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1. Introduction
Civil infrastructure is an indispensable element of all built 
urban environments as it enables a wide range of human 
activities and provide public services such as transpor-
tation, water supply, sewage, gas, electricity, and power 
(Doyle & Havlick, 2009). Out of the numerous civil in-
frastructures providing services to the residents, sewage 
system is an essential service for modern living that can 
impact the environment significantly. Sewage pipelines are 
considered one of the most crucial components of an ur-
ban infrastructure system as they preserve public health by 
draining wastewater from densely populated areas to nec-
essary treatment plants (Malek Mohammadi et al., 2019; 
Obradović, 2017; Opila, 2011). It is considered as a large 
infrastructure typically constructed beneath roadways as 
shown in Figure 1. Consequently, any damage that may 
occur to pipelines, such as pipe breakage or deteriora-
tion, could likely cause damage to roads (Obradović et al., 
2023). In Seoul, between 2016 to 2021, a total of 1,431 
cases of sinkholes and roads collapsing were reported. Out 
of the reported cases, 782 cases, were caused by damage 
or aging of water and sewage pipes which accounted for 

54.7% of the total road damage cases (Kim, 2022). Moreo-
ver, according to the Ministry of Land, Infrastructure and 
Transport of South Korea, a total of 8,424 km of water 
and sewage pipes were installed for more than 40 years 
ago while 26,350 km were installed for 30 to 40 years. 
Therefore, there is a need to repair and replace these aged 
sewage pipes. In 2018, Urban Infrastructure Headquarters 
announced a management plan for old sewage pipes of 
5,000 km by 2021 including a plan for strengthening 73% 
of the old sewage pipes older than 20 years (Kim, 2022). 
Moreover, according to the Ministry of Environment Do-
mestic Sewage Division (2021), a plan in motion was an-
nounced in 2020 to plan for a large-scale construction pro-
ject, up to 33,861,387 m of new pipes nationwide, which 
adds to the 163,098,677 m of existing sewage pipelines.

From the perspective of project managers for sewage 
pipeline construction projects, risks, such as cost over-
runs, relating to schedule delays often lead to poor project 
performance. In general construction projects, post-eval-
uation reports from 672 completed construction projects 
revealed that 71% of the projects with delays had caused 
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cost overruns. Schedule delays are a known issue in the 
field of construction that causes further problems such as: 
claims, public disruptions and disputes due to road un-
availability (Baloyi & Bekker, 2011; Zakaria et al., 2012). 
For sewage pipeline construction projects, such delays 
might pose additional concerns related to public health, 
citizens’ well-being and environmental problems due to 
their importance in preserving public health and protect-
ing the environment. Moreover, a success of a construc-
tion project is typically determined during the planning 
stage where a project manager would make appropri-
ate estimation of general cost of the project (Ganiyu & 
Zubairu, 2010). A typical cost related project flow is for 
the project manager to produce a cost estimate consisting 
of performance, schedule maintenance and budget that 
creates a standard for determining a success or failure of 
a construction project. Therefore, in accordance with the 
upcoming aforementioned sewage pipeline construction 
projects and to avoid issues related to schedule delays, 
achieving accuracy in predicting construction duration 
is essential for progressing toward a successful project 
completion.

During the planning stage of any construction proj-
ect, prediction is a vital process that sets the standard for 
various project related variables that determines project 
life cycle such as: cost and duration (Tayefeh Hashemi 
et al., 2020). It is considered a vital process as effectively 
and reliably predicting the project related variables sets a 
standard that is used one of the key identifiers for project 

success or failure (Munns & Bjeirmi, 1996). Prior to the 
development of artificial intelligent technologies, statisti-
cal methods have been used in estimating construction 
duration and cost that was considered advantageous due 
to their simplicity in implementations. However, they rely 
on numerous statistical assumptions (Ghimire et al., 2012; 
Khedr et al., 2021; Maclin & Opitz, 1999) that hinders ac-
curacy. To increase their reliability, typical statistical ap-
proaches demand detailed information relative to a cer-
tain project. Such details might not be always available 
or known in the planning stages of the project when the 
prediction of the construction duration is mostly needed 
(Darko et al., 2023). Hence, the need for advanced ap-
proaches and more complex models to overcome the 
uncertainty that usually accompanies the usage of the re-
gression models have been performed and has shown its 
effectiveness in various scenarios (Mahmoodzadeh et al., 
2019; Yuan et al., 2019).

Many previous methodological and technical studies 
regarding construction duration prediction aims to im-
prove accuracy, efficiency and reliability (Abu Hammad 
et al., 2010; Kim et al., 2019; Lin et al., 2011; Mahmoodza-
deh et al., 2022a, 2022b; Peiman et al., 2025; Pesko et al., 
2017; Yeom et al., 2018). However, these studies typically 
focus on a single discipline, whether that be based on sta-
tistics or AI, for their study. For statistical processes, Abu 
Hammad et al. (2010) used a probabilistic model and sta-
tistical regression model based on previous project to pre-
dict construction duration of public buildings. A probabi-

Figure 1. Damage caused to sewage pipelines due to road damages
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listic approach has been explored in previous studies such 
as Markov chain method and Monte-Carlo simulation. The 
probabilistic models have been used to forecast both the 
ground conditions along the tunnel route and the associ-
ated tunnel construction time and costs (Mahmoodzadeh 
& Zare, 2016). Monte Carlo simulation was used to predict 
construction cost and time in tunnel construction as well 
(Moret & Einstein, 2016). For sewage pipeline construc-
tion, statistical regression methods had been applied to 
make an early prediction on the construction cost (Sueri 
& Erdal, 2022). 

The ability of machine learning (ML) and deep learn-
ing (DL) models has been proven effective in various con-
struction related problems. Unlike the statistical regression 
methods, DL and machine learning models improve the 
process of prediction and are able to overcome the lack 
of data needed to make accurate estimations (Lee et al., 
2016; Akinosho et al., 2020; Saeidlou & Ghadiminia, 2024). 
Mahmoodzadeh et al. (2022a) implemented Gaussian pro-
cess regression (GPR) technique to predict construction 
for digging tunnels in mountainous areas. Prediction of 
construction duration and cost for green buildings sector 
was performed using machine learning models such as: 
deep neural networks (DNN) and support vector regres-
sion (SVR) (Darko et al., 2023). Construction cost, which 
is directly related to construction duration, was estimated 
for road construction using the least absolute shrinkage 
and selection operator, K-nearest neighbors (KNN), and 
random forest (RF) (Abed et al., 2022). Zhang and Li (2024) 
have made comparison of various machine learning re-
gression methods method previously to predict construc-
tion duration of mixed-use buildings with that varied in 
scale. 

In summary, previous studies show that regression 
model developed from data based on previous projects is 
a generalized method that has made reliable predictions 
in the early stages of a project where vital information is 
scarce and difficult to obtain. Prior to the development of 
artificial intelligence, statistical based regression method 
was widely used along with probabilistic methods such 
as Markov chain and Monte Carlo simulations. Coincid-
ing with the development of technologies, recent studies 
show an exploration of machine learning based regres-
sion methods, such as: SVR, KNN, GPR and RF, made the 
same predictions. Moreover, DL methods, such as DNN, 
have also been explored. However, studies have shown 
that comparison of these regression methods of different 
topics have been exclusive to a single discipline. Moreover, 
statistics, ML and DL methods have been widely used in 
the building construction sector where it was applied to 
predict cost and duration for various types of buildings 
with different purposes. Although there were studies that 
have applied regression methods in the civil infrastruc-
ture sector, studies were found to be limited where only a 
single study concerned sewage pipeline construction with 
focusing on construction cost.

It is well known that there is a common objective for 
both numerical, ML and DL based regressions are similar 
in that it attempts to either predict or set a benchmark. 
Previous studies have shown that these methods are viable 
in producing an estimate on scheduling or costs. Within 
the previous studies, regression has derived initially from 
statistics gradually being replaced by modern methods. 
This paper contributes to the body of knowledge by 
bridging the gap between past and present techniques 
for performing regression in making estimations and pre-
dictions. This research gap emerged from previous stud-
ies that have performed predictions using regression; and 
compared various approaches exclusively from the same 
discipline. To the best of the authors’ knowledge, no stud-
ies were found that compared the prediction method from 
the three different disciplines simultaneously that concerns 
the same key variables which consequently determines the 
project success. Moreover, while there was a study that 
made prediction based on construction cost for other civil 
infrastructure, limited studies were found that focused on 
duration for sewage pipeline construction.

