades, and other measures 
can be taken to reduce the likelihood of accidents and re-
duce fatal accidents at their source. It helps construction 
enterprises and management departments determine key 
supervision areas and projects, increase safety investment 
and supervision efforts for high-risk projects, ensure that 
the construction process complies with safety standards, 
and effectively prevent accidents and protect the lives of 
workers. In terms of planning, it achieves optimized re-
source allocation. Based on the prediction results, safety 
resources can be allocated reasonably to improve resource 
utilization and make safety work more efficient and eco-
nomical. During the hazard identification stage, targeted 
inspection strategies are formulated based on the predic-
tion results, and the hazard identification plan is dynami-
cally adjusted according to the changes in the predicted 
number of fatalities. If the risk of the number of fatalities 
in a certain stage is predicted to increase, the inspection 
intensity of that stage should be strengthened in a timely 
manner; conversely, the resource allocation should be op-
timized reasonably to avoid waste caused by excessive in-
spection. For instance, by analyzing the impact of different 
variable combinations on the predictive outcomes, we can 
pinpoint the factors that most significantly affect the num-
ber of construction accidents and fatalities, thereby taking 
measures to mitigate these risks during the planning and 
design phases. In this section, the focus shifts to apply-
ing this model to predict two key indicators: the number 
of construction accident fatalities and the total number of 
accidents. These two indicators serve as significant param-
eters for assessing the safety status of the construction in-
dustry. The number of fatalities directly impacts life safety, 
highlighting the critical importance of accurate prediction 
results for developing effective prevention strategies and Figure 4. Workflow of the proposed GM(1, N) model
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rescue plans. Additionally, it provides accident frequency 
data, offering insights into the overall effectiveness of the 
safety management system.

When making a prediction, choosing the optimal com-
bination and number of predictor variables is crucial for 
improving prediction accuracy. By analyzing the effects of 
different variable combinations on prediction results, it is 
possible to identify the factors with the greatest impact on 
the number of construction accidents and deaths, thereby 
enhancing the model’s explanatory power. Moreover, se-
lecting the appropriate number of variables helps prevent 
model overfitting and ensures the generalization ability 
and practical value of the prediction results. Therefore, this 
section focuses on historical data from 2010 to 2019 and 
discusses how to predict the number of construction acci-
dent fatalities and accidents in 2020 by selecting the most 
appropriate number and combination of variables to attain 
improved predictive accuracy.

3.1. Prediction of fatalities  
in construction accidents
3.1.1. Best prediction combination of construction 
accident fatalities

In this study, an exhaustive exploration strategy was 
adopted, and the full permutation algorithm generated 
511 possible combinations of nine variables. Through a 
comprehensive analysis of these combinations, we can 
identify the key variables that have the greatest impact 
on the prediction of construction accident fatalities. This 
information is crucial for devising effective safety manage-
ment measures, such as increasing regulatory oversight of 
enterprises with significant economic contributions to the 
construction industry and enhancing the quality of safe-
ty training for practitioners, thereby reducing accidents at 
their source. A combination of one variable is labeled as 
Varone, a combination of two variables as Vartwo, and so on, 
up to a combination of nine variables labeled as Varnine.  
For example:

= =one one
1 1 2 2Var ,VarX X ,..., = =two two

1 1 2 2 1 3Var Var .X X X X

To provide a clear overview of the variables used in 
our analysis and their relationships, we have created Ta-
ble 3 below.

Using the data from these different combinations for 
the years 2010–2019 as simulated data, the study aimed 
to predict the number of construction accident deaths in 
2020. The comparison between the predicted and actu-
al values for different combinations with a relative error 
of less than 20% is shown in Figure 5. Table 4 presents a 
comprehensive summary of the calculated metrics, their 
formulas, and the values derived from the GM(1, N) mod-
el analysis.

When using the GM(1, N) model to predict the num-
ber of deaths in construction accidents in 2020, the model 
exhibited varying levels of accuracy. The actual number of 
deaths in construction accidents in 2020 was 794. In some 
prediction combinations, the model did not achieve the 
expected accuracy, with some prediction errors exceeding 
10%. For example, the prediction error for the combina-
tion two

30Var  was as high as 18.01%. These results indicate 

Table 3. Overview of variables and their associated categories

Variable Definition Unit Associated Category

X1 Total output value of the construction industry 10 billion yuan Overall construction industry variables
X2 Number of construction enterprise units 100 Overall construction industry variables
X3 Number of employees in the construction industry 100,000 people Overall construction industry variables
X4 Operating income of construction project supervision 100 million yuan Construction project supervision variables
X5 Number of construction project supervision enterprises 10 Construction project supervision variables
X6 Number of registered practitioners in construction project 

supervision enterprises
100 people Construction project supervision variables

X7 Operating income of survey and design units 10 billion yuan Survey and design industry variables
X8 Number of survey and design institutions 10 Survey and design industry variables
X9 Number of employees at the end of the year in survey and 

design institutions
1000 people Survey and design industry variables

Figure 5. Combinations of variables with a relative error of less 
than 20% in predicting the number of construction accident 

fatalities in 2020
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that the size of the prediction error may be influenced 
by many factors, such as the interaction effect between 
variables and changes in the external environment. There-
fore, selecting the correct data and understanding the re-
lationship between variables are crucial during the mod-
eling process.

