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Article History:  Abstract. Intelligent Construction (IC) is emerging as a transformative approach within the architecture, engineering, and 
construction (AEC) industry, garnering significant global attention. There exist considerable disparities in the development 
levels of IC across various provinces in China, leading to uneven advancement that complicates precise policy formula-
tion and differential implementation. Previous studies have primarily evaluated IC at the project and enterprise levels, 
thus lacking a comprehensive measure of the provincial IC development level. To bridge this gap, this study introduces a 
quantitative method to assess provincial IC development levels in empirical data, analyzing their driving factors and spati-
otemporal evolution. Initially, based on the Politics-Economy-Society-Technology (PEST) analysis model, 16 measurement 
indexes were identified through a combination of literature review and expert interviews. Original data for these indexes 
were acquired via policy and media news mining, along with literature and patent indexing, etc. Subsequently, a quanti-
fication method for each index was established. The “analytic network process (ANP), entropy weight, and game theory” 
integration method was used to calculate combination weights. Finally, the development level of IC was quantitatively 
measured based on the cloud matter-element model, and the spatiotemporal evolution characteristics of the provincial 
development level in China from 2012 to 2022 were analyzed. The results indicate that (1) the development level of IC 
in China is divided into four levels, and the overall development level is relatively low, with only Beijing, Shanghai, and 
Shandong ranking at level I. (2) The development level shows a trend of increasing from northwest to southeast, with 
policy and technological factors being the main driving forces. (3) There is a significant spatial positive correlation between 
the development levels of provinces, and their spatial agglomeration effects are gradually developing from coastal areas 
to inland areas. The research results provide a theoretical basis for stakeholders such as governments and enterprises to 
formulate differentiated development strategies for IC and also provide a reference for measuring the development level 
of IC and other fields in other countries.
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1. Introduction
The construction industry, as a pillar industry of the na-
tional economy, still faces many challenges such as labor 
shortage, environmental pollution, resource waste, low 
production efficiency, high safety risks, and low levels 
of informatization and automation (Ji et al., 2017). These 
challenges are common in the global architecture, engi-
neering, and construction (AEC) industry (Dou et al., 2023). 
Therefore, many countries are committed to applying 
new-generation information technologies such as artificial 
intelligence (AI), big data, the Internet of Things (IoT), 5G, 
blockchain in the construction industry to address these 
challenges (You & Feng, 2020). The integrated applica-
tion of these new technologies has led to the emergence 
of an innovative construction method in the construction 

industry-intelligent construction (IC), which has become an 
important way to promote the transformation, upgrading, 
and sustainable development of the construction industry 
(Yan et al., 2023). IC can effectively improve the efficiency 
of detailed design (Zhao et al., 2022), construction (Ren & 
Zhang, 2021), operation, and maintenance (Huang et al., 
2022), and achieve high integration and informatization 
of the entire industry chain. The application of IC technol-
ogy has greatly liberated labor and improved the safety 
level, environmental benefits, and resource value of con-
struction sites (Bradley & Seward, 1990). Some developed 
countries have taken the lead in implementing strategic 
layouts in the field of IC, such as the “Infrastructure Recon-
struction Strategic Plan” proposed by the United States, the 

2025

Volume 31

Issue 5

Pages 418–437

https://doi.org/10.3846/jcem.2025.23767

http://creativecommons.org/licenses/by/4.0/
mailto:mshengbin%40mail.dlut.edu.cn?subject=
mailto:mshengbin@mail.dlut.edu.cn
https://doi.org/10.3846/jcem.2025.23767


Journal of Civil Engineering and Management, 2025, 31(5), 418–437 419

“Japan Revitalization Strategy” initiated by Japan, and the 
“Digital-based Industrial Innovation Development Strategy” 
proposed by South Korea (Forcael et al., 2020).

China is the largest developing country and has been 
actively following in the footsteps of developed countries 
to promote the development of IC (see Figure 1a). In China, 
the concept of IC was proposed by the Ministry of Housing 
and Urban Rural Development [MHURD] in May 2017. In 
July 2020, the government issued “the guiding opinions of 
the MHURD and other departments on promoting the coor-
dinated development of intelligent construction and indus-
trialized industrialization” (MHURD, 2020). Existing studies 
emphasize the integration of emerging technologies with 
engineering practices. For instance, the IoT enhances data 
collection and analysis (Li et al., 2018), Building Informa-
tion Modeling (BIM) and cloud platforms improve project 
management (Bucchiarone et al., 2020), robotics and auto-
mation systems streamline construction processes (Davila 
Delgado et al., 2019), and blockchain technology promote 
collaboration across various projects (Abioye et al., 2021). 
The widespread adoption of digital technology has sig-
nificantly boosted project efficiency and quality, driving 
innovation in the industry (Zhang et al., 2024). However, 
although the technological development of IC has made 
some progress, it still faces several practical challenges. 
First, the IC development is influenced not only by micro-
level technological development but also by macro factors 
such as policies, economics, and social conditions, involv-
ing coordination among various stakeholders across differ-
ent levels (Ma et al., 2022). Second, IC is still in its early de-
velopmental phase, characterized by low motivation from 
enterprises, with initiatives primarily driven from the top 
down by governments at various levels (Ma et al., 2022). 
In this context, the absorption and implementation of IC-
related policies from higher-level governments vary sig-
nificantly among provinces (Dejaco et al., 2017), influenced 
by resource allocation, economic status, and development 

strategies, resulting in notable disparities in IC promotion 
across provinces (see Figure 1b). These disparities may 
lead to distorted development of IC at the provincial level. 
Lastly, comprehensively understanding the development 
data of IC across different regions poses challenges, hin-
dering accurate policy formulation and the implementa-
tion of differentiated strategies. Therefore, a macro-level 
provincial IC evaluation system is anticipated to address 
these challenges, with primary objectives that include: (1) 
How can the overall development level of provincial IC be 
assessed? (2) Which indexes should be used to measure 
the provincial IC development levels, and how can these 
indexes effectively identified, quantified, and the necessary 
data collected? (3) What are the spatiotemporal evolution 
characteristics of provincial IC development levels?

However, there is currently no systematic research that 
reveals these objectives. Specifically, the previous research 
has the following shortcomings: (1) Previous studies of-
ten rely on qualitative and static measurement methods 
focused on individual projects or enterprises, which do 
not effectively capture the trends and characteristics of 
IC development across different periods and regions (Ke 
et al., 2022). Existing data and evaluation systems inad-
equately account for regional differences, lacking a scien-
tific and effective quantitative monitoring mechanism for 
IC development, particularly at the provincial level (Dejaco 
et al., 2017). (2) Existing research has not established a 
comprehensive evaluation index system for the regional 
development level of IC. There is an urgent need for a 
holistic framework to elucidate policy performance (Na-
sirian et al., 2019), economic benefits (Hong et al., 2018), 
social impacts (Tam et al., 2015), and technological ad-
vancements (Jedel & Antonowicz, 2018) in this field. More 
importantly, traditional methods that rely on expert inter-
views and statistical yearbooks to obtain indicators and 
related data are not suitable for this study (Wang et al., 
2021). Macro-level IC data are fragmented and not incor-

Figure 1. Number of national-level and provincial-level IC-related policies in China

a) Number of national-level policie b) Number of provincial-level policies
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porated into statistical yearbooks, while expert interviews 
are inherently subjective, making it difficult to objectively 
assess development levels across different regions. Conse-
quently, data collection and quantification methods should 
move beyond expert interviews and surveys, incorporating 
multi-source online data mining, such as news articles and 
policy documents (Dou et al., 2019). (3) Previous studies 
on the spatiotemporal analysis of the construction indus-
try have predominantly focused on regional disparities, 
often neglecting the development of quantitative models 
that integrate multidimensional data to uncover complex 
spatiotemporal interactions (Luo & He, 2021). The com-
prehensive evaluations combined with the spatial and 
temporal dimensions would optimize resource allocation, 
promote technological innovation, enhance talent cultiva-
tion, and solve the problems of opaque data and insuf-
ficient policy guidance in current management practices.