In this study, statistical methods used are linear and 
polynomial regression. ML techniques used in this pa-
per are SVR and RF. Finally, DL techniques used are DNN 
model and long short-term memory (LSTM). In this study, 
83 data acquired from previous sewage pipe construc-
tion was deemed sufficient. Dependent and independent 
variables are identified from the collected dataset that 
includes: pipe length, construction cost, construction du-
ration where a correlation analysis is performed in order 
to identify the most influential variable. Traditional and 
modern methods of producing a regression model is per-
formed where the model is scored according statistical 
evaluation criteria that are: Pearson correlation (R2), mean 
squared error (MSE), mean absolute error (MAE) and root 
mean squared error (RMSE).

The rest of the paper is organized as follows: Section 2 
examines the previous literature divided into two aspects 
of technical and theoretical discussions, while Section 3 
will represent the methodology adopted to carry on the 
research, explaining the different models that were used 
to predict the duration of the pipeline construction. In Sec-
tion 4, prediction results will be presented and analyzed. 
Finally, the discussion and conclusion will be described in 
Sections 5 and 6, respectively.

2. Literature review
2.1. Methodological framework  
from other fields of study
Aside from civil construction and infrastructure, investigat-
ing the methodology for performing estimation in other 
fields provided crucial insight that assisted in improving 
the general methods used in general civil infrastructure 
construction. Moreover, by doing so, it provides a good 
indicator on methods that could potentially be used for 
planning stage of construction projects.
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From the field of mechanical engineering, a study has 
applied machine learning based regression method for 
predicting permeability of gas reservoirs (Kamali et al., 
2022). In this study, a single method for statistic based 
and two methods from machine learning was conducted 
to produce a regression model that shows permeability of 
gas reservoirs. This study highlights the contribution from 
this paper in that it is necessary to explore various pre-
diction methods in the field of construction management.

In order to improve the initial methodological frame-
work from previous studies within the topic of construc-
tion management, other fields of study were also reviewed. 
In the field of construction materials, mixture design us-
ing alternative fillers for concrete for micro surfacing was 
performed using machine learning techniques (Gujar & 
Vakharia, 2019). The study implemented machine learning 
prediction model to predict fillers composition based on 
mechanical features of the concrete admixture. The study 
has highlighted the details of performing the machine learn-
ing regression where the hyperparameters were explained 
in detail. Vakharia and Gujar (2019) conducted a study for 
predicting the mechanical properties of a high-perfor-
mance concrete based on the mixture recipe for a Portland 
cement admixture. While the details of the machine learn-
ing regression methods were not mentioned, this study 
highlighted the importance of conducting the experiment 
without bias. This was made possible through the use of 
K-fold cross validation technique and the paper explains in 
detail the significance eliminating bias from this technique. 

Previous studies on relative topics of construction esti-
mation or prediction have found that the general method 
for performing regression is similar in that the initial da-
taset is split for training, testing and validation purposes 
where the split dataset have no influence to the other. De-
riving from the reviewed previous studies, Figure 2 shows 
a conceptual framework for this study. Initial processing is 
a necessary process to normalise the data. In this stage, 
K-fold cross validation is applied to split the dataset into 
train, test and validation dataset to reduce potential bias. 
The dataset is then applied to the respective regression 
models deriving from their disciplines. 

It was found that a derivative technique from SVR is a 
regularly used method for performing machine learning 
based regression along with RF. In particular, hyperparam-
eter optimization was used to tune the machine learning 
models specific toward the application. Across the stud-
ies, it was found that common evaluation methods, such 
as: MAE, RMSE and Pearson’s correlation coefficient, were 
applied to assess the performance of the applied model. 
In general, the application for machine learning and DL re-
gression methods followed a similar framework across the 
various studies. However, whilst the methodologies were 
applied between the state-of-the-art methods there lacks 
a study that ties the new methods with the old. 

The uniqueness of this study comes in two folds: first, 
the recently developed methods are performed using the 
methods from recent studies where the results are com-
pared with the traditional method prior to the develop-

ment of machine learning. Second, the scarcity of stud-
ies relating to sewage pipeline construction, highlighted 
in the introduction, is performed to assess the feasibility 
of using reliable methods for the prediction of construc-
tion duration using limited available resources. By doing 
so, this study contributes to the body of knowledge by 
bridging the gap between the primary sources by which 
the regression based estimation/prediction method has 
derived from. Thereby further accenting that: while tradi-
tional methods are capable of performing initial estimation 
there are other methods that provides different results 
from using recently developed methods.

2.2. Statistical regression methods 
2.2.1. Simple linear regression 

Simple linear regression is a type of statistical method for 
modeling the relationship between two variables: a de-
pendent variable and an independent variable, using a 
linear pattern to the degree of one. The main idea behind 
linear regression is to fit a straight line to the data points 
in such a way that it minimizes the difference between the 
actual data points and the predicted values from the line, 
by using an error term (Yan & Su, 2009). The linear regres-
sion model with one independent variable is represented 
by the following equation: 

= + +0 1. ,y xb b e   (1) 

where y is the dependent variable and x is the independ-
ent variable. b0  is the intercept and b1  is the slope, b0 and 
b1 are also called regression coefficient. e is the error term, 
accounting to the difference between the observed y and 
the predicted y. 

Figure 2. Conceptual flow chart
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2.2.2. Polynomial regression 

Statistical polynomial regression is a type of regression 
analysis used to model the relationship between a de-
pendent variable and an independent variable using a 
polynomial function. Unlike simple linear regression, which 
assumes a linear relationship, polynomial regression allows 
for more complex and non-linear relationships between 
the variables (Rawlings et al., 2001). The polynomial re-
gression model includes using polynomial terms along 
with linear terms, creating a polynomial equation of a 
specified degree, which determines the complexity of the 
model. The general equation to the degree of K is repre-
sented as follows: 

= + + + + +2
0 1 2. . .....    .   ,k

ky x x xb b b b e   (2) 

where, similarly to the simple linear regression, y is the 
dependent variable and x is the independent variable. b0 
is the intercept and b1  is the slope. e is the error term. 

2.3. Artificial intelligent methods
2.3.1. Machine learning in prediction

Machine learning is an artificial intelligence technique that 
has the ability to train computers to learn from the data, 
even with smaller datasets (Taye, 2023; MathWorks, 2023). 
Consequently, ML can train computers to learn from the 
available data from previously completed projects. ML 
can, as well, identify the trends and the patterns that exist 
within the data. Such trends are sometimes overlooked 
or ignored by simple prediction models (DataFlair, 2022). 

There are several ML models, for instance, Mah-
moodzadeh et al. (2021) examined machine learning 
models Decision Tree (DT), GPR, and SVR to reduce the 
geological uncertainty in tunnels construction durations 
and costs, using data from previously constructed tunnels 
and under-studying tunnel observation to train and test 
the models, depending on only one feature which is the 
rock mass rating, due to data unavailability. Results proved 
GPR to be more accurate than SVR, while SVR was more 
accurate than DT. Rafiei and Adeli (2018) also developed 
an innovative model based on a back-propagation neural 
network (BPNN) and Support Vector Machine (SVM) to 
generate a new concept that estimates the construction 
cost of low and mid-rise residential buildings, the results 
of this study showed that costs results estimated by the 
proposed model were accurate. In another study, aimed 
at green building projects by Son and Kim (2015), four 
prediction models were proposed: BPNN, DT, logistic re-
gression (LR), and SVM, to predict the cost and sched-
ule performance of green building projects based. SVM 
model showed superiority in the accuracy of its prediction 
over the other three proposed models. Pierdzioch and 
Risse (2020) proposed using multivariate RF to Forecast 
the returns of precious metals (gold, silver, palladium, and 
platinum), where the res. Reports on classical methods, 
such as Multiple Linear Regression (MLR), indicate that 
the results based on RF showed higher prediction accu-

racy than those reported by MLR. Zheng et al. (2023) also 
examined a RF model optimized by bird swan algorithm 
to predict the cost of construction projects using cost data 
from 48 previous construction projects, the results showed 
that the performance of the proposed optimized RF model 
was more accurate compared to it to the classical forecast-
ing models such as BPNN, SVM, Stacked Auto-Encoders 
and Extreme Learning Machine. Meharie and Shaik (2020) 
examined SVM, NN, and RF models to predict the cost 
of highway projects in Ethiopia, using data from projects 
from 2006 to 2018, and then comparing the results using 
RMSE. The result of this study indicated that the RF model 
had more accuracy in the prediction with the lowest error 
value, compared to NN and SVM. Shoar et al. (2022) used 
MLR, SVR as well as RF to predict engineering service cost 
overruns in the context of high-rise residential building 
projects. The results in this context showed that RF has 
better accuracy followed by SVR and then MLR. 

