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Article History:  Abstract. Columns are important structural components and are threatened by local conflicts and explosion accidents. 
This paper presents a fuzzy-based risk assessment framework to evaluate the potential blast disasters associated with 
structural columns. The framework establishes an indicator system and incorporates risk functions and a fuzzy transfor-
mation system for blast risk assessment. The priority weights of critical attributes are determined using a fuzzy analytic 
hierarchy process (FAHP) approach, and the risk factor (RF) is calculated via the aggregation of foundational fuzzy eval-
uations. The  feasibility and applicability of  the  framework are demonstrated  through the  risk  level assessment of five 
example columns. The framework’s rationality is further validated by comparing the onrisk grades of identical cases, as 
assessed by the proposed framework and alternative methods. The study results indicated that the framework can ef-
fectively discern the risk range of desired grade rankings and ascertain the risk grade. By integrating the obtained at-
tribute ranking and hierarchical structure, the framework facilitates the identification of potent strategies for controlling 
blast risk. The resulting risk-grade findings serve as a foundation for the  identification of priority protection and anti-
explosion design of structural columns.
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1. Introduction
In recent years, the increases in terrorist attacks and local 
wars represented by the Israeli-Palestinian and the Russia-
Ukraine conflict worldwide (Qi et al., 2017; Ouyang, 2014; 
Yan et al., 2022), in addition to incidents of explosive ma-
terial accidents during production, storage, and transpor-
tation (Sun et al., 2022; Li et al., 2022), have elevated the 
risk to engineering structures from potential blast inci-
dents. Structural columns, key load-bearing components 
of civil engineering, are not generally equipped with anti-
explosion  facilities and are easily accessible  (Shi & Stew-
art, 2015; Zhou et al., 2022; Hou et al., 2018). Thus, in the 
event of an explosion,  these columns can sustain signifi-
cant damage, potentially leading to a cascading collapse 
of  the structure  (Gündel et al., 2012; Stawczyk, 2003; Shi 
et al., 2010). Therefore, there is an increasing need to de-
velop methods for evaluating and controlling the blast 
disasters to these columns.

The risk level of engineering structures being subject-
ed to an explosion accident varies,  it  is consequential  to 
identify high-risk columns as priority targets for retrofitting 
(Clough  &  Clubley,  2019;  Tetougueni  et  al.,  2020). 
Moreover, some columns maintain their load-bearing ca-
pacity even when the structure sustains damage from an 
explosion (Wang & Zhang, 2022). Therefore, conducting an 
anti-explosion design for all columns is economically  im-
practical. Risk assessment offers a risk grade by combining 
the disaster occurrence probability, disaster consequenc-
es, and the components’ resistance performance (Kooha-
thongsumrit & Meethom, 2024; Cho et al., 2023; Li et al., 
2019).

To the best of our knowledge, this is the first study to 
quantitatively evaluate the risk level of columns subjected 
to blast disasters. Its novelty lies in establishing the 
indicator system of blast risk assessment and proposing 
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a framework for reasonably determining and controlling 
the blast risk grade. The blast risk grade can guide the 
definition of  the  fortification  target and  the  strengthen-
ing strategy. The findings of this paper provide a basis for 
the monitoring of blast risk and performance-based blast-
resistant design of structural columns.

2. Literature review
The conceptual definitions,  risk  functions, and evaluation 
methods of risk assessment vary across different fields (Qie 
& Rong, 2017; Pérez-Fernández et al., 2015; Davidson et al., 
2006). The assessments of various disasters within the civil 
engineering field have been addressed in numerous stud-
ies (Zhen et al., 2022; Faber & Stewart, 2003; Wang & El-
hag, 2007). Zhen et al. (2022) designed an indicator-based 
risk assessment framework for rural buildings exposed to 
flash  floods.  The  flood disaster  and building  vulnerabil-
ity were identified as the risk parameters of this indicator 
system. The weight of each indicator was calculated by 
combining the hierarchical analytical process and the ran-
dom forest algorithm. Subsequently, the flood risk of rural 
buildings was quantitatively evaluated through a weighted 
aggregation process. Attary et al. (2017) introduced a per-
formance-based framework to evaluate the risk tsunamis 
pose to structures in coastal communities. The probabil-
ity and consequences of tsunami risk were determined by 
hazard analysis, structural vulnerability analysis, and loss 
analysis. The probabilistic framework can account for the 
randomness of disaster occurrence, construction materi-
als, and structural parameters in assessing disaster risk. 
Tang et al.  (2024)  improved the  failure mode and effects 
analysis (FMEA) model by combining the Dempster-Shafer 
evidence theory with grey relational projection method 
for  risk management. The assessments of experts on risk 
indicators were modeled by the probability assignment 
function. The priority order of failure modes was ranked 
based on the grey relational projection method. The 
improved FMEA model effectively  improved the accuracy 
and reliability in risk analysis. Although extensive research 
has been  conducted on  earthquake,  tsunami,  and flood 
risk assessment for structures, studies on blast risk for col-
umns remain limited (Attary et al., 2017; Tang et al., 2024; 
Abdollahzadeh & Faghihmaleki, 2017). Disaster risk assess-
ment methods can be primarily divided into three catego-
ries. The main advantage of the probabilistic framework is 
its ability to articulate performance indices (Attary et al., 
2017; Qin & Stewart, 2020). However, as hazard analysis 
and structural damage probability are based on statistical 
data, these frameworks are unsuitable for disasters with 
irregular occurrence frequencies. The second category 
evaluates risk levels based on the simulation of disaster 
scenarios (Qie & Rong, 2017; Valdano et al., 2015). These 
frameworks address the issue of insufficient historical da-
ta but necessitate a clear understanding of the formation 
mechanism of each disaster scenario. The third category 
assesses the risk of extreme events with complex disaster 

scenarios by selecting appropriate indicators (Zhen et al., 
2022; Ravankhah et al., 2021). These frameworks only re-
quire that the indicators at the same level be independent 
of each other. In terms of rationality and effectiveness, the 
indicator-based method is suitable for risk assessments of 
structural members threatened by unconventional emer-
gencies.