By adjusting the model with different combinations 
of variables and estimating the parameters, it is possible 
to better adapt to changes in the system state and im-
prove prediction accuracy. For example, after adjustments, 
there were five combinations with a relative error of no 
more than 0.5%. In the prediction combinations five

91Var  
and six

29Var , the model’s predicted values were completely 
consistent with the actual number of deaths. This indicates 
that when the model parameters are precisely adjusted to 
fit a specific combination of variables, the predictive abil-
ity of the model is significantly improved. This high degree 
of accuracy not only demonstrates the appropriateness of 
the model structure but also highlights its ability to cap-
ture the interactions between complex factors related to 
the number of fatalities in construction accidents when 
suitable variables are selected.

3.1.2. Optimal number of predictive variables  
for construction accident fatalities

After analyzing the prediction results based on the GM(1, 
N) model, it was observed that the accuracy of predictions 
changes with the number of variables included. Different 
combinations, from Varone to Varnine, represent increasing 
numbers of variables, with Varone representing a single var-
iable and Varnine representing a combination of nine vari-
ables. The prediction results varied accordingly. For exam-
ple, combinations Vareight and Varnine had relative errors 
above 70% and were unsuitable as predictor variables. In 
order to find the optimal number of predictor variables, 
the number of different combinations with relative errors 
below 20% was counted and categorized into different er-
ror intervals, as shown in Figure 6 and Table 5.

According to the prediction results, 164 out of 511 
combinations had relative errors within 20%, with two 
combinations falling within the 0–5% error range. When 

the number of variables increased to 2, there were no 
combinations with errors in the 0–5% range, and most er-
rors were within the 10–20% range. For combinations of 3 
to 4 variables, the prediction error was primarily within the 
10–20% range. However, there was a significant increase in 
the number of combinations within the 0–5% error range, 
especially with four-variable combinations, which has the 
most predictions in the 0–5% range. Beyond 5 variables, 
the accuracy decreased compared to the four-variable 
combinations, especially in the lowest error interval. At the 
same time, comparing the prediction results of the four-
variable combinations in Table 5 with the actual value, it 
was found that most four-variable combinations had small 
prediction errors, indicating that the model can provide 
more accurate predictions with four variables.

The number of selected variables is directly related to 
model complexity. Too many variables can lead to overfit-
ting, while too few may fail to capture all important fea-
tures of the data. In predicting the number of construction 
accident fatalities, using a combination of four variables 
achieves a balance by providing sufficient information to 
capture key factors while avoiding overfitting due to ex-
cessive variables. This balance reduces the computational 
cost of model training and prediction. The four-variable 
model accommodates the nonlinear relationships in the 
data while maintaining enough simplicity to avoid unnec-
essary complexity, making it the optimal choice for pre-
dicting construction accident fatalities in 2020.

Table 4. Metrics calculated in experimental results

Metric Formula/Definition

Relative error || ||
= ´

Actual-Predicted 100%
Actual

RE

Grey relational grade
=

- + -
=

- + -å 0 0
1 0 0

min || ( ) ( ) || max || ( ) ( ) ||1
|| ( ) ( ) || max || ( ) ( ) ||

n
i i

i k i i

x k x k x k x k
n x k x k x k x k






Mean absolute percentage error
=

-
= ´å 1

|| Actual predicted||1 100%
Actual

n
i

i i
MAPE

n
Consistency function -

=
-

min

max min

k
k

r R
RV

R R

Optimal data size Empirical analysis of RE vs. data size 

Table 5. Relative error distribution statistics for construction acci-
dent deaths using different numbers of predictor variables in 2020

Number of variables 0–5% 5–10% 10–20% Total

1 2 0 1 3
2 0 1 8 9
3 5 2 27 34
4 14 6 28 48
5 9 12 18 39
6 5 10 6 21
7 6 2 2 10

Total 41 33 90 164
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3.2. Prediction of the number of construction 
accidents
3.2.1. Best prediction combination of the number  
of construction accidents

In order to comprehensively evaluate the impact of differ-
ent variable combinations on the prediction of construc-
tion accidents, 511 combinations of nine variables were 
estimated using data from 2010 to 2019. The model then 
predicted the number of accidents in 2020. Figure 6 dis-
plays the combinations with a relative error of less than 
20%. By comparing these predicted values with the actual 
number of accidents, it provides an intuitive assessment of 
which variable combinations are most effective in predict-
ing construction accidents. 