Accordingly, to address the aforementioned practical 
challenges and research gaps, this study introduces several 
key innovations: (1) A provincial evaluation model for the 
development of IC is established, considering regional dis-
parities. This model addresses the limitations of previous 
studies in capturing provincial IC development differences 

and trends. (2) A comprehensive evaluation index system 
for provincial IC development levels is constructed. The 
study employs multi-source online data mining methods 
to collect and measure indicator data, effectively address-
ing the issues of missing IC-related indicators and chal-
lenges in data aggregation. (3) Spatiotemporal evolution 
analysis, based on Moran’s Index, is conducted to reveal 
spatiotemporal development characteristics, highlighting 
regional interconnectivity and spatial agglomeration ef-
fects. In summary, this study contributes to the theoretical 
framework and quantitative methodology for evaluating 
IC development levels. The conclusions offer valuable ref-
erences for IC planning and governance in regions simi-
lar to China, equipping governments and industries with 
effective assessment tools to improve decision-making 
and optimize policies. The retain of this paper is orga-
nized as follows. Section 2 reviews past literature. Section 
3 discusses the construction of the research framework, 
research area, measurement system, and spatiotemporal 
evolution analysis method. Section 4 presents the holistic 
measurement results and discussion of the development 
level of intelligent construction. The final section summa-
rizes the main findings.

Table 1. Summary of IC definitions

References Definitions

Chen and Ding 
(2021)

IC is an innovative engineering paradigm resulting from the convergence of novel information technology and 
engineering practices. It facilitates comprehensive integration and efficient synergy across project planning, 
design, construction, and maintenance services through standardized modeling, networked interaction, 
visualization, cognition, high-performance computation, and intelligent decision support. 

Mao (2019) The utilization of advanced technologies during the design and construction phases enhances overall project 
quality by incorporating augmented reality, perception, decision-making, execution, and feedback mechanisms.

Wang and Yang 
(2018)

The advent of IC aims to fulfill specific functional requirements and user needs by leveraging advanced 
technology to imbue the entire construction process and operational environment of a project with intelligence, 
thereby enabling effective project management.

Zeng and Wang 
(2020)

Stakeholders involved in the project construction process strive to optimize the construction program, enhance 
construction methods, and leverage new technologies to promote resource conservation and productivity 
improvements. This is aimed at achieving comprehensive information control of the entire project and fostering 
sustainable development within the construction industry.

Kong and Ma 
(2020)

IC represents the integration of the entire construction process with physical systems through the amalgamation 
of intelligent computing, information and communication technologies, and other integrated technologies. 
This integration facilitates the management and control of construction process elements such as personnel, 
mechanical equipment, and facilities.

Wu et al. (2022) The essence of IC lies in (1) generating a digital twin of a project through real-time data collection and 
integration; (2) simulating all life cycle activities, including planning, design, construction, and operation and 
maintenance; (3) optimizing decision-making in these activities; and (4) executing the physical project based on 
optimized decisions.

Fan et al. (2021) IC encompasses the theory, method, process, and technology that integrates and fuses sensing technology, 
communication technology, data technology, construction technology, and project management to sense, 
analyze, control, and optimize the safety, quality, environmental impact, schedule, and cost of buildings and their 
construction activities.

Rossi et al. 
(2019)

IC represents a new generation of information technology, including cloud computing, Building the BIM, IoT, 
Geographic Information System (GIS), and AI, at its core, deeply integrated within the engineering construction 
system to form an innovative engineering construction model.

Mao and Peng 
(2020)

IC constitutes a novel construction approach founded on a high degree of information technology integration and 
industrialization. It leverages new technologies to empower the construction process, driving the enhancement of 
the three production elements in engineering construction activities, facilitating the seamless flow of construction 
data, integrating the entire construction activity process, achieving information integration and business synergy 
across the industry chain, enhancing energy efficiency during construction, and optimizing resource utilization.
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2. Literature review
2.1. Intelligent construction
In the era of Industry 4.0, the application of new-gener-
ation information and artificial intelligence technologies, 
such as the IoT, big data, and cloud computing (Liu et al., 
2016), in engineering project construction is becoming in-
creasingly widespread (Han & Wang, 2018). This has given 
rise to the concept of IC, which has rapidly developed from 
an emerging concept to a hot research field. However, a 
unified understanding of the definition and scope of IC 
has not yet been formed worldwide. Representative defini-
tions of IC are provided in Table 1.

This study defines IC as a novel construction and 
management method that utilizes emerging information 
technologies such as BIM technology, the IoT, and AI to 
enhance the production factors, productivity, and produc-
tion relations of the entire engineering and construction 
activities. It aims to maximize the sharing of construction 
information, fuse the various stages of the entire construc-
tion lifecycle, and achieve a high level of integration and 
informatization across the entire industry chain. Addition-
ally, it seeks to improve the energy efficiency of the con-
struction process and maximize the value of resources.

The future trajectory of IC can be delineated based 
on the level of automation, encompassing the stages of 
mechanization, automation, and robotization (Sobotka & 
Pacewicz, 2017). Moreover, the degree of IC automation 
can be delineated into 10 levels, reflecting the human-ma-
chine interaction continuum, ranging from human respon-
sibility for complete operation and control to automated 
operation and control by machines (Sheridan & Verplank, 
1978). Currently, the construction industry in various na-
tions is advancing towards higher levels of IC, with wide-
spread application in residential construction (Štefanič 
& Stankovski, 2019), commercial buildings (Huang et al., 
2024) and various infrastructure projects, including wa-
ter conservancy (Zhong et al., 2019), bridges (Dunn et al., 
1999), and transportation (Feng, 2019), spanning the en-
tire life cycle of engineering design, construction, and 
operation and maintenance. Research by domestic and 
international scholars predominantly concentrates on the 
development, application, and promotion of individual 
technologies such as BIM (Son et al., 2015), AI (Aguilar & 
Hewage, 2013), cloud computing (Chancellor & Lu, 2016), 
and robotics (Cai et al., 2020), primarily at the micro level. 
Limited research has been conducted on comprehending 
the industrial development level of IC at the macro level 
and elucidating regional developmental disparities.

2.2. Measurement of development level
A scientifically effective measurement of development lev-
els serves as a crucial tool for understanding the scale and 
dynamics of socio-economic phenomena across different 
periods, particularly within the construction industry. This 
enables stakeholders, such as government agencies and 
enterprises, to gain in-depth insights into local develop-

mental foundations, thereby facilitating the formulation of 
targeted plans or strategic decisions (Huang et al., 2021). 
While evaluation studies in the construction sector are not 
a new field, previous research has yielded positive results 
in areas such as sustainability (Kucukvar & Tatari, 2013; 
Tatari & Kucukvar, 2012), development potential (Ozkan 
et al., 2012), regional competitiveness (Qinghua & Yan-
ping, 2015), and productivity (Chancellor & Lu, 2016). With 
the sustainable development of digitalization, intelligence, 
and industrialization in the construction industry, estab-
lishing an evaluation system specifically for IC has become 
a pressing need. Existing evaluation on IC are often limited 
to specific technologies, such as assessing BIM maturity 
(Kam et al., 2017), evaluating the application of IoT (Oke & 
Arowoiya, 2021), and examining blockchain performance 
(Cong & Zi, 2020). However, previous research on IC eval-
uation lacked a macro perspective on reglonal develop-
ment, which could not effectively guide the differentiated 
formulation and guidance of policles in different reglons.