Calculating attribute weights and quantifying identi-
fied indicators are key processes in the multi-attribute risk 
assessment method. Attribute weighting methods are pri-
marily divided into subjective and objective categories, 
including the hierarchical analytical process (AHP) (Mutlu 
& Sari, 2022),  the principal component analysis  (Ezcurra, 
2024),  the  probabilistic  analysis  (Stewart  &  Netherton, 
2008),  factor analysis  (Takaki & Gotoh, 2020),  correlation 
coefficient-based  methods  (Tang  et  al.,  2023)  and  ma-
chine learning-based approaches (Chen, 2021). The prior-
ity weights derived from subjective methods depend on 
the judgment of decision-makers, while objective meth-
ods  tend  to  overlook  the  effects  of  data  characteristics 
among different  indicators. The risk  level of columns ex-
posed to blast  incidents  is  influenced by numerous attri-
butes, some of which present a degree of fuzziness and 
uncertainty. The fuzzy theory has been employed to man-
age ambiguity in the quantification process of qualitative 
indicators (Chen, 2001; Wang & Elhag, 2006; Ji et al., 2015). 
Wang and Elhag (2006) developed a fuzzy TOPSIS frame-
work based on alpha-level sets for bridge risk assessment. 
The fuzzy linguistic terms describing the risk parameters 
were determined based on expert systems. The fuzzy an-
alytic hierarchy process (FAHP) was used to calculate the 
weights of the attributes. The risk level of bridges was 
ranked by comparing the alpha level sets of the fuzzy rel-
ative closeness. Wang et al. (2011) established the hierar-
chical structure for flood risk assessment using the Delphi 
method. The priority weights of the indicators were calcu-
lated by the FAHP method, and spatial multi-criteria anal-
ysis was adopted to aggregate the quantitative indicators. 
The risk range was distinguished using the standard de-
viation method, and the flood risk distribution of a com-
munity was obtained. The FAHP method can address the 
imprecision of evaluation elements and diminish the effect 
of subjectivity on weight calculation. A review of existing 
literature affirms the  rationality of  the FAHP approach  in 
calculating  the weight of  critical  indicators  (Wang et  al., 
2011; Kong & Zhang, 2024). As for the fuzzy evaluation of 
indicators, the membership functions (MFs) of linguistic 
variables were not unified. Most  research compared  the 
relative risk level of the object under study yet did not 
provide the criteria for determining risk grades. Studies 
on automatically and objectively outputting fuzzy evalua-
tions based on the fundamental information of structural 
columns remain scarce.

Based on the above literature, this paper presents 
a universally applicable method to quantitatively assess 
the blast risk for columns in different areas. The fuzzy eval-
uations are obtained by associating linguistic terms, sub-
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attributes of attributes, and fuzzy membership functions. 
The priority weight of each indicator is calculated using 
the FAHP method. The proposed indicator-based frame-
work is employed for the blast risk assessment of the col-
umns by taking five engineering structures in different ar-
eas as examples. This framework can manage quantitative 
and qualitative indicators and provide useful strategies for 
disaster management.

3. Research methods and materials
This section illustrates the proposed framework for 
evaluating the blast risks of columns. The method consists 
of two primary phases: 1) indicator system of blast 
risk assessment and 2) multi-indicator risk assessment 
framework.  The  specific  procedures  of  each  phase  are 
described in the following subsections.

3.1. Phase 1:  
Indicator system of blast risk assessment
The parameters commonly employed in risk assessment 
mainly  investigate  the probability of a specific risk  trans-
piring  and  the  potential  ramifications  of  the  risk  (Faber 
& Stewart, 2003; Karimi & Hüllermeier, 2007). These pa-
rameters, however, neglect to account for the influence of 
structural  resistance performance. Zhen et al.  (2022) and 
Ravankhah et al. (2021) proposed a parameter labeled ‘ex-
plosion vulnerability’ to address the blast performance of 

columns. Consequently,  the  risk  function  is expressed as 
the multiplication of three risk parameters: column explo-
sion vulnerability (B1), blast consequence (B2), and blast 
likelihood (B3). The indicators contributing to the risk lev-
el of columns can be discerned and categorized in ac-
cordance with these risk parameters. The attributes un-
der each risk parameter should remain independent. Fig-
ure 1 illustrates the hierarchical structure of the multi-at-
tribute risk assessment. The attributes and sub-attributes 
are explained in detail below.

(1) Explosive vulnerability
Explosion vulnerability primarily pertains  to  the blast 

performance of columns. The attributes under this risk pa-
rameter can be inferred from research on column blast re-
sponse and anti-explosion specifications.

 ■ Section area (C1)
The column’s dimensions and basic design parameters 

profoundly influence the column’s blast performance (Sun 
et al., 2022). The section area is chosen to evaluate the 
column’s blast performance due  to  the variety of  cross-
sectional shapes. The potential section area of the column 
can be < 0.25 m2, 0.25–1.00 m2, 1.00–2.25 m2, between 
2.25–4.00 m2, or > 4.00 m2 (Sun et al., 2021).

 ■ Slenderness ratio (C2)
The failure mode of columns under blast loading is 

impacted by the slenderness ratio (Al-Thairy, 2016). Col-
umns with a high slenderness ratio are susceptible to flex-

Figure 1. Indicator system of blast risk assessment for structural columns
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ural failure, while those with a low slenderness ratio may 
experience shear failure (Yu et al., 2019). Given the effect 
of the shear span ratio on the failure mode (Miao et al., 
2022), this attribute can be classified under five ranges: < 
3, between 3 and 6, between 6 and 9, between 9 and 12, 
and > 12.