2.3.1.1. Support vector regression (SVR) 

SVR is a supervised regression algorithm that is based on 
the concept of support vector machine, introduced in 1995 
(Cortes & Vapnik, 1995). SVM is a supervised machine 
learning technique used for classification tasks, and SVR is 
the regression algorithm of the SVM. The main principle 
of SVM is finding a hyperplane in a high-dimensional fea-
ture space that differentiates the data points of different 
classes. With this perspective, the main objective of SVR 
is to find the best hyperplane that fits the training set, 
focusing on minimizing the error within a specified mar-
gin (Idowu & Lam, 2020). In SVR, if the training data set 
is presented as { } =1

,  l
i i i

x y , where Î n
ix R  represents n-di-

mensional input vector and Î iy R  is the one dimensional 
output value, and the objective is to build a function y = 
f(x),this function illustrates that the output yi is dependent 
on the input xi. 

This function is expressed as: 

( )= Æ +.   ,y w x b   (3) 

where Tw x  is the vector of weight coefficients and b is 
the bias term. 

The regression problem can be represented by the 
convex optimization problem equation (Yu et al., 2006) 
which is presented as follows: 

Minimize ( ) ( )
=

= + +å
1

* 2 *

1

1, ,    ,       ,
2 I i i i

i

w b w C     

Subject to: ( ) ( )Æ + £ + * ,  – .i iy w x b e   

( )( )Æ + £ + *. –    ,i iw x b y e 

³ ¼*  ,  1, , ,i i l                                      (4) 

where variables    i  and *
i  represent slack variables which 

define the maximum and minimum training errors allowed 
within a certain tolerance for error. C is a positive constant 
that determines the extent of loss incurred when an error 
is present. 
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The alternative representation of the nonlinear SVR can 
be explained as follows: 

Minimize ( ) ( )( ) ( ) ( ) ( ) ( )
= = =

= Æ Æ + +å å å
1 1 1

               
. 1 1 1

1, – – . – – ,
2i i I I j j i j i i i i i

i j i i

x x y      e     

             

( ) ( )( ) ( ) ( ) ( ) ( )
= = =

= Æ Æ + +å å å
1 1 1

               
. 1 1 1

1, – – . – – ,
2i i I I j j i j i i i i i

i j i i

x x y      e    

Subject to: ( )
=

=å
1

   
1

– 0,i i
i

   

£ £ = ¼0 ,   1, 2, , ,i C i l

£ £ = ¼ 0 ,   1, 2, , .i C i l                             (5)

Selecting an appropriate nonlinear function on 
( )Æ ix  and calculating ( ) ( )Æ Æ.i jx x  in the feature space 

can be challenging. By employing a kernel function 
( )= Æ Æ( ) . ( ),i j i jK x x x x , it allows for the computation of 

the input space and the generation of inner products in 
the feature space, overcoming the challenges associated 
with determining the feature space directly. Functions that 
meet the Mercer condition in the feature space can be 
mathematically shown to be equivalent to inner products, 
making them suitable kernels. Hence, any functions meet-
ing the Mercer theorem can be employed as kernels. The 
following equations are the kernels used in this research:  
 Linear Kernel:

( ) =, . .i j i jK x x x x   (6) 

Polynomial Kernel:

( ) ( )é ù= +ê úë û
, , .

d

i j I jK x x x x c   (7) 

Radial Basis Function Kernel:

( ) æ ö÷ç ÷= ç ÷ç ÷çè ø

2
, exp – – .i j i jK x x x x

 
 (8)

Ultimately, the kernel feature enables the expression 
of the decision function for nonlinear SVR as an equation, 
which is expressed as follows: 

( ) ( ) ( )
=

= + +å  
1

– , .
l

ki k i k
i

f x K x x b 

 

 (9)

2.3.1.2. Random forest (RF)

RF is a type of learning technique employed for both 
classification and regression tasks, introduced by Breiman 
(2001). The essence of RF lies in the integration of tree 
predictors, where each tree’s outcome relies on the val-
ues of a randomly sampled vector. This vector is sampled 
independently and follows the same distribution across 
all the trees present in the forest. As with most machine 
learning based regression algorithms, its primary function 
is to classify and perform regression using training and 
testing data. The advantage from this method arises from 
the decrease in variance and bias without compromising 
decision accuracy. 

In the training stage, the process involves training 
multiple binary decision trees based on replacement of 
randomly selected samples from the original dataset. To 
select segmentation variables and split points, the ap-
proach used in this study employs an exhaustive method 
that involves traversing each feature and all its values. By 
doing so, the best segmentation variable and split point 
can be identified, aiming for minimum variance. The qual-
ity of the segmentation variable and split point is typi-
cally evaluated using the impurity function of the node 
after segmentation, which represents the weighted sum 
of impurity for each child node G, which is calculated by 
the following equations, where equation 12 is a result of 
substituting Eqn (11) into Eqn (10). Equation (13) is used 
in the training process of a node within a decision tree en-
deavors to discover the minimum impurity for each child 
node G by selecting the most suitable segmentation vari-
able and split point: 

( ) ( ) ( )= +,  ;rightleft
i ij left right

s s

nn
G x v H X H X

N N
  (10)

( ) ( )
Î

= å
2

 
1 – ;

m

m
m i N

H X y y
N

  (5)

( ) ( ) ( )
Î Î

= +å å
22

   
1, ( – – ;

left right

i left i right
s yi X yi X

G x v y y y y
N

 (6)

( ) ( )=* *
,  , argmin ,  ,x v i ijx y G x v   (7) 

where xi is the segmentation variable and vij is the cut 
value of the segmentation variable; n is the number of 
training samples of the left and right child node; Ns is the 
number of all training samples of the current node after 
segmentation; X the training sample set of the left and 
right child node; H(X) is the impurity function to measure 
the impurity of node, where MSE is used in equation 11 as 
the impurity function. 

The Random Forest algorithm operates through paral-
lel integration. Each decision tree functions independently 
of the others, and the ultimate prediction is derived by 
averaging the outcomes of all individual decision trees. 
The final result is calculated using the following equation: 

( ) ( )
=

= å
1

1 ,
M

m
m

f x f x
M

  (8) 

where f (x) is the final result and fm(x) is the prediction 
result from the decision trees.

Out-of-bag (OOB) error estimation is conducted pro-
gressively as the forest of regression trees is built. This 
estimation uses unselected data records, the OOB subset, 
to test each k tree once it is trained during the bagging 
process. The OOB subset offers a continuous, unbiased 
estimate of the general prediction error before validating 
the accuracy of the aggregated results with an indepen-
dent testing subset. Additionally, the aggregated results 
allow for the assessment of each input variable’s relative 
importance in predicting the dependent variable (Barjouei 
et al., 2021).
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2.3.2. Deep learning in prediction

DL is a subset of machine learning that uses deep neu-
ral network with many layers. DL is able to automatically 
extract patterns and dependencies from data, hence its 
ability to solve complex tasks. In some domains such as 
natural language processing and bioinformatics among 
other domains, DL techniques showed a higher perfor-
mance when compared to ML techniques (Alzubaidi et al., 
2021; LeCun et al., 2015). 