Drawing insights from evaluation research in other 
areas of the construction industry, such as static and dy-
namic analyses to assess the development levels of pre-
fabricated construction (PC) (Ji et al., 2019), qualitative 
evaluations based on industrial policy performance (Park 
et al., 2011), and cloud model assessments of construc-
tion industrialization (Wang et al., 2021), offers valuable 
implications for IC evaluation. These studies have devel-
oped macro-regional PC evaluation index systems through 
expert interviews and literature surveys, emphasizing the 
importance of technological, policy, economic, and social 
factors (Dou et al., 2019). They provide valuable insights 
for the evaluation of IC. However, due to the lack of rel-
evant statistical data, these studies predominantly rely on 
small-scale case analyses of specific projects or regions (Liu 
et al., 2017), making it difficult to comprehensively capture 
the overall development of the industry, especially at the 
national level, where macro-regulatory goals are challeng-
ing to achieve. Moreover, the existing foundational data 
and evaluation systems have not fully considered regional 
differences, lacking a scientific and effective quantitative 
monitoring mechanism for IC development, particularly 
at the provincial level (Dejaco et al., 2017). Multi-source 
data driven by new media can effectively supplement tra-
ditional statistical data, providing more multidimensional 
information to support IC evaluation, particularly in situ-
ations where regional data is dispersed and challenging 
to unify (Brossard, 2013). Existing studies often utilize the 
entropy-weighted TOPSIS method (Gu et al., 2021) or sta-
tistical analysis following text mining to explore spatio-
temporal evolution (Luo & He, 2021). However, they lack 
rigorous quantitative models capable of integrating multi-
dimensional data and uncovering complex spatiotemporal 
interaction characteristics. Establishing a comprehensive 
IC evaluation framework based on quantitative data is 
critical to identifying provincial development statuses and 
disparities, enabling the formulation of targeted develop-
ment strategies, and facilitating the industry’s intelligent 
upgrade from local to national scales.
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3. Methodology
3.1. Research framework
This study measures the overall development level of IC 
and analyzes the spatiotemporal evolution characteristics 
of each province’s development level. Firstly, 16 indexes 
for measuring the development level of IC are identified 
based on the PEST analysis model. Then, corresponding 
quantitative methods are designed for each index, and 
an integrated approach combining entropy weight, Ana-
lytic Network Process (ANP), and game theory is used to 
calculate indexes weights. Furthermore, the cloud matter-
element model is employed to measure the development 
level of IC. Finally, Moran’s Index is used to analyze the 
temporal dynamics and spatial autocorrelation of the 
measurement results, exploring the spatiotemporal evolu-
tion characteristics of IC development. Figure 2 presents 
the research framework.

3.2. Study area
The geographical characteristics, cultural characteristics, 
and economic foundation will all affect the regional de-
velopment level of the industry. The division of provinces 
in China meets the convergence of the above character-
istics, and the regional statistical system is also based on 
provinces, municipalities directly under the central gov-
ernment, and autonomous regions. Due to the inability 
to obtain complete information in regions such as Taiwan, 
Hong Kong, and Macau, this paper selects 22 provinces, 
4 municipalities directly under the central government, and 
5 autonomous regions in mainland China as the measure-
ment objects, collectively referred to as “provinces” in the 
following text.

3.3. Measurement system for the 
development level of IC
3.3.1. Determination of measurement indexes

The measurement index system for the IC development 
level has not formed a unified standard, especially with 
few studies focusing on the measurement of the provincial 
development level. The PEST analysis model provides ideas 
for establishing a comprehensive index system for measur-
ing the development level of IC. This model is often used 
for macro analysis of the external strategic environment 
of enterprises or industries, including political, economic, 
social, and technological dimensions. The measurement 
index system constructed with the PEST model can take 
into account various aspects of industry development and 
select targeted indexes that can reflect provincial develop-
ment characteristics.

Due to the limited literature directly related to the 
measurement indexes of IC development level, this study 
referred to relevant achievements in the field of industrial-
ized construction. This is because the external environment 
of industrialized construction and IC development is simi-
lar. Therefore, based on the PEST model, this study used 
literature analysis and expert interviews to identify indexes, 
and further tested the rationality and representativeness of 
the indexes through expert interviews. The author invited 
10 experts engaged in IC-related work, including construc-
tion enterprises (3 people, 30%), research institutions (2 
people, 20%), industry associations (2 people, 20%), and 
government agencies (3 people, 30%), for interviews. 
When at least half of the experts believe that the index is 
unreasonable or atypical, it will be deleted. In addition, this 
study also tested the usability of index data. Finally, 16 in-
dexes were determined to measure the development level 
of IC. The measurement index system is shown in Table 2.

Figure 2. Research framework
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3.3.2. Index quantification methods

(1) Political Indexes
Policy tools (P1). This refers to the number of IC-re-

lated policies issued by the government. Using Eqn (1) to 
unify the dimensions of P1 data, where C1j represents the 
cumulative number of IC-related policies in province j, and 
P1j represents the index score of province j.

1 1
1

1 1

max
10 1 , , 1,2, , .

max min
r j

j
r r

C C
P j r n

C C

æ ö- ÷ç ÷ç ÷= - = ¼ç ÷ç ÷- ÷çè ø
   (1)

Policy intensity (P2). P2 represents the degree of 
compulsion in the implementation process of IC-related 
policies. Generally, the higher the administrative level of 
policy issuers, the wider the scope of policy application, the 
stronger the policy intensity, and the higher the quantita-
tive score. Based on the scoring criteria of policy intensity 

in Table 3, the i-th policy of province j was scored to ob-
tain C2ji, where P2j represents the index score of province j.
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Policy objectives (P3). This mainly evaluates the level 
of IC development goals set by local governments in policy 
documents, especially the comparison with the IC’s goals 
pointed out in the State Council documents in 2025 and 
2035. The quantification of policy goals is mainly achieved 
by comparing the consistency of goals set by local and na-
tional governments. If the two are consistent, a score of 3 
will be given. If the local goals are higher than the national 
goals, a score of 5 or 4 will be given. Otherwise, a score of 
2 or 1 will be given. The scoring criteria for P4 are shown 
in Table 4, and the quantification method is similar to P2.

Table 2. Measurement index system of IC development level

Primary index Sub-index Justification

Political index 
(P)

Policy tools (P1) Gan et al. (2023)
Policy intensity (P2) Gan et al. (2023); Luo et al. (2021)

Policy objectives (P3) Dou et al. (2019)
Technical standard specification level (P4) Borrás and Laatsit (2019); Ma et al. (2019)

Economic 
index  
(E)

Number of IC-related enterprises (E1) Liu et al. (2017)
Number of demonstration cities, bases and projects (E2) Xu et al. (2024)
Labor productivity (E3) Liu et al. (2017)
Contribution to regional economy (E4) Dou et al. (2019)

Social index 
(S)

Appearing frequency of IC-related news (S1) Dou et al. (2019); Expert interviews; New media 
information

The keyword search popularity (S2) Dou et al. (2019)
Clicks of IC-related news (S3) Dou et al. (2019); Expert interviews; New media 

information
Forwarding quantity of IC-related news (S4) Dou et al. (2019)

Technical 
index  
(T)

Number of IC-related research institutions and 
associations (T1)

Lu et al. (2018)

Technical equipment rate (T2) Wang and Wu (2022)
Number of IC-related patents (T3) Xue et al. (2024)
Number of published papers (T4) Xue et al. (2024)

Table 3. Quantitative scoring criteria for policy intensity

Score Quantitative scoring criteria

5 Regulations, regulations, decisions, opinions, methods, and standards issued by provincial people’s congresses, provincial 
governments, departments, and bureaus.

3 Plans, guidelines, temporary regulations, detailed rules, and conditions.
1 Notification, announcement, evaluation method, trial implementation method.

Table 4. Quantitative scoring criteria for policy objectives

Score Quantitative scoring criteria

5 The local government has set IC development goals, clearly defining timelines and target outcomes, and the goal setting 
is higher than national requirements.

3 The local government has set IC development goals that are consistent with national requirements.
1 The local government has not set goals or the goals are lower than national requirements.
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Technical standard specification level (P4). P4 is 
mainly represented by the number of IC-related techni-
cal standards issued by local authorities. These technical 
standards have a promoting and regulating effect on the 
provincial development of IC. The quantification method 
is similar to P1.

(2) Economic indexes
Number of IC-related enterprises (E1). The data for 

this index is obtained through publicly available online 
information such as listed company information, industry-
related exhibition exhibitor directories, and self-built web-
site registration companies. The quantification method is 
similar to P1.

Number of demonstration cities, bases and pro-
jects (E2). This is mainly represented by the number of 
IC demonstration cities, industrial bases, and technology 
demonstration projects announced by the MHURD. The 
quantification method is similar to P1.

Labor productivity (E3). This refers to the labor pro-
ductivity of the construction industry in each province re-
leased by the National Bureau of Statistics. The quantifica-
tion method is similar to P1.

Contribution to regional economy (E4). E4 is mainly 
represented by the ratio of the construction industry out-
put value to the GDP of each province released by the Na-
tional Bureau of Statistics, and the quantification method 
is similar to P1.