 ■ Reinforcement ratio (C3)
The longitudinal reinforcement ratio and the volu-

metric  ratio  of  transverse  reinforcement  affect  the  col-
umn’s  blast  performance.  As  the  longitudinal  reinforce-
ment directly influences the flexural behavior and residual 
axial capacity of columns,  the  longitudinal  reinforcement 
ratio  is used  to evaluate explosive vulnerability. The  rec-
ommended column longitudinal reinforcement ratio range 
is 0.6–4% (Sun et al., 2021; Miao et al., 2022). Therefore, 
this attribute can be < 1.28%, between 1.28 % and 1.96 %, 
1.96 % and 2.64 %, 2.64 % and 3.32 %, and > 3.32%. 

 ■ Age (C4)
Both the steel reinforcement and concrete progressive-

ly deteriorate over the lifespan of a structure. Consequent-
ly, the blast performance diminishes with the aging of the 
columns. According to current research, the potential age 
of columns can be 0–15 years, 15–30 years, 30–50 years, 
or > 50 years (Sun et al., 2021; Andrić & Lu, 2016).

 ■ Material type (C5)
The blast performance of columns is contingent on the 

construction materials. Steel materials exhibit  robust me-
chanical properties and energy absorption performance 
(Al-Thairy, 2018). Generally, steel-concrete composite col-
umns display superior blast performance compared to RC 
columns  (Zhu et al., 2010). Wood components are com-
bustible,  so  timber  columns possess  the  least  explosion 
resistance (Sun et al., 2021). The explosive vulnerability of 
RC and masonry columns is regarded as medium and high.

 ■ Section type (C6)
In practical engineering, the section types of columns 

predominantly encompass hollow, lattice, solid, and com-
posite sections. Due to their expansive face-on blast sur-
face and thin walls, hollow sections are the most suscep-
tible to damage. The anti-explosion performance of solid 
columns is superior to that of lattice columns. Compos-
ite sections optimally utilize the mechanical properties of 
each layer, and the inner layer can continue to endure the 
axial  load  even  after  the  surface  layer  is  damaged  (Sun 
et al., 2022). Hence, columns with a composite section are 
considered the least vulnerable under blast loading.

(2) Blast consequence
The ramifications of a blast encompass the detrimental 

effects resulting from damage to a column. This risk vari-
able is epitomized by the consequences a structure faces 
when exposed to blast incidents.

 ■ Pedestrian volume (C7)
The  repercussions  of  an  explosion  escalate with  the 

pedestrian volume associated with the engineered struc-
ture. The quantity of individuals over a specific timeframe 

typically denotes pedestrian volume. In accordance with 
FEMA 426, pedestrian volume can be characterized as few-
er than 250 people per day, between 250 and 500 people 
per day, between 500 and 1000 people per day, between 
1000 and 5000 people per day, or over 5000 people per 
day (Hadjioannou et al., 2018).

 ■ Economic cost (C8)
The consequences of blast accidents can be gauged by 

economic  losses  (Kodur & Naser, 2013). Economic  losses 
are subdivided  into direct and  indirect costs. Direct eco-
nomic losses encapsulate maintenance and repair costs, 
along with damages to goods, while indirect costs entail 
losses resulting from service disruption, environmental 
pollution due  to explosions,  time costs,  and others.  The 
economic cost range can be less than 1 million dollars, 
1–2 million dollars, 2–3 million dollars, and more than 
3 million dollars (Mackie et al., 2009).

 ■ Architectural significance (C9)
Architectural significance refers to the political and his-

torical importance of engineering structures. The blast re-
percussions  increase  with  the  architectural  significance. 
Structures with pronounced historical and political impor-
tance possess high architectural significance. High signifi-
cance is attributed to national emphasis projects, com-
bat readiness structures, and consular buildings. Medium 
significance  is mainly  assigned  to  landmark engineering 
structures (Kodur & Naser, 2013), while structures that ful-
fill  certain  daily  functions  (such  as medical,  transporta-
tion, office, or cultural) possess low significance. Common 
structures are deemed to have very low significance.

 ■ Explosive material quantities (C10)
The repercussions of a blast incident are directly pro-

portional to the quantities of explosive materials. The pre-
requisites for storage methods and reserves of hazardous 
materials vary across existing specifications (Hadjioannou 
et al., 2018), making it challenging to evaluate all hazard-
ous materials using a unified index. Consequently, linguis-
tic levels are employed to denote material quantities. The 
quantity  of  explosive materials  can be none,  small, me-
dium, or large.

 ■ Blast location (C11)
The extent of damage caused by an explosion fluctu-

ates with  the proximity  to  the blast  incident  (Sun et  al., 
2021). Serious consequences arise from blast accidents oc-
curring near columns. Moreover, unfavorable loading posi-
tions of components (such as the mid-span of beams and 
beam-column nodes) hold relative importance, as blasts at 
critical positions within the structure can engender exten-
sive repercussions. Blasts at common positions within the 
structure  lead to medium consequences. With  increasing 
stand-off distance, the blast overpressure drops swiftly, re-
sulting in minor consequences from blasts occurring not 
adjacent to the column.

 ■ Life loss (C12)
Life loss directly mirrors the consequences of blast in-

cidents. Casualties primarily arise from blast overpressure 
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and structural collapse. According to Jonkman et al. (2003), 
the number of lives lost can be 0, 1–3, 3–10, 10–30, or 
more than 30.

(3) Blast likelihood
This risk parameter is represented by the likelihood of 

structures  facing blast  incidents. The explosion accidents 
considered in this chapter primarily include terrorist at-
tacks  and  accidental  explosions  of  combustible  and  ex-
plosive materials during production, transportation, stor-
age, and usage.

 ■ Equipment condition (C13)
The process of managing hazardous goods can poten-

tially  lead  to  an  accidental  explosion due  to  equipment 
deterioration  (Cao &  Lam,  2019).  This  attribute primari-
ly assesses the equipment used for producing, process-
ing, storing, and utilizing materials. For civil buildings, the 
equipment primarily includes natural gas pipelines, pow-
er lines, and gas tanks. Different equipment specifications 
exhibit considerable variations. This attribute is evaluated 
using linguistic levels, and the equipment condition can 
range from very poor, poor, average, good, to very good.