Among the 511 combinations, 173 have a relative error 
of less than 20% for predicting the number of accidents. 
The actual number of construction accidents in 2020 was 
689. The five groups with the smallest prediction errors 
were 0.44% for three

21Var , 0.44% for four
22Var , 0.15% for 

four
87Var , 0.44% for five

31Var  and 0.29% for six
72Var . Similar 

to the prediction of accidents fatalities, the best predic-
tion combinations often involve four variables, indicating 
that the model parameters are particularly well-suited for 
these combinations. When the number of variables in the 

combination exceeds seven (Vareight and Varnine combina-
tions), the relative error of the prediction rarely falls be-
low 20%. This indicates that these models cannot fully re-
flect the changes in the number of accidents. Therefore, in 
order to explore the impact of the number of predicator 
variables on the accuracy of accident predictions, further 
analysis of empirical results is necessary to determine the 
optimal number of predictor variables. Table 6 shows the 
parameter summary table, which provides a comprehen-
sive list of each parameter and can be traced directly back 
to the methods section.

3.2.2. Optimal number of predictive variables  
for construction accident fatalities

In Section 3.2.1, a detailed discussion was conducted on 
the results of predicting the number of construction ac-
cidents in 2020 using various combinations of variables, 
aiming to identify the optimal combinations in terms of 
performance. These combinations demonstrate excep-
tional prediction accuracy, providing strong evidence re-
garding which variable combinations are most effective in 
predicting the number of accidents. However, for further 
optimization of the predictive model to enhance its prac-
ticality and efficiency, it is crucial to determine the ideal 
number of variables for constructing the predictive model. 
Therefore, the following section will delve into a compre-
hensive analysis to understand how different numbers of 
variables affect the predictive capability of the model. Ta-
ble 7 provides a summary of the counts of various com-
binations with a relative error below 20% across different 
error ranges.

The table presents error distribution data for predicting 
construction accidents using one to nine variables. It illus-
trates the frequency of prediction errors within the 0–5%, 
5–10%, and 10–20% error ranges across different variable 
combinations, offering insights into each variable’s pre-
dictive efficacy. Analysis reveals that the univariate model 
(one variable) generally yields substantial errors, especially 
within the 10–20% range, indicating insufficient predictive 
capacity for complex accidents. As the number of variables 
increases to two and three, the prediction accuracy im-
proves but remains largely imprecise. Notably, the four-
variable model demonstrates the highest performance, es-
pecially within the 0–5% error range, indicating its effec-
tiveness in capturing accident complexities and providing 

Figure 6. Variable combinations with a relative error of less than 
20% in predicting the number of construction accidents in 2020

Table 6. Model parameters and settings

Parameter Description

Data size (n) Number of years included in the dataset for model training and validation
Dependent variable (x1

(0)) System characteristic variable (main predicted output)
Independent variables (N) Influencing factors (e.g., industry scale, supervision metrics)
Grey relational coefficient (γ) Threshold for variable inclusion
Model coefficients (a, b2, b3,...) Parameters estimated via least squares
Background value (α) Weighting factor for cumulative sequence generation in grey modeling
Error threshold (ε) Maximum allowable relative error for model validation
Sliding window size (Ꞷ) Dynamic model update interval for real-time prediction
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accurate predictions. However, when the number of vari-
ables exceeded four, performance in the lowest error in-
terval (0–5%) did not see any significant improvement nor 
slight decrease. This may be because the additional vari-
ables may not improve the prediction performance of the 
model, but could instead lead to overfitting, making the 
model unable to generalize to new data effectively.

Table 7. Relative error distribution statistics of the number of ac-
cidents under different numbers of variables in 2020

Number of variables 0–5% 5–10% 10–20% Total

1 2 0 4 6
2 1 5 6 12
3 3 6 32 41
4 11 7 35 53
5 5 9 18 32
6 6 3 9 18
7 1 8 0 9
8 0 1 1 2

Total 29 39 105 173

In conclusion, consistent with the prediction of fatal-
ities in construction accidents, the four-variable model 
demonstrated the optimal balance in this study, providing 
the most effective approach to achieve high prediction ac-
curacy while maintaining model simplicity.

4. Discussion
4.1. Effect of data size on the prediction
In the previous section, the data from 2010–2019 was uti-
lized to predict the number of construction deaths in 2020, 
showcasing the prediction results based on a 10-year data 
span. This section will expand the data size to explore how 
different data sizes impact the accuracy of the prediction 
model. By incorporating data from diverse time series to 
expand the data size, the impact of time span on mod-
el performance was evaluated. The distribution of relative 
errors for various data sizes in 2020 is shown in Figure 7. 
Expanding the data size aids in comprehending the mod-
el’s adaptability to different time scales and data densities. 
By comparing the model’s performance across various da-
ta sizes, the most suitable data configuration to provide 
more accurate predictions can be discerned.