(3) Social indexes
Appearing frequency of IC-related news (S1). IC-re-

lated news is mainly obtained through crawling on some 
news websites and classified by the province through text 
analysis. To ensure the objectivity of the data, the news in 
t is average and recorded as Q1j. The quantitative method 
is shown in Eqns (3)–(4). Where q1ja represents the number 
of IC-related news; S1j represents the index score of prov-
ince j; t represents the time of news searching.
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Appearing frequency of IC-related news (S2). This 
reflects the population’s attention to IC-related keywords 
within a province. Determine the search popularity value 
S2j based on the search ranking obtained through a crowd 
portrait analysis of the Baidu Index. Assuming that the 
search ranking of keyword i in province j within a certain 
interval is Pij. Then, the average ranking S2j of IC-related 
keywords in province j and the unified dimension value S2j 
can be obtained:
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Clicks of IC-related news (S3). This reflects the con-
cerns of IC-related news. This study uses the traffic of offi-
cial websites such as WeChat, Sina, Sohu, and Baidu as the 
data source, and calculates the average click in t to obtain 
S3j. The quantification method is similar to S1.

Forwarding quantity of IC-related news (S4). This 
refers to the number of reposts of IC-related news on new 
media channels (WeChat, Weibo, etc.). The quantification 
method is similar to S1.

(4) Technological indexes
Number of IC-related research institutions and as-

sociations (T1). The research institutions and associations 
in T1 are at or above the municipal level. The quantifica-
tion method is similar to P1.

Technical equipment rate (T2). This refers to the 
technical equipment rate of the construction industry in 
each province released by the National Bureau of Statis-
tics. The quantification method is similar to P1.

Number of IC-related patents (T3). This is an impor-
tant index reflecting the technological innovation achieve-
ments of construction enterprises in a province. The statis-
tical object of this index is enterprises within the IC indus-
try demonstration base recognized by the MHURD. The 
quantification method is similar to P1.

Number of published papers (T4). The data for this 
index was obtained through statistical analysis of IC-re-
lated papers in the China National Knowledge Infrastruc-
ture (CNKI) and Web of Science core database (WOS). The 
quantification method is similar to P1.

3.3.3. Indexes weights calculation

To ensure the rationality of the measurement results, 
this study adopts the combination weighting method to 
calculate indexes weights, namely the “ANP – entropy 
weight – game theory” integration method. Firstly, use 
ANP to determine the subjective weights of the indexes. 
ANP overcomes the shortcomings of AHP and is more in 
line with practical decision-making problems, theoreti-
cally solving complex dynamic feedback system problems 
(Shyur, 2006). However, due to differences in the knowl-
edge reserves and understanding of IC among different 
experts, ANP can lead to subjective bias in the evaluation 
results. Therefore, this study introduces the entropy weight 
method to determine objective weights based on the ob-
jective laws exhibited by index data. Finally, game theory 
is used to fuse the subjective and objective weights to 
obtain the combined weights. The determination of com-
bination weights is mainly aimed at Nash equilibrium, with 
the minimum deviation between the two sets of weights 
as the final game result. Using this method can reduce the 
degree of deviation between the subjective and objective 
weighting results, making the measurement results more 
accurately reflect the real situation (Kordos & Lapa, 2018). 
The steps for calculating combination weights using game 
theory are as follows.

1 2, , ...,k k k knw w w wé ù= ê úë û  is the set of weight vectors, 
where k (k = 1,2 , ..., P) is the number of weight calcula-
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tion methods used. In this paper, P = 2 and n = 16, which 
means that the weight vectors determined by ANP and 
entropy weight method are w1 and w2, respectively.

(1) The minimum deviation strategy based on game 
theory can be represented by Eqn (7):

      
1

min , 1,2.
P

T
k k k

k

k w w
=

- =å
 

(7)

(2) Let { }1 2,  = be a linear combination coefficient 
and convert Eqn (8) into an optimal first-order de-
rivative:
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(3) Then, normalize coefficient λ to obtain the combi-
nation coefficient:
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(4) Obtain the combination weights based on Eqn 
(10):

     1 2
* * .1 2

T Tw  w  w= +

 

(10)

3.3.4. Development level measurement method:  
Cloud matter-element model

(1) Cloud model. Cloud model can reflect the correlation 
between randomness and fuzziness in different di-
mensions of the same event, and form mapping rela-
tionships between qualitative and quantitative things. 
The model has numerical features such as expectation 
(Ex), entropy (En), and hyper entropy (He). Ex repre-
sents the average value in the studied sample data. 
En mainly measures the randomness and degree of 
confusion in qualitative descriptions. He describes the 
randomness and chaos degree of entropy, and the 
larger He, the greater the degree of dispersion of the 
assessment samples.

(2) Matter element analysis method. This method was 
proposed by Chinese scholar Cai (1999) in the 1980s 
and can effectively solve incompatible problems in the 
real world. Usually, things are represented as R = (N, 
C, V), where R represents the basic element of things 
composed of these three factors. N represents the 
name of the object, C represents the feature to which 
the object belongs, and V represents the numerical 
value of the feature to which it belongs.

(3) Cloud matter-element model. Cloud model can effec-
tively express the fuzziness and irregularity of things, 
matter element analysis method can solve incompat-
ible problems. Therefore, this paper combines the two 
to measure the development level of IC. According 
to the IC development level measurement index sys-
tem constructed in Section 3.3.1, the IC development 
level is taken as the overall measurement index ele-
ment, including four primary measurement indexes of 
policy, economy, society, and technology, and 16 sub-
indexes as the index layer element. The expression of 

the cloud matter-element model is shown in Eqn (11): 
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where R represents the standard cloud element for 
measuring the development level of IC; C represents 
the index to be evaluated; (Ex, En, He) represents the 
standard cloud corresponding to the indexes to be 
evaluated.

The calculation steps for the cloud matter-element 
model are as follows.
Step 1: Determine standard cloud parameters

According to the index quantification method in Sec-
tion 3.3.2, all index data will be uniformly processed into 
interval data of [0,10]. Referring to the research of relevant 
researchers (Liu et al., 2017; Wang et al., 2021), the devel-
opment level of IC is divided into four levels from low to 
high: I, II, III, and IV. The corresponding standard cloud 
parameters are (0,2], (2,4], (4,7], and (7,10].
Step 2: Determine indexes weights

Use the combination weighting method proposed in 
Section 3.3.3 to determine the combination weights of 
indexes.
Step 3: Determine membership degree

Consider the sample data as a cloud droplet xi, and 
calculate the membership degree of xi (i.e., the values of 
various indexes) following En based on the determined 
numerical characteristics of the cloud (Ex, En, He):
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  (12)

where ( )jh ik x  is the membership degree between the i-th 
index value xi and the h-th level; Ex is the expectation of 
the normal cloud model for the measurement level.

Calculate the cloud correlation degree between the 
IC development level measurement index and each index 
level using Eqn (13), and form a cloud correlation value 
matrix K:
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where n is the number of indexes and L is the number of 
measurement levels of indexes.
Step 4: Calculate the cloud correlation degree

Calculate the cloud correlation degree between the 
IC development level measurement index and the corre-
sponding level using Eqn (14):

1

( ) ( ),
n

j j i jh i
j

k N k xw
=

=å   (14)

where ( )j jk N  is the correlation degree of the correspond-
ing level j, and wi is its corresponding index weight.
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Step 5: Determine the development level
According to the principle of maximum membership 

degree, determine the membership level of provincial IC 
development level:

{ }max 1,2, , ( ).j j jk j n K N= =    (15)

3.4. Spatiotemporal evolution  
analysis method
This study analyzes the spatiotemporal evolution of the 
measurement results of the provincial development level 
of IC from 2013 to 2022 and explores the overall develop-
ment trend and dynamic changes in the driving factors 
(PEST) of provincial IC from a temporal perspective. Using 
Moran’s index (Moran’s I) to explore the spatial correlation 
of provincial IC development from a spatial perspective, 
in-depth analysis of the spatial agglomeration phenom-
enon at the provincial level.