 ■ Traffic volume (C14)
The  likelihood  of  accidental  explosions  while  trans-

porting hazardous materials escalates with traffic volume. 
Herein,  traffic  volume  is  considered  a  factor  related  to 
explosion possibility.  This  attribute  can be  characterized 
by  the daily  traffic  (ADT) and  is divided  into five sub-at-
tributes: fewer than 1000 vehicles/day, between 1,000 and 
5,000 vehicles/day, between 5,000 and 15,000 vehicles/
day, between 15,000 and 50,000 vehicles/day, and more 
than 50,000 vehicles/day (Kodur & Naser, 2013; Yang et al., 
2014).

 ■ Location (C15)
The probability of columns being subject to explosion 

accidents correlates with the location of the structures. 
Generally,  the chance of explosion accidents surges with 
the city’s size. Based on existing research (Kodur & Naser, 
2013),  the structure’s  location can be classified as a me-
tropolis, small-medium city, suburban, or rural area.

 ■ Geographical situation (C16)
Geographical situation accounts for the geopolitics 

and  history  of  blast  incidents  (Ding  et  al.,  2013).  It  is 
assumed that the threat perception of the region which 
often suffers from blast incidents is very high, such as the 
Russia-Ukraine military dispute. The columns within in 
the conflict area are under high blast threat. For instance, 
a  country  experiences  the  internal  strife  or  political 
instability. In addition, a region with a poor public security 
and a history of terrorist attacks is considered to be 
under medium threat perception. For situations where the 
regional security is good and a few of blast incidents are 
recorded, the possibility of the columns being subjected 
to  an  explosion  is  low.  Further,  if  strict  regulations 
are established for the storage and transportation of 
dangerous materials and only professional personnel are 

allowed to operate, the columns within the area are with 
very low threat perception.

 ■ Emergency equipment (C17)
Emergency facilities (e.g., fire extinguishers, ventilation 

devices, and brake valves) can considerably reduce the 
likelihood of a blast when hazardous situations such as 
smoke, ignition sources, and excessive dust transpire. The 
installation requirements for various emergency facilities 
differ significantly and cannot be classified using a unified 
index. Thus, this attribute is described using five linguistic 
levels (Sun et al., 2021).

 ■ Isolation facility (C18)
Isolation facilities mitigate the likelihood of a blast by 

distancing  columns  from  explosion  sources  (Pan  et  al., 
2023). The primary implementation methods encompass: 
1) setting up warning signs to restrict vehicles transporting 
hazardous materials from passing through the engineer-
ing structures; 2) using protective facilities (e.g., explosion-
proof doors  and walls)  to  segregate  explosive materials 
from the columns. The sub-attributes of this attribute can 
be categorized as seldom, low, medium, and high.

3.2. Phase 2:  
Multi-indicator risk assessment framework
The multi-attribute framework for evaluating the risk lev-
els of columns exposed to blast disasters  is  illustrated  in 
Figure 2. This framework combines a fuzzy transformation 
system and a FAHP-based approach. The fuzzy transforma-
tion system links the number of sub-attributes to linguis-
tic terms. Based on the membership functions of linguis-
tic term (LTMFs) and the established hierarchical structure, 
the basic information regarding the columns is convert-
ed into fuzzy evaluations. The weights of risk parameters 
and attributes are derived from the FAHP-based approach. 
Following this, the defuzzified value is computed through 
the  aggregation  and defuzzification of  the  foundational 
fuzzy evaluations. The FAHP-based approach encompasses 
Steps 4–9 of the framework. A detailed process of risk as-
sessment is presented in the paragraph below.

Step 1. Establish the indicator system of risk assessment
As outlined in Section 3.1, the target layer denotes the 

risk grade, with the subsequent layer indicating the risk 
parameters, which are determined based on  the expres-
sion of risk factors (RFs). The lower layers comprise attri-
butes determined by logical inclusion relationships. The 
sub-attributes of attributes are utilized to evaluate the risk 
levels of essential indicators. It is necessary for the sub-at-
tributes to cover all columns.

Step 2. Determine the fundamental fuzzy evaluations
The number of sub-attributes determines the type of 

linguistic term. Thereafter, each attribute is evaluated by 
the corresponding linguistic term. All types of defined lin-
guistic terms are denoted by { }1 2, , mP p p p=  . The trape-
zoidal MFs herein are used to describe the linguistic terms. 
The LTMFs are determined based on the intersection be-
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tween  different fuzzy scopes of a certain risk grade (Li 
et al., 2019; Sun et al., 2021). In the non-intersection case, 
the ordinal scale method is utilized to obtain the points 
that have a membership degree of 1. The obtained MFs 
of linguistic terms are denoted as ( , ( )),j Q jQ x x x R= Î .

The fuzzy evaluations of attributes are derived, based 
on the LTMFs and the established hierarchical structure, by 
comparing column information with corresponding sub-
attributes. The fuzzy evaluations of the nth attribute are 
denoted as 1 2 3 4( , , , )n n n n nG G G G G= .

Step 3. Calculate the priority weight
Linguistic terms typically employed in pairwise com-

parisons include moderate, fairly strong, very strong, and 
absolute (Li et al., 2009; Chan & Kumar, 2007). The preci-
sion of the MF shape is usually disregarded due to the 
inherent  ambiguity of  the problem  (Mottaghi-Kashtiban 
et al., 2008). Therefore, triangular fuzzy numbers and a lin-
ear-shaped membership  function  suffice  to  calculate el-
ement weights  (Andrić &  Lu,  2016).  The MF  can be de-
termined through experimental data, interpretation of lin-
guistic  terms, and  the nature of  the problem  (Ahmed & 
Kilic, 2019). The fuzzy number of a  linguistic term can be 
denoted as ( , , )ts ts ts tsM m m m- +′ .