When discussing the impact of data size on predic-
tive accuracy, we must consider not only how to improve 
the model’s predictive power but also how to utilize this 
information to optimize safety management practices. By 
expanding the scope of data, we can gain a more com-
prehensive understanding of the trends in construction ac-
cidents, leading to more targeted policy-making and re-
source allocation decisions. When assessing the impact of 
data size on prediction accuracy, the number of predic-
tions within the low error range (0–5%) increased as the 
data size increased, particularly notable within the 0–5% 

and 5–10% error ranges when the data size reached n = 7. 
This flexibility in data requirements is an advantage of the 
full permutation algorithm, which does not impose specific 
demands on the origin or characteristics of the data. This 
feature enhances the model’s generalizability and could 
potentially apply to other countries with different datasets, 
thus broadening the applicability of our findings globally. 
This could be attributed to the availability of sufficient his-
torical data, enabling the model to more effectively cap-
ture trends and periodicity in the data. Hence, larger da-
ta sizes may have a positive effect on the accuracy of the 
prediction model.

In constructing the grey prediction model, determining 
the appropriate data size is crucial. The increase in accu-
racy resulting from larger data size stems from the mod-
el’s ability to use more historical information for learning 
the underlying patterns and periodicity in the data. In the 
case of the univariate grey prediction model, optimal per-
formance is often observed with moderate data sizes, such 
as n = 7 (Wang & Song, 2019). However, in the multivari-
ate grey prediction model, although the number of predic-
tion combinations with low errors significantly increases at 
the medium size of n = 7 and gradually stabilizes, it con-
tinues to exhibit improvement, with the best performance 
observed at a larger data size, particularly at n = 10. This 
phenomenon may be attributed to the fact that in the uni-
variate scenario, where the model only considers the vari-
able itself, it struggles to capture all the system dynam-
ics. Extensive data size may cause the model to focus on 
atypical historical fluctuations, thereby affecting prediction 
accuracy. Hence, the simplicity of the model in capturing 
and learning the main trends in the data is crucial. As the 
data size increases, beyond a certain critical point, addi-
tional noise may be introduced, leading to a reduction 
in prediction accuracy. Thus, the univariate model reaches 
equilibrium at moderate data sizes, achieving a balance 
between capturing the system’s main trend and avoiding 
overfitting.

Figure 7. Distribution of relative errors in fatalities across 
various data sizes
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In contrast, the multivariate grey prediction model 
demonstrated its optimal performance over a span of 10 
years. This suggests that by incorporating more relevant 
variables, the model can gain additional information from 
the increased amount of data, aiding in capturing more 
complex system dynamics and interactions between vari-
ables. The increased data size provides the multivariate 
model with richer information, allowing more precise pa-
rameter estimation and thus improving prediction accu-
racy. Moreover, the multivariate model exhibits improved 
noise filtration capabilities, improving its generalization 
ability on larger datasets. Currently, the largest data size 
limit in our study is 10 years based on the scope and qual-
ity of available data. Future studies could explore the pos-
sibility of extending the data size. However, careful consid-
eration must be given to the relevance of the data and the 
adaptability of the prediction model to avoid compromis-
ing its generalization ability through overfitting.

Overall, the differences in data size selection between 
univariable and multivariable grey prediction models high-
light the importance of balancing data size and model 
complexity during the modeling phase. Optimal data size 
selection requires considerations of data quality, system 
complexity, and model applicability. Therefore, when mak-
ing predictions, exploring the optimal data size is crucial 
for improving both the predictive accuracy and reliabil-
ity of the model. This study is constrained by a decadal 
dataset, which may limit the identification of long-term 
trends and complex system dynamics in the construction 
industry.

4.2. Variable importance assessment
In Section 4.1, the prediction of 2020 fatalities under dif-
ferent data sizes revealed significant disparities in the pre-
diction results across different variable combinations (from 

one
1Var  to nine

1Var ), indicating varying importance of indi-
vidual variables for prediction. Subsequently, in the fol-
lowing analysis, the prediction results from 4.1 were used 
to count the frequency of each variable’s occurrence with 
a relative error of below 5% across different data sizes, as 
shown in Figure 8. Because the multivariate grey predic-
tion model exhibited stabilization at n = 7, statistical data 
were collected for sizes ranging from 7 to 10. This qualita-
tive analysis aimed to assess the contribution of each vari-
able to the prediction results by counting the occurrences 
of different variables with relative errors below 5%.

In assessing the impact of different variables on predic-
tive outcomes, we have found that certain variables play 
a key role in reducing prediction errors. These findings 
can assist us in identifying areas that should be given fo-
cused attention in construction safety management, such 
as intensifying regulatory oversight in specific industries 
or enhancing the quality of safety training for certain po-
sitions. Based on the data presented in Figure 8, the vari-
ables exhibiting high importance in reducing prediction 
errors can clearly be identified. For example, as the data 
size increases, the number of occurrences of some vari-
ables also significantly increases. Moreover, the number of 
occurrences of X5, representing the number of construc-
tion engineering supervision companies, increases from 6 
times when n = 7 to 32 times when n = 10. This suggests 
that the contribution of this variable to the model increas-
es with the increase in the data size. Conversely, X9, indi-
cating the number of employees at the end of the survey 
and design agency, appears 18 times when n = 7 and 17 
times when n = 10, indicating it is not very sensitive to 
changes in data size.