Spatial correlation refers to the similarity of vari-
able values between adjacent regions, and Moran’s I is 
the most commonly used analytical method (Srejić et al., 
2023). The Moran’s I is divided into global and local Mo-
ran’s I. The former can only reflect whether the national IC 
development level has spatial correlation, while the latter 
can more accurately reflect the correlation and agglomera-
tion of IC development levels between each province and 
neighboring provinces. The research object of spatial cor-
relation analysis does not include Xizang, because Xizang’s 
geographical location, climate conditions, and economic 
structure are very different from other provinces.

(1) Global spatial correlation
The global Moran’ I is a key index for analyzing global 

spatial correlation:
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where I (–1  I  1) is the global Moran’ I, where I > 0, 
I < 0, and I = 0 respectively indicate that the research 
object has positive, negative, and uncorrelated spatial cor-
relations. N represents the number of provinces, xi and wij 
represent the IC development level scores of provinces i 
and j, x  is the average of the IC development level scores 
of 30 provinces, and S2 represents the variance. wij is a 
spatial weight matrix, divided into geographic and eco-
nomic distance weight matrices, this paper uses an eco-
nomic distance matrix. Based on the IC development level 
scores of 30 provinces in China from 2013 to 2022, the 
global Moran’ I was calculated using Stata software.

(2) Local spatial correlation
The local Moran’ I is a key index for observing the spa-

tial agglomeration phenomenon of a specific region:
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4. Results and discussion
4.1. Index data acquisition
Taking into account the timeliness of research and infor-
mation consistency, this study sets the deadline for data 
acquisition as December 31st, 2022, and the data collec-
tion for all indexes will be restricted before this point. As 
shown in Table 5, the data is divided into fixed-time inter-
val data and historical data, which is determined according 
to different attributes of the information.

Table 5. Time data for corresponding indexes

Date type Time Corresponding indexes

Fixed-time 
interval data

1/1, 2022 to 
31/12, 2022

E3/E4/S1/S2/S3/S4/T2 

Historical data Up to 31/12, 
2022 

P1/P2/P3/P4/E1/E2/T1/T3/T4

(1) Political indexes data
Using keywords such as “intelligent construction”, 

“smart construction”, “smart construction sites”, “digital 
construction”, as well as related keywords such as “BIM”, 
“artificial intelligence”, “Internet of Things”, “mobile com-
munication technology”, and “big data”, the search was 
conducted on the official websites of 31 provincial gov-
ernments, the State Council, the MHURD, and the PKU-
LAW (https://www.pkulaw.com/). Through manual screen-
ing, duplicate, expired, low relevance, and informal policy 
texts were excluded, and 741 policy texts were ultimately 
determined. Based on data, quantify policy tool (P1), policy 
intensity (P2), and policy objective (P3). The technical stan-
dard specification level (P4) is determined by the number 
of technical standards issued by local governments, and 
the data is sourced from the websites of housing and con-
struction bureaus in various provinces, CNKI (https://www.
cnki.net/), and CSSN (https://www.cssn.net.cn/cssn/index). 
The data on the political index of each province is sum-
marized in Table 6.

(2) Economic indexes data
The number of IC-related enterprises (E1) is deter-

mined based on the place of registration of the enterprise. 
The demonstration efficiency level (E2) is expressed by the 
number of intelligent construction pilot cities and demon-
stration projects. The number of pilot cities is derived from 
“the Notice of the MHURD on Publishing Intelligent Con-
struction Pilot Cities” (2022, No. 82). In the notice, 24 cities 
were identified as the first batch of IC demonstration cities. 
The number of demonstration projects comes from the 
first batch of typical case lists of IC new technologies, new 
products, and innovative services released by the MHURD. 
The data on labor productivity (E3) and contribution to 
regional economy (E4) are sourced from the National Bu-
reau of Statistics, the China Statistical Yearbook, and the 
construction industry statistical yearbooks of provinces. 
The data on the economic index of each province is sum-
marized in Table 6.

https://www.pkulaw.com/
https://www.cssn.net.cn/cssn/index
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(3) Social indexes data
S1, S3, and S4 are indexes related to news, with data 

sourced from Baidu, Sina, and Sohu (three large news 
clients with a big influence in China), Weibo, Subscrip-
tion number of WeChat, and information from the State 
Council, Ministry of Housing and UrbanRural Develop-
ment, National Construction Information Network, and 
Science and Industrialization Development Center of the 
Ministry of Housing and Urban-Rural Development. Firstly, 
this study utilized Octopus software to collect news infor-
mation from the internet, and a total of 8547 IC-related 
news items were collected. Then, delete duplicate news 
and some low-relevance advertising information, keeping 
4886 items (Huang et al., 2025). Finally, using the stutter-
ing word segmentation package in Python language, the 
text was segmented to match news with provinces, result-
ing in 1310 provincial news. The process of news clean-
ing and classification is shown in Figure 3. In addition, the 
keyword search popularity (S2) within the region is ob-
tained through Baidu Index. Baidu Index is a data-sharing 

platform based on uninterrupted user behavior data, and 
its character portrait module can reflect the ranking of re-
gional popularity. The data on the social index of each 
province is summarized in Table 6.

(4) Technical indexes data
The number of IC-related research institutions and as-

sociations (T1) was obtained from publicly available infor-
mation on the Internet, with a total of 121 collected. The 
technical equipment rate (T2) is derived from the statistical 
yearbooks of the construction industry in each province. 
The number of IC-related papers published (T3) comes 
from CNKI and Baiten (https://www.baiten.cn/). Screen 
patents based on their names and abstracts, and classify 
them by province based on their registration attribution, 
author organization attribution, and patent attribution. 
The number of IC-related papers published (T4) comes 
from CNKI and WOS (https://clarivate.com.cn/). The data 
on the technical index of each province is summarized in 
Table 6.

Table 6. Data summary of political, economic, social, and technological indexes

Province
Political indexes Economic indexes Social indexes Technical indexes

P1 P2 P3 P4 E1 E2 E3 E4 S1 S2 S3 S4 T1 T2 T3 T4

Anhui 44 3 116 0 210 1 533025 0.30 145 231.37 0 646 8 12693.7 51 37
Beijing 74 5 73 7 101 11 640306 0.23 279 290.34 315 866 7 22362.8 97 440
Fujian 71 3 86 0 78 7 322044 0.29 85 393.65 2 632 0 11530 24 60
Gansu 41 1 28 0 101 0 460221 0.20 19 760.80 4 375 1 15139.1 5 16
Guangdong 66 5 56 4 397 13 543078 0.15 150 314.13 19 1360 28 6378.2 120 195
Guangxi 60 3 36 0 20 2 533283 0.24 139 216.60 4 520 2 6372.4 10 41
Guizhou 17 1 35 0 77 0 541463 0.21 65 34.90 0 424 2 7127.4 2 26
Hainan 47 3 61 0 42 0 674177 0.06 57 2.70 25 297 1 6180.7 0 4
Hebei 61 5 75 3 92 6 645244 0.15 60 996.83 196 721 3 21453.7 17 78
Henan 26 1 33 2 77 4 460776 0.22 54 234.22 5 823 4 7478.9 19 83
Heilongjiang 38 5 119 0 25 1 427535 0.08 29 79.80 0 424 1 14699.9 3 39
Hubei 57 5 151 2 158 5 761375 0.32 85 157.28 425 713 2 7841.7 35 213
Hunan 82 3 180 0 72 4 440835 0.26 96 260.95 0 653 2 4411.3 22 47
Jilin 40 3 99 2 42 1 598758 0.15 37 0.00 0 391 3 19245.5 4 27
Jiangsu 33 5 148 0 138 11 369394 0.30 81 277.93 139 1069 6 26874.7 125 311
Jiangxi 45 3 58 5 48 1 537197 0.29 98 715.60 22 530 2 19160 7 26
Liaoning 25 5 44 4 47 2 578784 0.14 58 395.85 0 578 7 7048.9 23 68
Inner Mongolia 29 3 26 0 113 0 521443 0.06 30 55.90 0 387 2 4358.6 1 22
Ningxia 32 1 9 1 28 0 388376 0.14 20 11.90 0 247 0 5440.5 0 0
Qinghai 34 3 9 0 6 1 713397 0.15 9 0.00 1 182 1 9964.8 0 1
Shandong 66 5 162 7 17 9 534832 0.18 141 365.28 17 970 11 13192.3 38 92
Shanxi 26 5 37 1 59 1 461711 0.23 32 85.55 0 483 1 10624.2 6 25
Shaanxi 26 5 83 0 5 2 553359 0.29 41 365.70 2 605 1 4207 28 119
Shanghai 93 3 117 0 77 5 760651 0.19 258 240.42 10 699 5 16678.5 95 354
Sichuan 73 5 54 0 68 10 420179 0.29 162 427.25 43 865 7 19638.8 44 92
Tianjin 26 3 58 0 30 2 526910 0.28 264 526.37 1 435 1 5189.2 18 99
Xizang 12 1 32 0 21 0 586263 0.14 8 0.00 0 116 0 6235.8 1 1
Xinjiang 31 1 23 0 39 2 497108 0.17 17 28.60 1 369 1 12225.8 4 7
Yunnan 23 3 52 0 86 0 452075 0.25 33 263.40 3 478 3 11718 3 20
Zhejiang 55 3 74 2 107 11 393185 0.28 120 246.41 6 942 5 48358.8 70 105
Chongqing 134 5 47 4 64 1 436359 0.32 209 336.95 2 553 3 8544.7 37 111