Subject matter experts convey their judgments on the 
priority of attributes in pairs (Ahmed & Kilic, 2019). A pair-
wise comparison matrix among attributes  that belong to 
the same risk parameter is expressed in Eqn (1), where the 
consistency ratio (CR) of the fuzzy judgment matrix should 
be smaller than 0.1 (Li et al., 2009; Lyu et al., 2019):
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(1)

Multiple methods for calculating the weight vector of 
a  fuzzy evaluation matrix have been proposed, primarily 
encompassing the normalized geometric mean approach 
(Andrić & Lu, 2016; Yang et al., 2014), the extent analysis 
method (Wang & Elhag, 2006; Chan & Kumar, 2007), and 
fuzzy classical methods (Nieto-Morote & Ruz-Vila, 2011). 
The extent analysis method  is used here  for  its  straight-
forward calculation process and ability to compute weight 
vectors without converting fuzzy numbers into crisp values 
(Wang & Elhag, 2006; Chan & Kumar, 2007; Shaw et al., 
2012).  The  value  of  the  fuzzy  synthetic  extent  (FSE)  of 
the tth attribute can be calculated as follows (Shaw et al., 
2012):
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(2)

The weight of the ith  attribute  is  expressed  as  min ( )i i tw V S S= ³′
 min ( )i i tw V S S= ³′ , where 1,2, , andt h t i= ¹ ;  ( )i tV S S³  is 

the degree of possibility for ( , , )i i i iS s s s+- ′  to be greater than 
( , , )t t t tS s s s- +′ , which can be obtained by Eqn (3) (Lee et al., 

2009). Both the values of  ( )i tV S S³  and ( )t iV S S³  need to 
be calculated. The weight vectors are obtained by calculat-
ing the degree of possibility for each convex fuzzy number 
to be greater than others 1 2( , , )TvW w w w= 

′ ′ ′ ′ (Shaw et al., 
2012). After normalization, the priority weights of the at-
tributes can be denoted as 1 2( , , )TvW w w w=  .
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Figure 2. The flowchart for evaluating the risk grade of the columns subjected to blast incidents
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Step 4. Aggregate the fuzzy evaluations
After being classified based on the risk parameter, the 

fuzzy evaluations can be denoted as Gijo = (Gijo1, Gijo2, Gijo3, 
Gijo4), where j and o stand for the number of sub-attributes 
and Gij. The fundamental indicators are aggregated as fol-
lows (Zeng et al., 2007):

1 1 2 2 1( ) / ( )ij ij ij ij ij ijo ijo ij ijoG G w G w G w w w* = Ä Å Ä Å Å Ä + + 

, 

(4)

where wiju denotes the weight of Giju; Å represents fuzzy 
addition operator.

Step 5. Calculate the risk factor
The aggregated fuzzy evaluations are first trans-

formed into defuzzified values using the center-of-centroid 
method (Sun et al., 2021; Shaw et al., 2012). The defuzzi-
fied value of  ijG*

 
is represented as CDij. Thereafter, the de-

fuzzified value of ith parameter is aggregated as follows:

1 1 2 2 ,i i i i i im imAD CD w CD w CD w= * + * + + *  (5)

where m is the number of linguistic types.
After  obtaining  the defuzzified  values of  the  second 

layer indicators, the RF of a given column can be obtained 
as follows:

1 2( , , , ).iRI f AD AD AD=   (6)

Step 6. Determine the risk range and grade
In accordance with existing research and specification 

requirements,  the risk of columns exposed to blast  load-
ing  is  classified  into m grades. The boundary values of 
each grade can be identified by the MFs of linguistic lev-
els, which contain (m + 1) sub-attributes. The risk range is 
obtained by substituting the boundary values into Eqn (6). 
Ultimately, the risk level of the columns is determined by 
comparing the risk range to the RF.

4. Results
This section illustrates the step-by-step application of the 
proposed framework to five generically designed columns 
from various engineering structures. Detailed information 
about these columns and their corresponding engineer-
ing structures  is provided  in Appendix. The primary pro-
cess of risk assessment of Case 1 is elucidated for concise-
ness as follows:

Step 1. The determined risk parameters, fundamental 
indicators, sub-attributes and the indicator sys-
tem established for blast risk assessment is docu-
mented in Section 3.1.

Step 2. This study adopts four levels to assess the risk 
grade based on prior research (Andrić & Lu, 2016; 
Zeng et al., 2007): critical, high, medium, and low. 
Given the number of sub-attributes, the MFs of 
four and five linguistic terms necessitate compu-
tation. For ease of application, the scope of fuzzy 
evaluation was fixed between 0 and 100. Mem-
bership functions for the requisite linguistic terms 
are obtained using score ranges corresponding to 
different linguistic levels (Sun et al., 2021; Kodur & 
Naser, 2013; Tak et al., 2019). Subsequently,  fun-
damental fuzzy evaluations are automatically gen-
erated via the transformation system. The fuzzy 
evaluations (FEVs) for each attribute of Case 1 are 
listed in Table A.1.

Step 3. The characteristic membership function of the lin-
guistic term, used for the relative importance judg-
ment, was adopted  from Kahraman et al.  (2004) 
and Chan and Kumar  (2007). The  fuzzy numbers 
employed for pairwise comparisons are listed in 
Table 1.  In  this study, five professors  in  the field 
of blast risk assessment provided their judgment 
on pairwise importance comparison. Assuming 
uniform weighting across experts, the final weight 
of each attribute is the arithmetic mean. When the 
weights of experts are different, the FAHP method 
mentioned above can be employed to determine 
the weights of  individual expert  judgments. The 
fuzzy pairwise comparison matrix of C1–C6, pro-
vided  by  expert  one  (E1),  serves  as  an  example 
to illustrate the weight calculation process (see 
Table 2). The established pairwise comparison 

Table 1. Triangular fuzzy numbers used in pairwise 
comparisons

Description Fuzzy number

Equal (1, 1, 1)
Moderate (2/3, 1, 3/2)
Fairy strong (2/3, 2, 5/2)
Very strong (5/2, 3, 7/2)
Absolute (7/2, 4, 9/2)