DL models have been used in various domains. Yu and 
Yan (2020) examined a DNN-based prediction model. This 
model was designed based on the phase space reconstruc-
tion method and LSTM network for DL and used to predict 
the stock price. The results were compared as well with the 
corresponding results from the auto-regressive integrated 
moving average model, SVR, deep multiple layer percep-
tron (MLP), and LSTM without the PSR, and they demon-
strated that the DNN-based prediction model shows high-
er estimation capabilities than the other models in stock 
price prediction. In another study based in Turkey, Bayram 
et al. (2015) examined RBF and MLP for construction cost 
prediction, using data obtained from 232 public construc-
tion projects. The results of the RBF neural network model 
showed more accuracy; however, the results predicted by 
MLP were close to those of RBF. In another study, Mah-
moodzadeh et al. (2022d) used optimized LSTM to predict 
the degree of tunnel wall convergence and compared the 
results to those of recurrent neural networks (RNN). The 
LSTM model was proved to be better than other RNN net-
works at predicting the connections between inputs and 
TWC. In a study targeting the prediction of engineering 
cost indexes, Dong et al. (2020) used LSTM neural network. 
Results showed that LSTM NN had very low prediction er-
rors when compared with the results generated from SVM 
model. Alshboul et al. (2022) proposed using extreme gra-
dient boosting (XGBOOST), RF, and DNN to allocate green 
building costs, and it was evident that XGBOOST and DNN 
outperformed RF with more accuracy. Dang-Trinh et al. 
(2023) studied SVM, ANN, generalized linear regression, 
classification and regression-based techniques, exhaus-
tive chi-squared automatic interaction detection as well 
as DNN to estimate preliminary factory construction costs 
in Southern Vietnam. DNN was revealed to have the best 
accuracy among all the examined models. Mahmoodzadeh 
et al. (2022c) introduced LSTM model optimized by grey 
wolf optimization algorithms (LSTM-GWO) for tunnel bor-
ing machine penetration rate prediction, using data from 
an Iranian tunnel project, and compared its results with 
GPR, KNN, SVR, and DT. The results showed that LSTM-
GWO achieved the highest accuracy.

The literature highlighted the effectiveness of various 
machine learning models such as: DT, RF, GPR, SVR, and 
SVM and DL models such as: LSTM and DNN in various 
construction-related predictions as well as in different 
domains. It was evident, as well, that researchers in the 
construction field have been exploring the application of 
machine learning techniques to enhance the accuracy of 

cost predictions as well as duration predictions (Makridakis 
et al., 2018). That might be due to the fact that the ap-
plication of ML addresses the challenges related to limited 
data available, especially during the initial phase of the 
project (Lee et al., 2016). However, other studies stated 
that using DL models such as DNN has better accuracy in 
the field of construction cost estimation which is highly 
related to duration prediction, due to their ability to learn 
from past data, to easily analyze the correlation between 
complex variables and structures. Although, DNN has the 
ability to replicate the human brain, and was successfully 
used in various domains; they are frequently used in the 
prediction of construction duration and cost predictions 
(Wang et al., 2022). 

2.3.2.1. Deep neural network – multilayer  
perceptron (DNN-MLP)

Deep neural network is a type of artificial neural network 
(ANN) that is composed of multiple layers. Compared to 
other neural network structures, the primary advantage of 
DNN lies in its remarkable nonlinear processing capability 
(Rumelhart et al., 1988). Its compact and efficient struc-
ture for nonlinear mapping enables it to effectively handle 
mathematical and physical problems that involve larger 
datasets and more intricate features. Additionally, DNN 
can fully exploit its multiple hidden layers to train exten-
sive amounts of data, leading to generally higher accuracy 
in prediction results. The presence of more layers in DNN 
signifies a more complex model, which exhibits superior 
nonlinear characteristics and the ability to capture richer 
features. In theory, the connections between the layers in 
the network structure are fully linked, allowing neurons 
within each layer to establish connections with one anoth-
er. There are several models of DNN, the most widely used 
model of DNN is multi-layer perceptrons (MLP) (Popescu 
et al., 2009).

MLPs are commonly used due to their flexibility to fit a 
wide range of non-linear functions with high accuracy lev-
els. MLPs are feed forward neural networks which are typi-
cally composed of several layers of nodes with unidirec-
tional connections, often trained by back propagation. The 
basic structure of MLP is based on the logic of the biologi-
cal neuron model. The architecture of MLP includes mul-
tiple layers: input layers, several hidden layers, and output 
layers. Each layer is connected to the next layer, and each 
layer provides the following layer with the result achieved. 
For MLP, the dataset was presented as ( ){ }= =,  ,   ,   1 

n
i iD x y i

 
, 

Î *
    m l

ix R , Î   iy R , and n is the number of samples. xi (i = 
1, 2, 3, …, n) is the m-dimensional phased feature vector, 
and yi is the label of fault. The weight input of j node in 
the hidden layer can be expressed as hj, the output of the 
j node in the hidden later is Hj, and the input of the output 
layer k note from hidden layers is Ok, these are expressed 
in Eqns (15), (16), and (17), respectively (Fang et al., 2019): 
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( )= tanh ;j jH h   (10) 

=
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where Wij is the connection weight from the input layer i 
node to the hidden layer j, Ii (i = 1, 2, 3, …, m) is the input 
of MLP, bj is biased for the corresponding node. The out-
put layer contains K notes (k = 1, 2, ..., K) and the output 
OK of the k node in the output layer corresponding to 
different activation functions. 

Moreover, to facilitate the process of training the net-
work and finding the optimal set of weights and biases 
that reduce the loss function for the given task, an opti-
mization algorithm was used. In this research, Adam op-
timizer was used. Adam optimizer dynamically modifies 
the learning rate for each parameter (Kingma & Ba, 2014). 
These modification and updates of the parameters are ex-
pressed by the following equations: 

( )-= + -1 1 1 11 ;t tm m gb b
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where b1 and b2 are exponential decay rate, with values 
of 0.9 and 0.999 respectively. The correction biases for mt 
and vt are ^

1m  and ^
1 v  respectively.

2.3.2.2. Long shot-term memory (LSTM)

LSTM are a type of recurrent neural network (RNN). RNN 
is a type of neural network that understands and learns 
from the context of sequential data; however, RNN faces 
some challenges such as vanishing or exploding gradients, 
which can hinder the learning process, as well as, limited 
memory capacity, making it difficult to capture long-term 
dependencies in sequences. LSTM was first proposed by 
Hochreiter and Schmidhuber (1997), designed to address 
the challenges of processing sequential data of the tra-
ditional RNN by incorporating a specialized memory cell 
and gating mechanisms. The architecture of LSTM consists 
of: an input layer, an output layer, and hidden layers. The 
input data passes through the input layer and then goes to 
the hidden layers. The hidden layer captures the informa-
tion and processes it over time, and only useful informa-
tion is retained, and then output layer The hidden layer is 
the most complex layer as it consists of several gates and 
a memory state unit (Marino et al., 2016).

Forget gate: The information passes through the forget 
gate and it controls which information will be discarded 
from the previous layer and which information will be re-
tained; and then sent it to the input gate. The equation of 
the forget gate is represented below: 

( )-
é ù= +ê úë û1. , .t f t t ff W h x bs   (16)

Input gate: In this step, the input gate determines the 
information that will be remembered from the new in-
formation, and then updates it to be stored later in the 
memory cells. The equation of the input gate is as follows: 

( )-
é ù= +ê úë û1. , .t i t t ii W h x bs   (17) 

Output gate: In this step, the output gate determines 
the output of the model and the contribution of the con-
trol unit state (Ct) to the hidden layer elements. It begins 
by using the sigmoid activation function to calculate the 
initial output. This output is then transformed to a range 
of –1 to 1 through the application of the tanh function. 
Finally, it is multiplied with the output of the sigmoid func-
tion to obtain the final result. This can be expressed as 
follows: 

( )-
é ù= +ê úë û1. , ;t o t t oO W h x bs   (18) 

( )= . tanh .t t th O C   (19) 

The memory cell: The Memory Cell is positioned at the 
top and employs the tanh function to create fresh candi-
date values. It integrates the input information from the 
Input Gate with the existing state information in order to 
modify the memory state. Its role is to determine the pres-
ently stored information and the information that will be 
passed on to the next stage. By utilizing historical data, it 
is capable of making predictions about future data. The 
memory cell is represented by the following equation:

 ( )-
é ù= +ê úë û1tanh . , .t c t t cC W h x b   (20)

In the above-mentioned equations, ft, it, Ot and tC  are 
the forget gate, the input gate and the output gate re-
spectively. s represents the sigmoid activation function 
and ht–1 is the output of LSTM at timestep. t – 1, xt is the 
input data; while Wf, Wi, Wo and Wc are the weights of 
the forget gate, the input gate, the output gate and the 
memory cell respectively. Ct is the output intermediate cell 
and b represents the bias for each gate.