https://www.baiten.cn/
https://clarivate.com.cn/
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4.2. Determination of indexes weights
This paper uses ANP and entropy weighting methods to 
calculate subjective and objective weights respectively, and 
combines the two weights using game theory to obtain 
the combined weights of 16 indexes, as shown in Table 7.

Table 7. Combination weight of index

Index Subjective 
weight 

Objective 
weight 

Combination 
weight

P1 0.0883 0.0301 0.0611
P2 0.1900 0.0342 0.1169
P3 0.1929 0.0339 0.1184
P4 0.0260 0.1281 0.0739
E1 0.0387 0.0470 0.0426
E2 0.0570 0.0744 0.0651
E3 0.0470 0.0191 0.0340
E4 0.0710 0.0184 0.0463

S1 0.0174 0.0642 0.0394
S2 0.0127 0.0497 0.0301
S3 0.0050 0.1998 0.0963
S4 0.0449 0.0224 0.0343
T1 0.0630 0.0711 0.0668
T2 0.0602 0.0567 0.0585
T3 0.0814 0.0800 0.0807
T4 0.0045 0.0709 0.0356

4.3. Holistic measurement for  
the development level of IC
To ensure the dimension uniformity and comparability of 
the index data, and the reliability of the conclusions, all the 
indexes need to be processed according to the quantita-
tive method in Section 3.3.2. Then, based on the calcula-

tion steps of the cloud matter-element model in Section 
3.3.4, the development level of IC in 31 provinces of China 
is obtained, as shown in Table 8.

ArcGIS 10.7 was used to link development levels with 
spatial analysis units in vector form, and to plot the spatial 
distribution of IC’s development levels in 31 provinces of 
China (see Figure 4).

Table 8. The development level of IC

Province Level Province Level Province Level

Anhui II Hubei IV Shanxi IV
Beijing I Hunan III Shaanxi IV
Fujian II Jilin IV Shanghai I
Gansu III Jiangsu III Sichuan IV
Guangdong II Jiangxi III Tianjin IV
Guangxi IV Liaoning IV Xizang IV
Guizhou IV Inner 

Mongolia
IV Xinjiang IV

Hainan IV Ningxia III Yunnan IV
Hebei IV Qinghai IV Zhejiang II
Henan III Shandong I Chongqing IV
Heilongjiang IV – – – –

Level I: Beijing, Shanghai, and Shandong. Beijing and 
Shanghai are the political, economic, cultural, and edu-
cational centers in northern and southern China, respec-
tively, gathering numerous research institutions related 
to the construction industry. The development of IC has 
strong momentum and abundant resources. As a hub for 
technological innovation, Beijing leverages its high level 
of technological equipment and research output (e.g., 
number of patent grants and paper publications) as pri-
mary advantages. Additionally, the city drives the efficient 
implementation of IC technologies by establishing indus-
try standards through mandatory government policies and 
technical specifications. Shanghai, on the other hand, has 
developed a comprehensive approach to IC by utilizing 
its well-structured policy toolkit. This includes strategic 
planning, talent development, and technological support, 
complemented by its ability to integrate international re-

Figure 3. News cleaning and classification process

Rough data: 8547 items 4886 items
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Figure 4. Provincial development level of IC in China
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sources. Together, these factors contribute to Shanghai’s 
holistic advancement in IC. Both Beijing and Shanghai have 
introduced numerous policies to support the development 
of IC. For example, Beijing provides area incentives, and 
financial incentives, as well as tax refunds, fee reductions, 
and credit support measures for eligible projects. Shanghai 
provides a reward of no more than 10 million yuan or a 
3% plot ratio for eligible projects. Moreover, the scale of 
the construction industry is closely related to population 
and economic conditions. Shandong has a large popula-
tion and a relatively high economic level, so the scale of 
the construction industry continues to expand, achieving a 
relatively high level of modernization and informatization. 
In the field of IC, the Shandong government attaches great 
importance to the development of IC and has also pro-
vided a lot of policy support, continuously improving the 
technology level of IC. In addition, the development of the 
construction industry in Beijing, Shanghai, and Shandong 
has always received social attention, with more news re-
ports related to IC, and relatively high click-through rates 
and reposts. Policies and technologies serve as the primary 
driving forces, while multidimensional drivers, including 
economic factors and social attention, collectively shape 
the leading positions of these three regions in the field 
of IC.

Level II: Guangdong, Fujian, Zhejiang, and Anhui. 
Guangdong, Fujian, and Zhejiang are all located in the 
eastern coastal region and are provinces with relatively 
concentrated enterprises related to the construction in-
dustry. These regions are at the forefront of China’s reform 
and opening up, with rapid economic development, large 
population inflows, and a high demand for housing and 
infrastructure. Therefore, the construction industry in these 
provinces has a large scale of development, a high level 
of technological innovation, and the economic founda-
tion and resource conditions to develop IC. Guangdong 
is significantly driven by technological indexes. Its nu-
merous IC-related research institutions and associations 
provide strong support for technological innovation, the 
formulation of industry standards, and the cultivation of 
professional talent, thereby greatly advancing the devel-
opment of IC in the region. The concentration of research 
institutions not only fosters technological innovation but 
also offers scientific foundations for the development and 
implementation of government policies. Meanwhile, indus-
try associations play a critical role in resource integration, 
industrial coordination, and market promotion, further ac-
celerating the Guangdong’s IC developmen. In addition, 
In addition, Anhui is landlocked but geographically advan-
taged, so policy factors play a key role. Anhui connects the 
east and the west, with a north-south connection and the 
Yangtze River transportation waterway, highways, and a 
complete railway transportation system. Meanwhile, Anhui 
actively participates in the integrated development of the 
Yangtze River Delta. Therefore, the construction industry 

in Anhui has also achieved good development, and the 
local government has invested a lot of policy support in 
IC, resulting in a relatively high development level of IC.

Level III: Many inland provinces, particularly in the 
northeast, northwest, and southwest, do not consider 
construction a pillar industry, leading to low output value 
and weak technological innovation, which hampers IC de-
velopment. For example, provinces like Jiangxi and Henan 
have dense populations but face slow IC progress due to 
weaker economic foundations. However, this does not 
imply that these regions lack potential for IC; rather, the 
challenges they face and the considerable room for de-
velopment present opportunities for the future of IC. It is 
noteworthy that Jiangsu, as a relatively developed coastal 
region in terms of economic and technological progress, 
is categorized in the Level III. Data and research indicate 
that the province is in a critical phase of transformation 
and upgrading, requiring time for returns on technology 
investments, which has probably led to a relatively low 
labor productivity. Additionally, the province’s economic 
focus is on traditional manufacturing, high-tech industries, 
and services, resulting in insufficient attention from pro-
vincial government departments toward the construction 
industry, and a cautious approach to policy document is-
suance. This suggests that the key driving role of policy 
factors should be strengthened in such provinces.