Table 2. Fuzzy pairwise comparisons of attributes C1–C6 given by E1

C1 C2 C3 C4 C5 C6

C1 (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2/3, 1, 3/2) (2/3, 1, 3/2)
C2 (2/3, 1, 3/2) (1, 1, 1) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/5, 1/2, 2/3) (2/3, 1, 3/2)
C3 (2/5, 1/2, 2/3) (2/3, 1, 3/2) (1, 1, 1) (1, 1, 1) (2/5, 1/2, 2/3) (2/3, 1, 3/2)
C4 (2/5, 1/2, 2/3) (2/3, 1, 3/2) (1, 1, 1) (1, 1, 1) (2/5, 1/2, 2/3) (2/3, 1, 3/2)
C5 (2/3, 1, 3/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 1, 1) (2/3, 1, 3/2)
C6 (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1)

Note: Consistency check: consistency ratio = 0.042 < 0.1.
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matrix of attributes C1–C6 is documented in Table 
A.2. The FSE values of attributes C1 to C6 were 
computed according to Eqn (2):
S1 =  (0.118,  0.208,  0.356),  S2 =  (0.080,  0.143, 
0.260), S3  =  (0.081,  0.130,  0.215),  S4 =  (0.081, 
0.130, 0.215), S5 =  (0.134,  0.234,  0.390),  S6 = 
(0.085, 0.156, 0.288).

The minimum degree of possibility for S1 to 
S6  to  be  greater  than  other  convex  fuzzy  num-
bers are 0.895, 0.580, 0.436, 0.833, 1, and 0.664, 
respectively.  The weight  vectors  of  the  example 
attributes after normalization are W = (0.223, 
0.145,  0.109,  0.109,  0.249,  0165)T. The final 
weights of attributes C1–C6 are listed in Table A.2, 
assuming  that  the  importance of each expert  is 
identical. All the pairwise comparison matrices 
satisfy the consistency requirements.

Step 4. The fuzzy evaluations of the attributes were 
grouped under three categories based on risk 
parameters. The attributes with five sub-attributes 
were aggregated by Eqn (4), taking the parameter 
B1 as an example:

( ) ( ) ( ) ( )*
15

25, 50, 50, 75 0.271 25, 50, 50, 75 0.120 0,25, 25, 50 0.088 25, 50, 50, 75 0.250
0.271 0.120 0.088 0.250

G
Ä Å Ä Å Ä Å Ä

= =
+ + +  

     
( )22.0, 47.0, 47.0, 72.0 .

Step 5. The defuzzified value of risk parameter B1 was ag-
gregated in accordance with Eqn (5). The aggre-
gated fuzzy evaluations of additional risk param-

eters are presented in Table 3. Ultimately, the RF 
of Case 1 was computed via Eqn (6):

1 59.6 0.271 47.2 0.729 50.6;AD = * + * =

1 2 3* * 208465.7.RI AD AD AD= =

Step 6. The MFs serve to determine the boundary of 
the  risk  grade.  The  defuzzified  values  of  differ-
ent linguistic terms were calculated based on the 
center-of-centroid method. Upon comparison, the 
boundary values of explosion vulnerability stand 
at 13.9, 27.1, 50, 72.9, and 86.1. The  risk  scopes 
of the risk grades were ascertained employing 
Eqn (6) and listed in Table 4. Given that the RF 
falls  within  the  scope  of  125000–387686.3,  the 
risk grade of  this  column exposed  to blast  inci-
dents was categorized as medium. The calculation 
results in the risk assessment process of all cases 
are listed in Table 3. The blast risk grades for Cas-
es 2 to 5 are depicted in Figure 3 by repeating 
Steps 1–6. The section area of Cases 5 is large 
and the slenderness ratio is small. The column is 
located  in  a  rural  area of Africa with  low  traffic 
volume, so the risk grade of Case 5 is low. Cas-
es 3 has a large slenderness ratio and belongs 
to  a  landmark  building  in  Kharkiv,  Ukraine.  The 
traffic  volume  is  high,  and  the  blast  location  is 
generally a key position. Thus, the risk grade of 
Case 3 is high.

Table 3. The calculation results of each step in risk assessment

Aggregation 
value 14G*

15G*
24G*

25G*
34G*

35G*

Case 1 (32.5, 52.5, 61.7, 
86.2)

(22.0, 47.0, 47.0, 
72.0)

(52.5, 75.0, 82.3, 
97.1)

(37.9, 62.9, 62.9, 
87.9)

(40.0, 60.0, 69.0, 
95.0)

(36.3, 61.3, 
61.3, 86.3)

Case 2 (61.7, 86.2, 92.2, 
98.7)

(20.9, 45.9, 45.9, 
70.9)

(26.8, 48.5, 57.1, 
71.4)

(24.2, 49.2, 49.2, 
74.2)

(20.8, 40.8, 50.4, 
72.6)

(27.8, 52.8, 
52.8, 77.8)

Case 3 (61.7, 86.2, 92.2, 
98.7)

(14.6, 26.2, 26.2, 
51.2)

(10.0, 30.0, 40.0, 
60.0)

(5.7, 30.7, 30.7, 
55.7)

(0.0, 0.0, 10.0, 
30.0)

(4.6, 23.0, 
23.0, 48.0)

Case 4 (32.5, 52.5, 61.7, 
86.2)

(12.7, 34.7, 34.7, 
59.7)

(60.8, 85.1, 91.2, 
98.6)

(38.7, 63.7, 63.7, 
88.7)

(47.8, 71.7, 78.5, 
85.6)

(33.3, 53.6, 
53.6, 78.6)

Case 5 (47.3, 68.8, 76.8, 
96.3)

(53.0, 78.0, 78.0, 
100)

(60.8, 85.1, 91.2, 
98.6)

(50.0, 75.0, 75.0, 
100.0)

(47.8, 71.7, 78.5, 
100.0)

(58.3, 83.3, 
83.3, 95.4)