When analyzing statistical data sizes ranging from 7 to 
10, the occurrences of different variables within a relative 
error of less than 5% were examined. It was observed that 
the variable X5, representing the number of construction 

Figure 8. Occurrence count of different variables with relative errors below 5%
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engineering supervision companies, appeared most fre-
quently in the prediction results with an error of less than 
5%, occurring 72 times. This statistical result highlights the 
importance of the X5 variable in improving the prediction 
accuracy of the model, suggesting a pivotal role of con-
struction engineering supervision companies in mitigating 
the mortality rate of construction accidents. The respon-
sibilities of supervision companies typically include moni-
toring the quality, progress, and cost of construction proj-
ects to ensure compliance with established standards and 
safety protocols. Therefore, the effective operation of su-
pervision companies is closely related to accident reduc-
tion and safety improvement.

Overall, the occurrence number of the 9 variables dem-
onstrated a steady increase, confirming the stability and 
reliability of the multivariate grey prediction model with a 
larger dataset. These results not only strengthen the basis 
of data-centric decision-making but also provide an em-
pirical foundation for optimizing variable selection in pre-
dictive models for construction industry accident fatalities. 
Moving forward, according to the frequency of different 
variables, more attention should be given to variables of 
higher importance, while those with lesser predictive con-
tributions ought to be either excluded or given reduced 
weight. Although the gray correlation threshold (γ > 0.5) 
selected nine key variables, this strict criterion might over-
look other potentially influential predictors with slightly 
lower correlations, which could further improve the mod-
el’s accident prediction accuracy.

4.3. Prediction contributions  
of different historical years
In Section 4.1 of this study, an enhanced version of the 
multivariate grey prediction model was developed to pre-
dict the model’s performance as the dataset expands. 
Based on this finding, the prediction accuracy of the mod-
el across different years was explored. For this purpose, a 
model using a decade-long dataset, spanning from the ini-
tial ten years, was employed to predict the number of con-
struction accident deaths in various subsequent years. By 
employing grey prediction techniques from 2017 to 2019, 
the relative prediction errors were calculated for different 
combinations, as shown in Figure 9. The relative error for 
each combination in the prediction from 2017 to 2019 is 
detailed in the Appendix. The following figure illustrates 
the results of one variable (9 groups), two variables (36 
groups), and three variables (84 groups) predicting the 
number of deaths resulting from construction accidents 
from 2017 to 2019. Through assessing the model’s perfor-
mance against recent year data, the impact of prediction 
accuracy from 2017 to 2019 on the accuracy of predictions 
for 2020 was explored.

The prediction outcomes reveal varying results across 
different variable combinations ( one

1Var  to nine
1Var ) for the 

years 2017, 2018 and 2019. selected combinations of the 
multivariate grey prediction model are shown to visualize 
the prediction results for the years 2017–2019, as illustrat-
ed in Figure 10.

The performance of the same variable in different com-
binations varied significantly. For example, the variable X7, 
operating income of survey and design units, appears in 
the combinations two

5Var , three
10Var , and five

6Var , but the 
relative errors of these combinations fluctuate greatly. This 
indicates that the influence of this variable on the mod-
eling results is highly uncertain across different variable 
combinations. In a multivariate model, each variable in-
fluences the prediction results through a network of in-
teractions rather than in isolation. The impact of a single 
variable is affected by the combination in which it is in-
cluded. For example, when the operating income of survey 

Figure 9. Relative errors in predicted fatality numbers from 2017 
to 2019 under different combination conditions: a – one variable 
(9 groups); b – two variables (36 groups); c – three variables (84 
groups)
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and design units is incorporated alongside other indus-
try economic indicators, such as the total output value of 
the construction industry and the scale of the construction 
market, these variables may produce synergistic effects. 
For example, the expansion of the market scale can in-
crease the demand for design services, thereby increasing 
the operating income of design units and influencing proj-
ect capital allocation and quality control standards. When 
considered alongside the supervision industry, the predic-
tive influence of the design unit may be diminished in the 
strict regulatory environment. Therefore, multivariate pre-
diction enables a more comprehensive understanding of 
the interactions between variables.

When examining the relative errors of different com-
binations, varying trends over time can be observed. For 
example, the combination one

6Var  had a relative error of 
9.42% in 2017, which decreased to 1.19% in 2018. Con-
versely, the combination two

5Var  had a relative error of 
1.12% in 2017, but this increased significantly to 9.40% in 
2018. These changes indicate that the same combination 
can have different effects on prediction accuracy in differ-
ent periods. Therefore, this paper explores the mutual in-
fluence of forecasting across different periods by analyzing 
the relative size of errors.