While the literature offered valuable insight into the 
application of ML and DL in prediction, the findings of the 
literature contradict each other regarding which predic-
tion model is the most accurate in the estimation of the 
construction duration generally. In addition, research on 
the field of the sewage pipeline has been scarce from the 
start. Due to this gap, it is important to conduct research 
concerning sewage pipeline construction duration predic-
tion, exploring the potential of the application of ML and 
DL, for the aforementioned purpose, will be explored. Af-
ter examining the literature, for more accurate prediction, 
this study will employ advanced machine learning and DL 
models for more accurate estimations, namely: SVR, RF, 
LSTM, and DNN, as these models were proven to be ef-
fective in related construction prediction tasks.

2.4. Statistical evaluation criteria
Statistical evaluation criteria are used after each method 
of prediction in order to assess the performance and 
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evaluate the accuracy of the method. Using these criteria 
helps determine the reliability of the forecasting models 
and confirm the fittest method for the data (Behnia et al., 
2013; Kamali et al., 2022). In this research, the criteria used 
were Pearson’s correlation ( 2R ), which is also known as 
the coefficient of determination, MSE, RMSE and MAE, the 
following equations represent each criterion, respectively: 
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where ( )f x  is the actual value and *( ) f x is the forecasted 
value. ( )f x are the means of actual and predicted and n is 
the number of datasets.

2.5. Hyperparameter optimization  
using NSGA-II
In recent machine learning and DL studies, hyperparam-
eter tuning or optimization is a necessary process to ob-
tain the most suitable machine learning and DL models to 
maximize the performance and results. The parameters to 
optimize is unique to the regression method mentioned 
above. Often, machine learning and DL procedures are 
referred to as a ‘black box’ problem where fundamental 
calculations are unknown that are still required to pro-
duce the most appropriate types of results for the sake 
of stakeholders (Karl et al., 2023). On the contrary to the 
uncontrollable parameters there are parameters that are 
able to be controlled. 

Optimization is a mathematical, and often compu-
tational, process of obtaining the best possible solution 
within a defined set of constraints. It typically involves a 

form of optimization algorithm that includes control val-
ues and the results. For machine learning regression, the 
control parameters depend on the model such as SVR and 
RF. For DL, typical control parameters consist of epoch and 
learning rates. However, tuning these parameters in a con-
ventional method of trial-and-error is time consuming as 
it needs to be controlled per run. Optimization algorithms, 
such as evolutionary optimization or Bayesian optimization 
processes, aims to reach the best suitable results based 
on the outcome that is the statistical evaluation criteria 
explained below. As machine and DL models compose of 
multiple inputs and outputs it can generally be viewed 
as a multi-objective optimization problem. To that end, in 
this study, an exploration of hyperparameter optimization 
is performed by non-dominated sorting genetic algorithm 
(NSGA-II). 

NSGA-II was initially created to address limitation of its 
predecessor that required high computational complexity, 
non-elitism approach and a need for specifying a sharing 
parameter (Deb et al., 2002). To address these issues, it 
introduced elitism in order to preserve the best solutions 
per iteration. It also includes a method for maintaining 
diversity by introducing a crowding distance mechanism 
on the pareto-optimal solutions during the search process. 
The primary components are as follows:

 ■ Fast non-dominated sorting: The population are 
sorted into non-dominated fronts where solutions 
within the same front do not dominate each other.

 ■ Crowding distance calculation: Crowding distance 
computed for individual solutions by measuring 
closeness of neighbours in objective space.

 ■ Elitism: Elitism strategy retains the best solution to 
guarantee the best genes are passed on to the next 
generation.

 ■ Binary tournament selection: Selection is per-
formed by a pair of solutions based on the rank.

 ■ Crossover and mutation: Generate an offspring to 
introduce new solutions by combining two parent 
solutions and introduce a small change to offspring 
solution.

 ■ Forming the next generation: Combine parent and 
offspring populations to select best solution to form 
the next generation. 

The input variables for the regression models used in 
this study for the optimization is described in Table 1.

Table 1. Regression models and their respective hyperparameters

Model Variable 1 Variable 2 Variable 3

Linear regression N/A N/A N/A
Polynomial regression Degree N/A N/A
SVR linear Regularization parameter (C) Epsilon N/A
SVR polynomial Regularization parameter (C) Epsilon Degree
SVR RBF Regularization parameter (C) Epsilon Kernel coefficient (Gamma)
Random forest estimators Max depth Min samples split
DNN-MLP Hidden layers Neurons Dropout rate
LSTM LSTM units Dropout rate N/A
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2.6. K-fold cross validation
Cross validation is a frequently used numerical process 
that ensures the performance of a machine learning model 
by keeping it un-biased. A well-known type of cross vali-
dation is the K-fold cross validation where a ‘fold’ is subset 
of a dataset used only a single time per iteration. In this 
method, datasets are divided equally where the model is 
trained using different folds. Validation and training are 
performed with the ‘k’ and ‘k – 1’ folds, respectively, per 
iteration. As mentioned previously, this method ensures 
to eliminate bias in the resulting regression model and 
have been shown to be effective in fields of study other 
than that of construction management (Vakharia & Gujar, 
2019). Conveniently, this method is openly available to 
implement within in the Sci-Kit learn package. A general 
visualization of K-fold cross-validation process is shown 
in Figure 3.

The score for each iteration is extracted and calculated 
to produce an overall performance for the model. Formula 
for overall score is shown on the right of Figure 3 where: 
calculated from the formula below where k is the number 
of folds and i is the iteration.

3. Methodology

This research aims to find the most accurate prediction 
method for the construction duration of sewage pipelines. 
To achieve this aim, a methodology of two stages was 
developed, Figure 2 shows the approach applied for this 
research. In stage one, using the data from 83 previous 

sewage pipeline construction projects from 1999 to 2022, 
the construction duration of sewage pipelines was pre-
dicted. The parameter that was considered in this research 
was the length of the pipes as it was the most available 
parameter for all the 83 previous projects.

Predictive analyses were conducted using a range of 
techniques: statistical regression methods (linear and poly-
nomial) were executed in SPSS 27, machine learning mod-
els, and DL models were implemented in Python 3.6 on the 
Jupyter Notebook platform. Scikit-learn was employed to 
execute three different SVR variants, including linear, poly-
nomial, and radial basis function kernels, in addition to the 
RF. For DL tasks, TensorFlow 2.12 was utilized to execute 
both DNN-MLP and LSTM models. Moreover, to train and 
test the machine learning and DL models, the data avail-

able, represented in Figure 3, were split into 80% of the 
data for training and 20% of the data for validation, this 
data distribution is shown in Figure 4. Each of the predic-
tion methods is explained in detail in this section. In stage 
two, the results were compared and evaluated using four 
statistical evaluation criteria to assess the performance of 
each method, in this research, the statistical evaluation 
criteria used are: R2, MSE, RMSE and MAE that provides a 
suffice indicator of the model performances according to 
previous research (Bui et al., 2020).