Level IV: China’s vast territory results in imbalanced 
development of IC across provinces. This imbalance stems 
partly from limited resources and government policies that 
prioritize certain provinces, allowing them to achieve ad-
vanced IC development and drive progress in neighboring 
areas. In provinces such as Heilongjiang, Xinjiang, Yunnan, 
and Guangxi in level IV, inadequate government support, 
lagging economic resources, limited outreach, and dimin-
ished technological innovation exacerbate development 
difficulties. These regions need enhanced policy support, 
resource allocation, and innovation guidance to effectively 
raise their IC levels and close the gap with more developed 
areas.

This research is conducted within the context of China; 
however, the transition towards industrialization and intel-
ligence in the construction industry is a global trend that 
holds relevance for various countries and regions. While 
some nations focus on establishing project-level standards 
for IC assessment, they often fall short in guiding regional 
evaluations of IC development levels. This study presents 
a practical framework for assessing regional development 
levels in intelligent construction, which, with minor adjust-
ments, can be applicable to other countries, aiding them in 
identifying regional disparities in IC advancement. Notably, 
expansive countries and regions can benefit from China’s 
experiences and insights in regional IC development, en-
abling them to formulate differentiated strategies for IC 
growth tailored to specific areas and to optimize regional 
resource allocation amidst uneven economic development.
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4.4. The spatiotemporal evolution of  
the development level of IC
4.4.1. Temporal variation analysis

This study selected 2013, 2016, 2019, and 2022 as four 
observation years and used ArcGIS to draw spatiotemporal 
distribution maps of IC development levels in 31 provinces 
in China. As shown in Figure 5, the development level of 
China’s IC shows a trend of increasing from northwest to 
southeast.

As shown in Figure 5a, the overall development level 
of IC in China’s provinces was relatively low in 2013, with 
scores generally below 2. By 2016, some provinces such 
as Beijing, Jiangsu, Shanghai, and Zhejiang had signifi-
cantly improved their IC development scores. They have 
increased the promotion and application of BIM technol-
ogy, significantly improving the level of IC through mea-
sures such as introducing advanced construction technolo-
gies, strengthening talent cultivation, and providing policy 
support. However, the development level of IC in most 
provinces is still relatively low. By 2019, provinces with 
higher scores had begun to form agglomeration effects, 

mainly concentrated in areas centered around Beijing and 
Chongqing. This is because Beijing and Chongqing have 
actively responded to IC-related policies, vigorously pro-
moted the improvement of IC level, and synchronously 
driven the development of surrounding cities. In August 
2020, the MHURD and nine other departments issued 
“several opinions on accelerating the development of new 
building industrialization”, aiming to promote the compre-
hensive transformation and upgrading of the construction 
industry through IC. IC has been further identified as a 
national strategy. Therefore, by 2022, the overall devel-
opment level of IC in China has significantly improved, 
especially in the eastern and central provinces. In addi-
tion, Shaanxi, Chongqing, and Sichuan also scored high-
er. Overall, the development of provincial IC in China is 
gradually converging from low-development-level areas to 
high-development-level areas.

To explore the impacts of different indexes (P, E, S, and 
T) on the overall development level of IC, this study ana-
lyzed the scores of different indexes from 2013 to 2022, as 
shown in Figure 6. It is found that the performance of four 
indexes (P, E, S, and T) varies dynamically in different years.

Figure 5. The spatial distribution of IC development level scores from 2013 to 2022

a) Spatial distribution in 2013 b) Spatial distribution in 2016

c) Spatial distribution in 2019 d) Spatial distribution in 2022



Journal of Civil Engineering and Management, 2025, 31(5), 418–437 431

Figure 6 shows that policy indexes and technical index-
es have the highest contribution to the development level 
of IC in China. Policy factors play a significant leading role 
in the development of IC and are the main driving force. 
As time goes by, the scores of policy indexes gradually 
increase, indicating that the government’s emphasis on IC 
is constantly increasing. Various policies have been formu-
lated to guide and promote the development of IC, such 
as providing financial support, tax incentives, and market 
access. Effective policies help regulate industry operations 
and promote standardization and compliance. Technical 
factors also play an important supporting and driving role 
in the development of intelligent construction. IC has bro-
ken the traditional development model of the construc-
tion industry, relying on advanced information technology 
and the application of intelligent equipment. IC is a highly 
integrated field of architecture, artificial intelligence, com-
puter science, and management, which urgently requires 
integrated innovation in construction, sensing, informa-
tion technology, and management models. Technological 
progress plays an important role in improving building 
quality, enhancing construction efficiency, and reducing 
costs. From 2013 to 2022, the contribution of social and 
economic indexes to the development level of IC was sig-
nificantly smaller, with a decreasing trend of fluctuations. 
This indicates that social and economic factors have a sig-
nificantly smaller driving force on IC than policy factors, 
playing a supporting and balancing role. Overall, from 
2013 to 2022, the scores of policy indexes have remained 
at a high level, and the current demand for policy-driving 
forces in IC development is sustained. Although there is a 
decreasing trend in the scores of other indexes, they can-
not be ignored.

4.4.2. Spatial agglomeration analysis

(1) Global spatial correlation
To explore whether provincial IC development in China is 
spatially correlated, this study uses the Moran index meth-

od for spatial correlation analysis. The research object of 
spatial correlation analysis does not include Xizang, be-
cause Xizang’s geographical location, climate conditions, 
and economic structure are very different from other prov-
inces, and the public data from 2013 to 2022 is missing, 
which is difficult to obtain. Based on the comprehensive 
measurement of IC development level in 30 provinces of 
China from 2013 to 2022, the global Moran index value 
was calculated using Stata software, as shown in Table 9. 
The global Moran index of the development level of IC in 
China’s provinces has fluctuated, but it remains between 
0.157 and 0.275 and has passed the 10% significance level 
test. This indicates that there is a significant spatial cor-
relation in the development level of IC among different 
provinces in China, which means that the development 
level of IC has spatial agglomeration (high-high adjacency 
and low-low adjacency).

Table 9. Global Moran index value

Years Moran’s I Z P-value

2013 0.226 3.312 0.001
2014 0.170 0.854 0.064
2015 0.190 1.956 0.050
2016 0.164 1.850 0.064
2017 0.275 2.734 0.006
2018 0.157 1.657 0.098
2019 0.260 2.554 0.011
2020 0.232 2.551 0.011
2021 0.163 1.729 0.084
2022 0.163 1.711 0.087

(2) Local spatial correlation
The global Moran index characterizes the dependence 

of the overall space, but cannot indicate the category of 
spatial agglomeration. The local Moran index can be used 
to observe the agglomeration characteristics of a specific 
region. Figure 7 is a scatter plot drawn based on the lo-
cal Moran index, representing the local spatial distribu-
tion of different provinces in China. The first quadrant 
represents a high-high (H-H) cluster, indicating that the 
corresponding provinces and neighboring provinces have 
a relatively high development level of IC. The third quad-
rant represents a low-low (L-L) cluster, indicating that the 
corresponding provinces and neighboring provinces have 
relatively low development level of IC. The provinces in 
the first and third quadrants exhibit positive spatial cor-
relation. The second quadrant represents a low-high (L-H) 
cluster, indicating that the corresponding province has a 
lower development level of IC while neighboring provinces 
have a higher development level of IC. The fourth quad-
rant represents a high-low (H-L) cluster, indicating that the 
corresponding province has a higher development level of 
IC while neighboring provinces have a lower development 
level of IC. The provinces in the second and fourth quad-
rants exhibit negative spatial correlation. 

Figure 6. Measurement of development levels of different 
indexes from 2013 to 2022

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

T S E P



432 Y. Dou et al. Measurement and spatiotemporal evolution characteristics analysis for the provincial development level ...