The relative error obtained for n different combinations 
of predictions for each year are ¼1 2 3 n, , , ,   .r r r r

Let    { } { }= =max 1 2 3 min 1 2 3max , , , ..., , min , , , ..., .n nR r r r r R r r r r
Then, the relative position size of the relative error for 

the kth combination can be defined as a consistent func-
tion:

( )
( )

-
=

-
min

max min
.k

k
r R

RV
R R

 
(17)

For each year from 2017 to 2020, there are n consis-
tency functions RVk:

 ■ The consensus function defining the relative error in 
2017 is the RVk1;

 ■ The consensus function defining the relative error in 
2018 is the RVk2;

 ■ The consensus function defining the relative error in 
2019 is the RVk3;

 ■ The consensus function defining the relative error in 
2020 is the RVk4.

Previous predictions were often made by calculating 
the average relative error from 2017 to 2019 and select-
ing the prediction variable with the smaller average rela-
tive error. This approach means that the smaller the value 
of + +* * *

1 2 31/ 3 1/ 3 1/ 3k k kRV RV RV , the better the predic-
tion effect for 2020. In order to explore the different pre-
diction weights of 2017–2019 relative to 2020, this study 
defines:

= + + +1 1 2 2 3 3c * c * c * ,kp k k kRV RV RV RV h
 

(18)

where RVkp is the predicted value of the consistent func-
tion for 2020, c1, c2 and c3 are the coefficients representing 
the impact of 2017, 2018, and 2019 on the 2020 forecast, 
respectively, and h is a constant.

The analysis examined the relative error over four 
years, with the consensus function depicted in Table 8 for 
the period 2017–2020. This table allows for evaluation and 
comparison of the stability and reliability of predictive per-
formance over these four years. The consensus function 
serves as an indicator of the predictive ability of each com-
bination within each year, calculated from the prediction’s 
relative error for each year. A lower value of this function 
indicates a smaller prediction error for the combination 
across different years. 

Linear regression was conducted using the consensus 
function of 2017–2019 as the independent variable and 
the consensus function of 2020 as the dependent variable. 
The regression yielded the predicted value of the consen-
sus function for 2020. The results of the linear regression 
analysis, compared with the actual values, are shown in 
Figure 11. The coefficient of the linear expression in this 
regression model quantifies the predictive contribution of 
different historical years (2017–2019) to the prediction for 

Figure 11. Comparison of predicted and actual values of the 
consensus function for predicting the number of fatalities  

in 2020 from 2017 to 2019

Figure 10. Differences in prediction accuracy under selected 
multivariate grey prediction combinations
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Table 8. Consistency function for combinations with relative er-
rors under 20% in fatality numbers from 2017 to 2020

Variable 
combinations 2017 2018 2019 2020

one
3Var 0.64 0.56 0.86 0.00
one
5Var 0.80 0.54 0.73 0.64
one
8Var 0.60 0.46 0.71 0.04
two
17Var 0.58 0.64 0.99 0.39
two
20Var 0.70 0.51 0.27 0.53
two
24Var 0.43 0.00 0.49 0.68
two
35Var 0.30 0.40 0.04 0.58
three
9Var 1.00 0.56 0.16 0.39
three
22Var 0.53 0.03 0.67 0.97
three
26Var 0.51 0.06 0.36 0.84
three
28Var 0.33 0.53 0.73 0.59
three
30Var 0.67 0.56 0.02 0.05
three
60Var 0.49 1.00 0.31 0.86
three
73Var 0.96 0.09 1.00 0.53
three
76Var 0.46 0.73 0.12 0.58

three
78Var 0.79 0.58 0.13 0.46
three
81Var 0.80 0.58 0.00 0.21
four
24Var 0.90 0.39 0.87 0.85
four
25Var 0.64 0.10 0.33 0.91
four
32Var 0.10 0.19 0.53 0.71
four
34Var 0.08 0.17 0.53 0.88
four
39Var 0.07 0.75 0.38 0.75
four
48Var 0.31 0.21 0.45 0.07
four
50Var 0.17 0.00 0.43 0.91
four
52Var 0.45 0.55 0.72 0.09
four
53Var 0.56 0.05 0.34 0.01
four
108Var 0.90 0.71 0.82 0.44
four
122Var 0.96 0.29 0.25 0.14
five
29Var 0.33 1.00 0.28 0.98
five
31Var 0.52 0.48 0.27 0.24
five
32Var 0.00 0.92 0.51 0.64
five
46Var 0.22 0.78 0.01 1.00

the year 2020. The linear expression is as follows:

=- - + +4 1 2 30.43* 0.032* 0.01* 0.765.k k k kRV RV RV RV  (19)

The results reveal that the relative error in 2017 holds 
the most significant influence on 2020, with a coefficient 
of –0.43. This indicates that when there is a large pre-
diction error in 2017, the error in 2020 may be reduced, 

and vice versa, indicating an inverse correlation or reverse 
trend between these two years. Conversely, the relative er-
ror in 2018 has a lesser impact on 2020, indicated by a co-
efficient of –0.032, suggesting that the prediction accuracy 
in 2018 is not strongly correlated with accuracy in 2020. At 
the same time, the relative error in 2019 exhibits a weak 
impact on 2020 with a coefficient of 0.01, indicating that 
an improvement in prediction accuracy in 2019 may slight-
ly increase the accuracy of predictions for 2020.