3.1. Data acquisition and variable decision 
Data is collected from previous construction works. Data 
that was available for collection consisted of pipe length, 
total construction cost and construction duration from 83 
sewage pipeline construction sites. The data is shown in 
Table 2. The data collected consists of the physical proper-
ties such as the pipe length, minimum and maximum pipe 
diameters. It also includes the total construction cost, in 
euros, for the specific project along with the construction 
dates where the construction duration, in months, was ex-
tracted. There are variances in the data where the most 
expensive construction project does not reflect the scale 
of the construction nor the duration. However, there are 
some definite signs where the scale of the construction 
corresponds to the duration of the construction. 

Out of the collected data, the dependent data was 
chosen as construction duration as this is dependent on 
the construction scale, i.e., longer the pipe length or larger 
the construction cost the longer the duration. From the 
independent variables that are: sewage pipe length and 
construction cost, correlation analysis was performed in 
order to identify the more influencing factor. The correla-
tion analysis showed that pipe length and the construction 
cost was 0.895 and 0.810, respectively. This showed that 
pipe length was more influential to the dependent vari-
able over the construction cost. Therefore, pipe length was 
chosen to be the main independent variable in this study. 

The initial data used is shown in Figure 4a where the 
acquired data was split to train and validation data by the 
order of 8:2 that is shown in Figure 4b. The graph shows 
a normalized data for construction duration and the pipe 
length, that are the x axis and the y axis respectively, of the 
corresponding project. Square data represents the training 
data and the red triangle represents the validation data 
used. 

Figure 3. K-fold cross validation visualisation
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Table 2. Sewage pipeline construction project and variable

Project Minimum pipe 
diameter (mm)

Maximum pipe 
diameter (mm)

Pipe length 
(km)

Total construction 
cost (EUR) Construction dates Construction 

duration (Months)

Project 1 300 400 28.5 6,295,800 1999.11.23~2002.06.09 30
Project 2 300 1350 3.32 3,150,000 2000.10.21~2003.05.22 19
Project 3 250 600 10.19 1,876,000 2001.07.10~2003.03.30 20
Project 4 200 400 9.34 8,825,600 2001.05.07~2003.03.26 23
Project 5 200 400 21.2 7,210,000 2002.08.14~2004.12.10 28
Project 6 700 900 1.99 3,290,000 1999.5.27~2000.10.06 16
Project 7 200 500 23.6 5,740,000 2003.07.07~2006.04.31 33
Project 8 200 600 18.6 6,160,000 2003.04.02~2005.08.10 28
Project 9 250 1100 10.1 12,300,400 2003.11.27~2005.07.10 20
Project 10 300 1000 8.5 5,810,000 2004.01.07~2005.09.13 20
Project 11 150 1000 20.6 5,460,000 2004.05.17~2006.07.15 26
Project 12 250 1200 27.6 13,160,000 2004.07.22~2007.02.10 30
Project 13 300 1800 45.9 33,950,000 2004.11.01~2009.01.31 50
Project 14 250 700 15.3 8,960,000 2004.12.01~2007.02.01 26
Project 15 250 1000 15.2 9,590,000 2004.12.27~2007.05.20 29
Project 16 80 500 14 5,040,000 2005.01.05~2007.04.18 27
Project 17 250 1000 24.8 7,980,000 2005.03.16~2007.12.20 33
Project 18 300 1200 5.5 3,500,000 2005.06.15~2007.07.09 25
Project 19 150 1200 53.8 14,700,000 2005.06.28~2007.12.04 29
Project 20 150 1000 5.3 7,910,000 2005.11.01~2007.12.07 25
Project 21 200 1000 45.7 21,560,000 2006.03.02~2009.10.03 43
Project 22 200 600 31.7 12,880,000 2006.04.24~2009.03.25 34
Project 23 200 800 23.2 9,730,000 2006.08.28~2009.06.18 33
Project 24 150 1200 7.5 8,491,000 2003.10.10~2005.06.31 20
Project 25 150 400 98.1 22,631,000 2006.02.13~2011.05.19 62
Project 26 200 1100 28 12,110,000 2006.12.04~2009.12.04 36
Project 27 200 600 18.2 5,320,000 2006.08.31~2009.04.30 31
Project 28 200 800 16.1 5,320,000 2007.02.09~2009.05.22 27
Project 29 200 800 19.4 5,740,000 2007.08.13~2010.08.02 35
Project 30 250 1350 19.1 6,860,000 2007.12.20~2010.09.19 32
Project 31 200 1000 45 22,050,000 2007.12.27~2012.01.03 48
Project 32 200 600 29 12,460,000 2008.04.18~2011.03.19 35
Project 33 200 600 26 10,080,000 2008.02.13~2011.02.31 36
Project 34 200 800 42 22,680,000 2008.06.02~2011.05.01 35
Project 35 200 700 9.8 4,179,000 2008.09.22~2010.12.24 27
Project 36 200 400 41.5 17,983,000 2008.05.19~2011.06.02 36
Project 37 300 1200 25.3 40,600,000 2008.11.11~2012.04.01 40
Project 38 200 600 53.5 20,300,000 2008.10.01~2011.07.10 33
Project 39 200 300 41.5 12,670,000 2008.07.29~2011.07.13 36
Project 40 200 1000 8.9 6,045,900 2008.12.01~2010.08.25 20
Project 41 300 1000 10.2 16,100,000 2009.07.30~2012.02.30 30
Project 42 250 1200 18 13,580,000 2009.07.20~2012.10.10 38
Project 43 200 1200 11.9 6,520,500 2009.04.16~2011.06.15 25
Project 44 200 1200 55.2 25,844,000 2009.12.23~2014.01.15 48
Project 45 300 1500 37.2 26,306,000 2009.03.04~2013.09.18 53
Project 46 300 400 14.5 12,817,000 2010.06.16~2013.04.31 33
Project 47 300 1350 29 22,400,000 2010.05.20~2014.03.28 45
Project 48 N/A N/A 30.6 14,560,000 2011.10.07~2014.07.31 34
Project 49 450 1200 44.2 17,855,600 2011.03.14~2014.08.12 40
Project 50 200 600 20.3 7,210,000 2011.08.31~2013.10.30 25
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Project Minimum pipe 
diameter (mm)

Maximum pipe 
diameter (mm)

Pipe length 
(km)

Total construction 
cost (EUR) Construction dates Construction 

duration (Months)

Project 51 80 600 55.6 15,960,000 2011.09.20~2015.12.24 50
Project 52 80 250 39.43 7,147,000 2011.06.07~2014.05.21 36
Project 53 80 250 6.19 5,530,000 2012.05.04~2014.07.09 26
Project 54 N/A N/A 30.7 18,179,000 2013.06.03~2016.08.18 39
Project 55 300 1500 15 5,390,000 2012.10.05~2014.11.07 25
Project 56 80 1000 32 8,824,200 2013.02.13~2016.10.30 43
Project 57 N/A N/A 3 1,904,000 2013.06.10~2015.03.13 21
Project 58 200 1200 33.7 14,840,000 2012.04.27~2015.04.30 36
Project 59 80 900 29 18,200,000 2013.05.27~2016.04.28 35
Project 60 200 1200 31 22,680,000 2013.08.12~2017.03.28 42
Project 61 200 1000 24.5 14,140,000 2013.04.15~2016.05.03 36
Project 62 N/A N/A 88.1 30,590,000 2014.05.19~2019.05.28 60
Project 63 800 1000 19.8 7,175,000 2014.12.12~2017.04.15 28
Project 64 200 400 4.4 5,040,000 2015.09.21~2017.06.30 20
Project 65 150 400 18.2 9,520,000 2015.11.03~2018.01.31 27
Project 66 200 400 97.86 39,550,000 2016.01.25~2018.11.24 60
Project 67 N/A N/A 18.1 6,790,000 2016.10.10~2019.04.30 30
Project 68 200 250 34.2 15,431,500 2017.07.14~2020.07.31 37
Project 69 N/A N/A 24.8 8,890,000 2015.08.17~2018.09.31 36
Project 70 200 600 9.7 12,700,800 2017.03.02~2019.11.11 32
Project 71 800 1000 4.65 5,352,900 2017.03.28~2019.01.14 22
Project 72 200 200 13 5,135,200 2017.06.16~2019.12.21 29
Project 73 200 200 19.88 12,600,000 2017.12.11~2020.06.24 30
Project 74 200 600 33.2 10,500,000 2017.12.18~2020.10.04 33
Project 75 150 600 19.28 10,360,000 2018.06.20~2021.01.16 30
Project 76 200 200 24.8 14,910,000 2018.07.11~2021.09.09 38
Project 77 N/A N/A 42.52 31,150,000 2019.02.18~2022.04.30 38
Project 78 200 1500 43.7 19,320,000 2019.02.18~2020.12.16 36
Project 79 100 250 13.6 13,580,000 2020.12.01~2022.12.30 24
Project 80 N/A N/A 14.65 10,570,000 2019.11.28~2021.11.16 24
Project 81 N/A N/A 30.7 13,510,000 2019.08.26~2022.05.25 32
Project 82 N/A N/A 16.2 13,020,000 2019.12.27~2022.02.13 29
Project 83 N/A N/A 30.5 22,400,000 2019.05.29~2022.01.27 38