Based on Figure 7, the spatial distribution of prov-
inces in different quadrants for 2013, 2016, 2019, and 
2022 can be obtained. Most provinces are located in the 
first quadrant (H-H) and third quadrant (L-L), indicating 
a positive correlation between the IC development level 
of most provinces in China and neighboring provinces. 
Different provinces have a high degree of spatial depen-
dence and significant spatial agglomeration characteristics. 
Specifically, the number of provinces in the third quad-
rant is less than that in the first quadrant, indicating that 
the agglomeration of low-development-level provinces is 
greater than that of high-development-level provinces. It 
shows that China’s IC development is still in a backward 
state. However, the number of spatial clusters showed a 
downward trend from 2013 to 2022, which may be due to 
the optimization of industrial structure by the government 
and the market. In addition, small number of provinces 
in the second quadrant (L-H) and fourth quadrant (H-L) 
indicates that only a few neighboring provinces have sig-
nificant spatial differences in IC development levels, which 
may be caused by their different economic development 
and technological progress. From a temporal perspective, 
the number of provinces in the first quadrant (H-H) has 
increased. Shanghai, Beijing, Hubei, Chongqing, and others 
have always been in this quadrant and have a sustained 

driving effect on neighboring provinces. The number of 
provinces in the third quadrant (L-L) decreases, such as 
Hebei, Henan, and Shanxi gradually disappearing in the 
third quadrant. From a spatial perspective, these inland 
provinces promote technological innovation and economic 
restructuring by learning from the advanced IC experience 
of surrounding provinces, and the IC development level 
of these provinces is gradually improving. The spatial ag-
glomeration effect is gradually developing from coastal ar-
eas to inland areas. However, provinces such as Guangxi, 
Qinghai, Yunnan, and Anhui have always been in the third 
quadrant (L-L). This means that the development of IC in 
these provinces still faces certain challenges and room for 
improvement.

To more intuitively represent the spatial distribution 
and temporal changes of different clusters, ArcGIS 10.7 
was used to connect different clusters with spatial analysis 
units in vector form, as shown in Figure 8.

From a geographical distribution perspective, between 
2013 to 2019, driven by both economic and technological 
indexes, coastal regions gradually formed H-H clusters, be-
coming the core areas for IC development in China. These 
regions benefited from high economic levels, numerous 
pilot cities, and elevated labor productivity, which provid-
ed a solid economic foundation for the advancement of IC. 

Figure 7. Scatter plot of local Moran index in different provinces of China

a) Local Moran’ I in 2013

c) Local Moran’ I in 2019

b) Local Moran’ I in 2016

d) Local Moran’ I in 2022
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Additionally, their dense populations, abundant resources, 
and well-developed transportation networks attract sub-
stantial inflows of population and enterprises. The con-
centration of IC enterprises, coupled with the promotion 
of pilot cities and projects, not only reinforced IC develop-
ment within these regions but also facilitated the growth 
of neighboring areas through demonstration effects. These 
synergistic factors have enabled coastal regions to lead 
in both the research and application of IC technologies, 
while simultaneously establishing them as benchmarks for 
modernization and the intelligent transformation of the 
construction industry. After 2019, some provinces began 
overcoming the challenges associated with L-L clusters by 
advancing technological innovation and restructuring their 
economic systems. This shift enhanced their competitive-
ness in the construction sector and elevated IC develop-
ment levels. Notably, the release of the “Guiding Opinions 
on Promoting the Coordinated Development of Intelligent 
Construction and Construction Industrialization” in 2020 
(MHURD, 2020) marked the beginning of a policy dividend 
period for IC. The strong support at the national level was 
met with proactive responses from provinces and cities, 
which introduced corresponding standards, regulations, 

and measures to boost local IC development, significantly 
improving IC levels. Policy incentives and technological 
advancements facilitated the widespread promotion and 
application of IC technologies. Inland regions, in particu-
lar, invested heavily in the construction of intelligent in-
dustrial parks and innovation hubs, attracting high-tech 
industries and knowledge-intensive enterprises. Therefore, 
inland areas have gradually developed the conditions for 
H-H clusters, and H-H clusters have also begun to shift 
towards inland areas.

In addition, the provinces with the highest number of 
L-L clusters are mainly concentrated in the central and 
western regions of China. The region should fully tap into 
its geographical advantages, formulate IC development 
strategies tailored to local conditions, actively strengthen 
cooperation with high-level regions, and seek IC link-
age development between provinces. The distribution of 
provinces in non-clusters (H-L and L-H) has undergone 
significant changes from 2013 to 2022, because the de-
velopment of IC in each province is still in the exploratory 
stage, and the development level lacks stability. Further-
more, provinces located in non-clusters do not necessarily 
indicate the development level of IC in these areas. For 

Figure 8. Spatial distribution of IC clusters in different years

a) Spatial distribution of clusters in 2013 b) Spatial distribution of clusters in 2016

c) Spatial distribution of clusters in 2019 d) Spatial distribution of clusters in 2022
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example, the development level of IC in Shandong is rela-
tively high, but it is not located in the cluster, which indi-
cates that Shandong lacks cooperation with neighboring 
provinces and has not fully driven the development of IC 
in neighboring provinces. This type of province should ac-
tively play a leading role, strengthen cooperation between 
provinces, and develop towards scale and regionalization. 
The development level of IC in Hebei is relatively low, and 
it was not in the cluster in the early stage. However, He-
bei is adjacent to Beijing and Tianjin, which have higher 
development levels of IC and have gradually joined the 
H-H cluster. This type of province should actively seek help 
from neighboring high-level provinces in terms of resourc-
es and knowledge to improve its development level of IC.

5. Conclusions and implications
This study quantitatively measured the development level 
of IC in 31 provinces of China and conducted temporal 
changes and spatial agglomeration analysis. The findings 
contribute to the tailored development and coordinated 
coupling of IC at the provincial level, facilitating structural 
adjustments and upgrades in the construction industry, 
and providing a basis for differentiated policy formulation. 
The specific conclusions are as follows: (1) This study used 
the PEST model to construct a provincial IC development 
level measurement index system from four dimensions: 
policy, economy, society, and technology. A multi-source 
data collection approach is utilized, along with the design 
of index quantification and composite weighting methods. 
(2) The cloud matter-element model is used to measure 
the development level of IC in 31 provinces of China. The 
development level of IC in these provinces is divided into 
four levels, with Beijing, Shanghai, and Shandong rank-
ing at the highest level, followed by Guangdong, Fujian, 
Zhejiang, and Anhui. The development level of most other 
provinces is relatively low. (3) The results of spatiotemporal 
evolution analysis indicate that IC in China is in its early 
stages, with an overall low development level and a trend 
of increasing from northwest to southeast. Policy and 
technological factors have been identified as the dominant 
factors driving the development level of IC in China. There 
is a significant spatial positive correlation in the develop-
ment level of IC between provinces in China, and its spatial 
agglomeration effect is gradually developing from coastal 
areas to inland areas.

Theoretically, this study enhances the understanding of 
the intrinsic patterns and influencing factors of IC devel-
opment, providing a solid theoretical foundation for the 
differentiated and dynamic evolution of IC in China. It also 
serves as a reference for measuring IC and development 
levels in other countries and sectors. Practically, (1) this 
research offers a scientific measurement method for coun-
tries or regions developing IC. Government can define the 
overall development direction for IC, formulate regional 
development policies, and optimize resource allocation. It 
is essential to actively cultivate and establish collaborative 
networks across provinces and cities, enhancing coopera-

tion between local markets and surrounding areas. This 
can stimulate the development of lower-level regions by 
leveraging higher-level ones, fostering broader industrial 
agglomeration in IC, thereby improving the efficient allo-
cation and circulation of resources and promoting econo-
mies of scale in IC across provinces and enterprises. (2) 
Stakeholders can develop and select appropriate strategies 
based on local development levels to achieve differenti-
ated enhancement and promotion of IC. Enterprises can 
utilize the four dimensions of the PEST model to elevate IC 
development levels. For instance, at the policy level, gov-
ernments can formulate incentive measures that combine 
mandatory policies with incentives to promote IC. Eco-
nomically, fostering and increasing market demand for IC, 
expanding market share, and accelerating the construction 
of IC industry bases are crucial. Socially, enhancing media 
outreach can raise awareness of IC among stakeholders 
and the public. Technologically, accelerating integrated in-
novation can advance the IC industry’s ecosystem towards 
a complete, rational structure with mature technological 
processes.

However, there are still certain limitations to the re-
search. The PEST model can provide sufficient analysis of 
the external environment for the IC’s development, but 
cannot analyze internal factors in the industry, such as 
supply chain levels. This is also related to the fact that the 
IC’s development is still in its early stages, and many inter-
nal factors in the industry cannot be obtained. In the fu-
ture, with the continuous development of IC, a more com-
prehensive measurement index system will be established.
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