In more distant years, a negative correlation is ob-
served. This phenomenon is sometimes referred to as risk 
compensation theory (RCT) in the field of safety manage-
ment (Wilde, 1982). When the safety of a system improves, 
individuals may engage in riskier behaviors, thereby offset-
ting the overall reduction in risk. Similarly, if forecasts in-
dicate lower future accident rates, policymakers might be-
come less vigilant and allocate fewer resources to safety 
measures, potentially resulting in an eventual increase in 
actual accident rates. The constant term in this prediction 
model is 0.765, influenced by factors such as the decline 
in construction activity and the onset of the epidemic in 
2020, as well as the rising number of deaths in 2017–2019. 
Therefore, a baseline prediction error value is established.

5. Conclusions
In multivariate grey prediction, selecting appropriate vari-
ables is essential to enhance prediction accuracy. The tra-
ditional multivariate grey prediction model, GM(1, N), typi-
cally relies on several variables with high correlation as pre-
dictive factors, often resulting in limited comprehensive-
ness. This study considered multiple potential influencing 
factors by exploring 511 combinations of nine variables, 
aiming to improve both the accuracy and interpretability of 
predictions. The specific conclusions are drawn as follows:

(1) The study identified that using approximately four 
control variables yields optimal predictive accu-
racy. This finding underscores the importance of 
balancing model complexity with the number of 
variables included. By limiting the model to four 
variables, we were able to achieve a model that is 
not only accurate but also avoids overfitting, which 
could obscure the underlying relationships within 
the data.

(2) The findings indicate that as the data size in-
creased from 5 years to 10 years, the prediction 
accuracy improved significantly. This improve-
ment was particularly pronounced with data sizes 
exceeding 7 years, where the model’s predictive 
performance became more stable and accurate. 
Consequently, when using multivariate grey pre-
diction, selecting a broader data range becomes 
crucial to obtain more comprehensive information.

(3) An analysis of the model’s predictive performance 
across different years revealed a correlation be-
tween past prediction accuracy and future predic-
tions. The findings indicated an inverse relation-
ship with the prediction accuracy of 2017 and a 
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positive relationship with that of 2018, highlight-
ing the importance of considering historical pre-
diction performance when forecasting future con-
struction accidents.

The multivariate model has an error rate of less than 
0.5% in prediction accuracy, which effectively improves the 
information capture ability and prediction accuracy. After 
a comprehensive evaluation of different combinations of 
variables, it was concluded that among all the combina-
tions of variables, the prediction effect was best when the 
number of control variables was about four. The study fur-
ther shows that in multivariate models, appropriate data 
sizes (n = 7 to n = 10) can minimize model complexity 
while maintaining prediction accuracy. At the same time, 
this study reveals the importance of variable selection, and 
quantifies the prediction contribution of historical years to 
subsequent years by defining a consensus function and as-
signing weights to the prediction effects of different years.

This study has provided initial research results by deep-
ly analyzing the application of a multivariable grey predic-
tion model in forecasting construction accidents, providing 
a new perspective and tool for accident prediction and risk 
management in construction projects. However, there is 
potential for further expansion and refinement in this ar-
ea. One limitation is the shift from macro trends to micro 
level safety management practices, as the applicability of 
the model may vary due to differences in local regulations, 
cultural practices, and economic conditions. In addition, 
further investigation is needed into the selected variables 
and the mechanisms behind their impact on construction 
accidents. Future research can benefit from exploring the 
causal relationship between variables and accident out-
comes to enhance the explanatory power and practical ap-
plication of the model.

With the development and popularization of big data 
technology, the use of more extensive and multi-dimen-
sional data resources, such as socio-economic data, proj-
ect execution details, and environmental monitoring data, 
can further improve the comprehensiveness and accuracy 
of prediction models. By integrating this data, predictive 
models are able to more comprehensively capture the fac-
tors that influence the occurrence of safety incidents, en-
abling more accurate risk assessments. Therefore, future 
research should be committed to further improving the 
prediction effect of production safety accidents in hous-
ing municipal engineering through data-driven, so as to 
better serve the construction industry with China’s hous-
ing municipal engineering as the core with the rapid de-
velopment of urbanization, and provide scientific support 
and decision-making tools for the safety management of 
the construction industry.
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APPENDIX