End of Table 2

Figure 4. Sewage construction duration data: a – Real 83 sewage construction duration data;  
b – Distribution of standard scaled training and test data

a) b)
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3.2. Statistical regression methods
As mentioned previously in this paper, statistical methods 
were conducted using Python within the Jupyter Notebook 
environment. This was due to the implementation of hy-
perparameter optimization for the polynomial regression 
and cross validation. Across all regression models, de-
pendent and independent variables must be chosen. Upon 
initially analyzing the data, construction duration was cho-
sen as the dependent variable as this is the target variable 
to be achieved. Pipe length was chosen as the independ-
ent variable as it varies according to the project scale. To 
maintain consistency in assessing regression model perfor-
mance, the same statistical performance criteria was used 
consisting of Pearson correlation, MAE, RMSE and MSE.

As mentioned previously, linear regression has no hy-
perparameter to be optimized and therefore was neglected 
in the process. Unlike linear regression, polynomial regres-
sion has a single parameter, degree, that has potential to 
be tuned to determine the nature of the regression model. 

With these variables R2 value is calculated to be 0.823 
which shows a strong correlation between the pipe length 
and the construction duration. For the regression model 
to be deemed significant the comparison between F-test 
and P-value is used. For the linear regression model, F-
test was found to be 187.22 and p-value was calculated at 
0.000. As p-value is less than that of F-test, it is confirmed 
that the regression model is significant. Similarly, for the 
polynomial model, R2 value, F-test and p-value is calcu-
lated at 0.832, 187.22 and 0.000, respectively. That shows 
significance in the polynomial regression model produced.

3.3. Artificial intelligence methods
Machine learning and DL methods for prediction sewage 
pipeline construction duration was performed using Jupy-
ter notebook powered by Python. In this research, Python 
3.10 was used along with Scikit-learn 1.5.1 for performing 
SVR. Within the SVR function, there are variables that de-
termines the resulting regression model such as: degree 
of freedom, coef0 which is the independent term in the 
polynomial kernel function, gamma value that is a ker-
nel coefficient, independent term in kernel function and 

epsilon that specifies the epsilon-tube which no penalty 
is associated in the training loss function against points 
predicted from the actual value. An example of the the 
function entered into the Jupyter notebook is shown in 
Figure 5. The mentioned control parameters are optimized 
using NSGA-II that was performed using a package called 
Optuna 3.6.1. The objective function for ‘C’ is performed 
using the wrapper method initialized uniformly using log-
arithm function with the boundary from 0.001 to 1000. 
For epsilon, the same method was used with the bound-
ary from 0.01 to 10. Extra variables need to be taken into 
consideration for polynomial and RBF kernels such as the 
degree of freedom and gamma, respectively. Degree of 
freedom for the polynomial kernel is an interger between 
2 and 5. For the RBF kernel, gamma followed the uni-
formly distributed logarithm function between 0.0001 and 
0.1. The aim the optimization function was to minimize 
the resulting MSE reflecting the accuracy of the gener-
ated model. The number of iterations performed for the 
optimization was chosen as 2000 generations to cover as 
much variables as possible and is consistent throughout 
the hyperparameter optimization for all regression mod-
els bar linear regression. The objective function and the 
respective boundaries are shown in Table 3.

An alternative machine learning regression model in-
vestigated in this study is the random forest regression. 
The same python package, Sci-kit learn 1.5.1, was used 
to execute the machine learning model. The control pa-
rameters for this model are the number of estimators, 
maximum depth and minimum sample split. Number of 
estimators are the number for trees in the forest where 
the values for the optimization was chosen as a range 
of integers between 50 and 200. Maximum depth is the 
maximum depth of the trees where the range was chosen 
as integers between 5 and 30. Minimum sample split is 
the number of samples required to split an internal node 
which was chosen as integers between 2 and 10. The sum-
mary of the optimization function is shown in Table 4 and 
the result from the hyperparameter optimization using 
NSGA-II for SVR linear, polynomial, RBF and random for-
est are shown in Table 5.

Figure 5. Example of SVR function specification within Jupyter notebook

Table 3. Optimization function for the SVR regression function

Variables Target

Number of generations 500
Output Mean squared error
Target Minimise
Regularization parameter 0.001 < C < 1000
Epsilon tube 0.01 < epsilon < 10
Degree (polynomial) 2 < degree < 5
Kernel coefficient (RBF) 0.0001 < gamma < 0.1

Table 4. Optimization function for Random forest  
regression function

Variables Target

Number of generations 500
Output Mean squared error
Target Minimise
Number of trees 50 < n_estimators < 200
Maximum tree depth 5 < max_depth < 30
Minimum sample split 2 < min_samples_split < 10
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In addition to the machine learning techniques, DL 
techniques for producing regression models are also ex-
plored in this research. Again, Jupyter notebook is used 
to code the DNN-MLP and LSTM model using an openly 
available package called Tensorflow 2.10.1. Tensorflow-
keras is used as an import package where layers, sequen-
tial and functions for individual hidden layers is used for 
DNN-MLP and to call the LSTM function for the LSTM 
model. For both optimizing hyperparameters of DL mod-
els, the batch size and epochs are 32 and 100, respectively. 

The hyperparameter optimization is kept consistent 
with the machine learning and statistics regression model 
where NSGA-II is used with 50 iterations to identify the 
best performing hyper parameter. The parameters used 
for the DNN-MLP model are the number of hidden layers, 
number neurons and dropout rate. As the regression task 
is relatively simple compared to that of image or language 
processing, the boundary for the number of hidden layers 
covers a range of 1 to 3 as an integer. Boundaries for the 
number of neurons is between 10 and 100 in integers and 
the dropout rate is between 0 and 0.5 in uniform fashion. 
For the LSTM model, the parameters controlled are the 
number of LSTM units and dropout rate with a boundary 
of 10 to 100 and 0 to 0.5, respectively. The number of 
LSTM units are generated as an integer and dropout rate is 
generated uniformly. The boundaries for the optimization 
function and the optimized hyperparameters are shown 
in Tables 6 and 7.

In order to analyze the appropriate training and valida-
tion for this model, loss, given in mean squared error be-
tween training and validation data is compared as shown 
in Figure 6. Moreover, validation data has no influence on 
the training part of the modelling. Therefore, the train-
ing DNN-MLP model is performed with the training data 
only where it is validated against the validation data. In 
Figure 6, towards the end of the epochs, train loss and 
validation loss are closely converge visually signifying the 
validity of the DNN-MLP model. Similar to the DNN-MLP 
model, training for the LSTM model is also visually signi-
fied by the close convergence of the loss function towards 
the end of the epoch. However, for the models the training 
loss and validation loss never actually quite meet making 
it plausible for the model to be overfitting.

Analyzing loss function given by mean squared error 
to the training by the LSTM model is similar to analyzing 
loss and accuracy for DNN-MLP model. Figure 7 shows the 
loss function according to the LSTM model where train-
ing wasn’t as complete as the DNN-MLP model. Again, 
the training loss and validation loss never meet making it 
plausible for over or underfitting. 