Defuzzified 
value CD14 CD15 CD24 CD25 CD34 CD35

Case 1 59.6 47.2 72.3 61.8 64.3 60.4
Case 2 79.8 46.2 51.2 50.6 46.0 51.5
Case 3 79.8 30.3 36.8 32.3 18.9 26.9
Case 4 59.6 42.9 79.4 62.5 68.0 54.2
Case 5 75.0 73.9 79.4 72.9 68.0 75.5

Risk parameter AD1 AD2 AD3

Case 1 50.6 67.1 61.5
Case 2 55.3 50.6 50.0
Case 3 43.7 34.5 24.7
Case 4 42.9 71.0 58.0
Case 5 74.2 76.2 73.4
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5. Discussion
The problem of multi-attribute risk assessment for col-
umns subjected to blast loading can be addressed via 
a fuzzy-based framework. These fuzzy evaluations repre-
sent linguistic variables correlated with the sub-attributes. 
The suggested risk assessment framework adapts to dif-
ferent column types. After obtaining the risk grade, the 
importance coefficient can be introduced to enhance the 
state of design for structural columns. According to the 
research results of Kodur and Naser (2013), the important 
factors of associated risk grades are listed in Table 4. 
For columns requiring blast-resistant design in practical 
engineering,  the  blast  risk  level  is  first  calculated  using 
the proposed method. For columns categorized as high-
risk grade, the blast loading needs to be multiplied by 
a coefficient of 1.2.

Figure 4 compares the attribute weights calculated 
using FAHP and entropy methods. Although the 
consistency  ratio  of  the  pairwise  comparison  matrix 
satisfies the consistency check, the FAHP method requires 
subjective  judgment and  is  limited by expert knowledge. 
The precision of the weights used for aggregation im-
proves with the augmentation of comparison matrices. 
It is assumed that the indicators with more sub-attri-
butes have higher weight (Sun et al., 2021; Kodur & Nas-
er, 2013). The basic information of enough case columns 
is converted into fuzzy numbers, the results obtained 
using the entropy method show that the weights of the 
attributes under each risk parameter and with the same 
number of sub-attributes are almost the same. For the ob-

jective methods,  it  is necessary to find a unified  index to 
quantify the impact of each attribute and determine the 
weight based on the impact degree. The FAHP method 
seems more reasonable because the dispersion degree of 
statistical data can not represent the entropy weight of the 
corresponding attribute. With the expansion of the expert 
database, the calculation results of attribute weights will 
progressively align with the actual scenarios.

The calibration of the method is accomplished by 
comparing the computed risk grades of identical cases 
under disparate frameworks. Based on the essential case 
information cited in Zeng et al. (2007), the risk grade de-
rived from the proposed method is high. Evaluation results 
computed indicate a high-risk level probability of 51.3%. 

Figure 3. Risk grade of the case columns

Table 4. Importance factors for anti-explosion design of structural columns

Risk grade Crisp value of FEVs Risk range Importance coefficient

Critical 13.9–27.1 2679.2–19865.8 1.5
High 27.1–50.0 19865.8–125000 1.2
Medium 50.0–72.9 125000–387686.3 1.0
Low 72.9–86.1 387686.3–638524.6 0.8

Figure 4. The weights of critical attributes obtained  
by different methods
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Risk  grades  for  the  cases  mentioned  in  Andrić  and  Lu 
(2016) and Sun et al. (2021) are medium and low, respec-
tively. The weights of the influence factors and hazards are 
integrated into the proposed method, with the risk assess-
ment outcomes detailed in Table 5. The risk grade results 
obtained through different methods display a reasonable 
consistency.

As illustrated in Figure 3, the majority of cases fall with-
in the medium-risk level. This is primarily due to the medi-
um grade’s wider risk range compared to that of the high 
and critical grades. Furthermore, the likelihood of extreme 
situations appearing in the column basic information is 
comparatively low. The risk grade for columns in metro-
politan areas exceeds those in rural locales, predominantly 
due to highly weighted attributes such as economic and 
human  losses, equipment conditions, and  traffic volume, 
coupled with unfavorable fuzzy evaluations. Figure 5 dis-
plays the MF of the attributes relative to the risk level. This 
framework can prioritize the significance of the attributes. 
The precise values of the risk parameters aid in compre-
hending the overall risk levels of the column. In general, 
modifying the sub-attributes of critical indicators under 
low crisp value  risk parameters  for columns  identified as 
high-risk can effectively control the blast risk. For instance, 
improving the equipment condition and increasing the 
section area can reduce the risk level in Case 3. The frame-
work offers viable strategies for emergency management.

The fundamental information regarding columns 
changes over time. The proposed framework can perform 
dynamic risk level identification and controlling for a col-
umn exposed to blast incidents by amalgamating the fun-
damental fuzzy evaluations. For safety considerations, the 

risk grade of all columns within a structure can be repre-
sented by  the  load-bearing column exhibiting  the high-
est vulnerability. The framework can be applied for dy-
namic monitoring of blast risk on the columns. Further-
more, identifying risk grade provides a foundation for fur-
ther  anti-explosion  capacity  checks  and  the  selection of 
strengthening strategies. In the case of high risk columns, 
the  column’s  risk  grades declined  following  a period of 
traffic  restrictions, personnel evacuation, and equipment 
updates. Moreover, installing alarm systems and jacketing 
with protective structures can effectively control  the  risk 
grade.  These findings hold a  certain  significance  for  the 
anti-explosion design of columns.

6. Conclusions

This study proposes a fuzzy-based risk assessment 
framework for structural columns threatened by blast in-
cidents. This method integrates a fuzzy transformation sys-
tem, FAHP weight approach, and a multi-attribute risk as-
sessment method within a comprehensive methodological 
framework. The primary conclusions are as follows:

1. The factors influencing blast outcomes, column blast 
performance, and blast probability were summarized 
and analyzed, leading to the establishment of an in-
dicator system for blast risk assessment.

2. Through a series of case studies, it was proved that 
this framework can accommodate various linguis-
tic types, calculate the risk range quantitatively, and 
acquire the desired risk grades for the columns in 
a logical manner.