% DGM(1,N) Model with 4 Independent Variables
% Purpose: Predictive modeling using cumulative data sequences
% ----------------------------------------------------------------------
for n1 = 2:11

for n2 = n1+1:11
for n3 = n2+1:11

for n4 = n3+1:11

% --- Section 1: Data Initialization ---
disp(‘--------------------- Dividing Line -----------------’);

% Extract and preprocess input data (x0: original matrix)
x1 = x0(1,:); x2 = x0(2,:); x3 = x0(3,:); x4 = x0(4,:);
x5 = x0(5,:); x6 = x0(6,:); x7 = x0(7,:); x8 = x0(8,:);
x9 = x0(9,:); x10 = x0(10,:); x11 = x0(11,:);

q = length(x1);
xf = []; xfd = xf’;
xf2 = []; xf3 = []; xf4 = []; xf5 = []; xf6 = [];
xf7 = []; xf8 = []; xf9 = []; xf10 = []; xf11 = [];

% --- Section 2: Cumulative Sum Calculation ---
% Cumulative sum for each variable
xf2 = [xf2, x2]; xf3 = [xf3, x3]; xf4 = [xf4, x4];
xf5 = [xf5, x5]; xf6 = [xf6, x6]; xf7 = [xf7, x7];
xf8 = [xf8, x8]; xf9 = [xf9, x9]; xf10 = [xf10, x10]; 
xf11 = [xf11, x11];

% Append zeros for matrix alignment
xf2 = [xf2, xfd(1)]; xf3 = [xf3, xfd(2)]; 
xf4 = [xf4, xfd(3)]; xf5 = [xf5, xfd(4)];
% ... (similar lines for xf6 to xf11)

xf21 = cumsum(xf2); xf31 = cumsum(xf3); 
xf41 = cumsum(xf4); xf51 = cumsum(xf5);
% ... (similar lines for xf61 to xf111)

% --- Section 3: Matrix Construction for Least Squares 
---
n = length(x1);
m = length(xf(1,:));

% Initialize zero vectors
x00 = zeros(1, n-1);
x01 = zeros(1, n+m);

% Construct matrices F and Ff
F = [x00’, cumsum(x2)(2:n)’, cumsum(x3)(2:n)’, ... 

cumsum(x4)(2:n)’, cumsum(x5)(2:n)’];
Ff = [x01’, xf21(1:n+m)’, xf31(1:n+m)’, ... 

xf41(1:n+m)’, xf51(1:n+m)’];

% --- Section 4: Parameter Estimation ---
B = [-cumsum(x1)(1:n-1)’, F(:,n1), F(:,n2), ... 

F(:,n3), F(:,n4), ones(n-1,1)];
Y = cumsum(x1)(2:n))’;
P = inv(B’*B) * B’*Y; % Least squares solution

% Extract coefficients
b1 = P(1); b2 = P(2); b3 = P(3); 
b4 = P(4); b5 = P(5); b6 = P(6);
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% --- Section 5: Model Simulation ---
% Simulate values (y1) and compute residuals
y1(1) = x1(1);
for k = 1:n-1

y1(k+1) = -b1*y1(k) + b2*F(k,n1) + b3*F(k,n2) + ...
b4*F(k,n3) + b5*F(k,n4) + b6;

end

% --- Section 6: Forecasting ---
% Predict future values (Fore0)
f1 = [x11(1)];
for k = 2:m+n

f1(k) = -b1*f1(k-1) + b2*Ff(k,n1) + b3*Ff(k,n2) + ...
b4*Ff(k,n3) + b5*Ff(k,n4) + b6;

end

% --- Section 7: Output Results ---
% Display selected variable combination
disp([‘(1) Independent Variables: (‘, num2str(n1), ‘,’, ...

num2str(n2), ‘,’, num2str(n3), ‘,’, num2str(n4), ‘)’]);

% Display model parameters
disp(‘(2) Model Parameters [b1, b2, ..., b6]:’);
disp(P);

% Calculate and display errors
A = zeros(length(x1), 5);
mp = 0; % Mean percentage error
for k = 1:length(x1)

A(k,1) = k;
A(k,2) = x1(k);
A(k,3) = y0(k);
A(k,4) = A(k,3) – A(k,2);
A(k,5) = 100 * abs(A(k,4)) / A(k,2);
mp = mp + A(k,5);

end
mp = mp / (length(x1)-1);

disp(‘(3) Error Test Table:’);
disp(‘ No. Actual Simulated Residual Error(%)’);
disp(A);

disp(‘(4) Mean Relative Error (%):’);
disp(mp);

disp(‘(5) Next-Year Forecast:’);
disp(Fore0(n+m));

% Export results to Excel
t = table([n1,n2,n3,n4], Fore0_1, Fore0_2, mp, ...

‘VariableNames’, {‘Independent_Variables’, ...
‘Fitted_Value’, ‘Forecast_data’, ‘Average_Error’});

writetable(t, ‘Four_Variable_Case.xlsx’, ...
‘WriteMode’, ‘append’);

end
end

end
end