3. The framework facilitates the dynamic monitoring 
and controlling of the blast risk level. It provides 
a convenient tool for engineers to develop effective 
and adaptable risk prevention strategies.

4. The  framework  can  be  extrapolated  to  assess  the 
risks of various hazards in other fields. However, the 
weight determination requires subjective judgment 
and the basic information of the column needs to 
be collected in the risk assessment process. In our 
future work, the machine learning approach will 
be utilized  to process enough explosion accidents 
and  existing  literature  for  obtaining  the  pairwise 
comparison matrix. The qualitative and quantitative 
risk assessment methods will be combined in our 
framework. Moreover, we will explore the statistical 
indicators covering the entire city to achieve 
a national blast risk distribution.

Table 5. Comparison of risk levels assessed through different approaches

Case in Zeng et al. (2007) Case in Sun et al. (2021) Case in Andrić and Lu (2016)

Method Risk grade Method Risk grade Method Risk grade
Zeng et al. (2007) High Sun et al. (2021) Low Andrić and Lu (2016) Medium
The proposed 
method

High The proposed 
method

Low The proposed 
method

Medium

Figure 5. Risk level of each attribute and risk parameter
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APPENDIX

Basic information about case study
The basic information of the five case columns and the fuzzy evaluations of Case 1 are listed in Table A.1.

Table A.1. Basic information of the columns in the case study

Attributes
Sub-attributes

Case 1 Case 2 Case 3 Case 4 Case 5 FEVs of Case 1

Section area 1.10×1.10 m r = 1.20 m 0.40×0.40 m r = 0.8 m 1.6×1.6 m (25, 50, 50, 75)
Slenderness ratio 6.8 10.0 13.5 7.5 4.3 (25, 50, 50,75)
Longitudinal reinforcement ratio 1.52% 2.16% 3.21% 0.82% 4.84% (0,25, 25, 50)
Age (years) 30–50 15–30 15–30 30–50 0–15 (10, 30, 40, 60)
Material type RC RC RC RC Steel-concrete 

composite
(25, 50, 50, 75)

Section type Solid Composite Composite Solid Solid (40, 60, 69, 95)
Pedestrian volume (people/day) 500–1000 1000–5000 1000–5000 250–500 250–500 (0,25,25,50)
Economic cost
(million dollars)

<1 2–3 2–3 <1 <1 (69, 95, 100, 100)

Architectural significance Landmark Office Landmark Combat 
readiness

Amusement (25, 50, 50, 75)

Explosive material quantities Small No Medium Small Small (40, 60, 69, 95)
Blast location Common 

position
Key position Key position A certain 

distance apart
A certain distance 

apart
(40, 60, 69, 95)

Life loss 1–3 3–10 10–30 1–3 1–3 (50, 75, 75, 100)
Equipment condition Medium Good Bad Medium Good (25, 50, 50, 75)
Traffic volume
(vehicles/day)

1,000–5,000 5,000–15,000 50,000 1,000–5,000 < 1000 (50, 75, 75, 100)

Location Suburban Small-medium 
city

Metropolis Rural area Rural area (40, 60, 69, 95)

Geographical situation Medium Medium High Low Very low (25, 50, 50, 75)
Emergency equipment High Low Medium Very low Medium (50, 75, 75, 100)
Isolation facility Medium Medium Seldom Low Low (40, 60, 69, 95)
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The fuzzy pairwise comparisons of attributes C1–C6 given by E2–E5 are listed in Table A.2.

Table A.2. Weight of the attributes under risk parameter B1

C1 C2 C3 C4 C5 C6 Consistency ratio

E2

(1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2)

0.037

(2/3, 1, 3/2) (1, 1, 1) (1, 1, 1) (3/2, 2, 5/2) (2/3, 1, 3/2) (2/3, 1, 3/2)
(2/5, 1/2, 2/3) (1, 1, 1) (1, 1, 1) (3/2, 2, 5/2) (1, 1, 1) (2/3, 1, 3/2)
(2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1, 1, 1) (2/5, 1/2, 2/3) (2/3, 1, 3/2)
(2/5, 1/2, 2/3) (2/3, 1, 3/2) (1, 1, 1) (3/2, 2, 5/2) (1, 1, 1) (2/3, 1, 3/2)
(2/5, 1/2, 2/3) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1)

E3

(1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2/3, 1, 3/2) (1, 1, 1)

0.033

(2/5, 1/2, 2/3) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2)
(2/5, 1/2, 2/3) (1,1,1) (1, 1, 1) (2/3, 1, 3/2) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3)
(2/5, 1/2, 2/3) (2/3, 1, 3/2) (2/3, 1,3/2) (1, 1, 1) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3)
(2/3, 1, 3/2) (2/3, 1, 3/2) (3/2, 2,5/2) (3/2, 2, 5/2) (1, 1, 1) (2/3, 1, 3/2)

(1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2/3, 1, 3/2) (1, 1, 1)

E4

(1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2/3, 1, 3/2) (1, 1, 1)

0.017

(2/5, 1/2, 2/3) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3)
(2/5, 1/2, 2/3) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3)
(2/5, 1/2, 2/3) (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3)
(2/3, 1, 3/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 1, 1) (2/3, 1, 3/2)

(1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2/3, 1, 3/2) (1, 1, 1)

E5

(1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 1, 1) (2/3, 1, 3/2)

0.038

(2/5, 1/2, 2/3) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2) (2/5, 1/2, 2/3) (2/3, 1, 3/2)
(2/5, 1/2, 2/3) (1, 1, 1) (1, 1, 1) (2/3, 1, 3/2) (2/7, 1/3, 2/5) (2/3, 1, 3/2)
(2/5, 1/2, 2/3) (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3)

(1, 1, 1) (3/2, 2, 5/2) (5/2, 3, 7/2) (3/2, 2, 5/2) (1, 1, 1) (2/3, 1, 3/2)
(2/3, 1, 3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) (3/2, 2, 5/2) (2/3, 1, 3/2) (1, 1, 1)

W 0.271 0.120 0.088 0.068 0.250 0.203