In this section, a brief overview for the statistical analy-
sis, machine learning and DL processes using a commer-
cially available software has been conducted. In order, 
statistical regression was performed first that included 
hyperparameter optimization was performed for the poly-
nomial regression only with degree as its optimizing vari-
able. Both regression models have shown validity through 
the comparison between F-test and p-value deeming the 
resulting model significant. For machine learning, bound-
aries of control parameters were highlighted required for 
the hyperparameter optimization process where the most 
optimal hyperparameters were found that resulted in the 
minimum MSE. For deep learning models, the same hy-
perparameter optimization was performed using NSGA-II 
across all regression models. The results from the hyperpa-
rameter optimization is shown that determined the shape 
of the deep learning models. 

With the optimized hyperparameter, k-fold cross vali-
dation is performed to obtain the average score of the 
process. The scores include: Pearson’s correlation value, 
MSE, MAE and RMSE as the performance criteria to ana-
lyze the fitting of the regression models. 

Table 5. Optimised hyperparameters for respective machine learning regression models achieved with NSGA-II

Machine learning model Variable 1 Variable 2 Variable 3 Best generation

Linear C = 0.597 Epsilon = 0.489 N/A 469
Polynomial C = 0.0012 Epsilon = 0.0974 Degree = 3 398
SVR C = 507.432 Epsilon = 0.532 Gamma = 0.0121 330
Random forest N estimators = 97 Max depth = 7 Min samples split = 2 357

Table 7. Optimised hyperparameters for deep learning regression models achieved with NSGA-II

Deep learning model Variable 1 Variable 2 Variable 3 Best generation

DNN-MLP N_hidden_layers = 1 N_neurons = 79 Dropout_rate = 0.402 282
LSTM N_lstm_units = 99 Dropout_rate = 0.078 N/A 345

Table 6. Optimization function for deep learning regression 
functions

Deep 
learning 
model

Variables Target

All Number of generations 500
Output Mean squared error
Target Minimise

DNN-MLP Number of hidden layers 1 < n_hidden_layers < 3
Number of neurons 10 < n_neurons < 100
Dropout rate 0 < dropout_rate < 0.5

LSTM Number of LSTM units 10 < n_lstm_units < 100
Dropout rate 0 < dropout_rate < 0.5
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4. Results
In this paper, predictions were made by using various 
regression functions with data from 83 previous pipeline 
construction projects. Where pipe length was chosen as 
the main independent variable and actual construction 
duration was chosen as the dependent variable. All re-
gression models were performed with Python with a com-
mercially available packages for performing statistics, ML 
and DL based regressions. As mentioned previously, the 
original data was collected and split by 8:2 ratio to obtain 
training and validation datasets where the latter was strict-
ly removed from the modelling process to ensure there 
was no influence on producing the regression models. All 
models underwent the hyperparameter optimization us-
ing NSGA-II where the appropriate hyperparameters were 
chosen based on the lowest MSE after 500 generations. 
Then, K-fold cross validation was performed in case the 
result from the traditional train test split function is biased. 
The average score across the 10-fold cross validation is 
calculated to achieve the final performance criteria.

For ML, 3 kernels of SVR were performed where lin-
ear, polynomial and radial basis function. Furthermore, 
an openly available regressor function, RF, was also per-
formed. For deep learning, DNN-MLP and LSTM was used 
against the training dataset where the same dataset was 
used to predict the construction duration to extract the 
construction duration that resulted in respective regres-
sion models. The hyperparameters for these regression 
functions were optimized using NSGA-II as explained in 
the previous section. From the individual functions, re-
spective regression models were created using the training 

data deriving from an 8:2 split from the original data. Us-
ing the regression model, a prediction of the construction 
month is made from the validation data where an average 
accuracy percentage was calculated.

The results extracted for respective regression models 
were organized and represented using OriginPro 2016 as 
shown in Figure 12. As mentioned previously in the pa-
per, the regression models were strictly performed against 
the training dataset that included k-fold cross validation 
to remove bias. Along with the main regression model, 
95% confidence interval was included. Moreover, with the 
resulting regression model, validation dataset was used 
to perform further statistical analysis. Within the graphs, 
the squares represent the training data and the red circles 
represent the validation datasets. X axis shows the scaled 
pipe length and the y axis shows scaled construction dura-
tion. The solid lines represent the main regression model 
produced by respective methods and the dashed lines 
represent the 95% confidence interval band. The spread 
of the training dataset points and validation dataset point 
around the regression line indicates the fitting of the mod-
el against the data. For the statistic and machine learning 
methods, the confidence band is narrow indicating that 
the model is confident in making predictions. However, 
visually, this is not true aside from the DL methods. The 
validation data points fall outside the confidence band 
and, therefore, the reliability of the regression models 
produced is questionable.

Figures 8a and 8b represent the regression performed 
using the statistical methods of linear and polynomial to 
the order of 2. Figures 8c, 8d, 8e, and 8f represent the ML 
method for regression including SVR linear, polynomial, 
RBF and RF functions. Figures 8g and 8h represent the 
deep learning models that includes the DNN-MLP and 
LSTM functions. It shows that majority of the regression 
lines falls within the training dataset showing a positive 
correlation between the pipe length and the construction 
duration. The general fit of the regression models follows 
closely with the dataset used to produce the regression 
models. However, the confidence interval bands are far 
broader for the DL models. 

The performance of each method was validated us-
ing statistic based evaluation metrics that includes: MSE, 
RMSE, MAE and R2 as shown numerically in Table 8 and 
visually represented in Figure 9. The validation criteria 
show that, in general, ML models, RF presented best ac-
curacy when compared to statistical methods and deep 
learning models. Out of the well performed ML models, 
RF regression function proved to be the most effective 
model for this specific application with a high R2 value 
of 0.847, lowest MSE, MAE and RMSE of 0.024, 0.375 and 
0.446, respectively. On the other hand, the worst perform-
ing model was SVR polynomial kernel with the lowest 
R2 value of 0.749 and the highest MSE, MAE and RMSE of 
0.706, 0.689 and 0.806, respectively. These results indicate 
a strong correlation between the selected models and the 
actual construction duration represented by the validation 
dataset. 

Figure 6. Training and validation loss for DNN-MLP model training

Figure 7. Loss function for training and validating LSTM model
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Figure 8. Regression model results

g) DNN-MLP regression model h) LSTM regression model

a) Statistical linear regression b) Statistical polynomial regression (n = 2)

d) SVR: polynomial kernelc) SVR: linear kernel

f) Random forest regressore) SVR: radial basis function kernel
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The regression models were used to produce a pre-
dicted result against 17 validation dataset that had no 
influence in the regression models. The process was kept 
consistent by using pipe line length as the independent 
variables that served as an input for the regression mod-
els to make prediction on the construction duration. The 
extracted construction duration was compared to the real 
construction duration to produce prediction accuracy as 
presented in Table 9 where it was represented visually 
in Figure 10. In prediction, polynomial regression dem-
onstrated the strongest performance with an average 
accuracy percentage of 98.79% whereas least accurate 
prediction was made with DNN-MLP model that scored 
87.052% of average accuracy percentage. The rankings, 
based on the R2 score, are as follows: RF, DNN-MLP, SVR 
RBF, polynomial regression, LSTM, Linear regression, SVR 
linear and SVR polynomial. However, according to the per-
forming the prediction, the rankings are as follows: poly-

nomial regression, SVR linear, linear regression, SVR RBF, 
RF, LSTM, SVR polynomial and DNN-MLP. In summary, the 
statistical criteria do not reflect the prediction capability of 
the regression models produced. This may be due to the 
statistical criteria deriving from the k-fold cross validation. 
While it removes the bias that may arise from a randomly 
split training and testing data, it may not necessarily reflect 
the prediction capability. In general, all of the regression 
models, bar SVR polynomial, has shown a positive correla-
tion against the sewage construction data. However, from 
this study, it was found that a methodological variable that 
must be taken into consideration is the computation time. 
Statistic and ML methods generally performed significantly 
faster than the deep learning methods; as the methods did 
not require numerous training epochs and hyperparam-
eter adjustment to find appropriate training and validation 
less and accuracy functions. 

Table 8. Regression algorithm results score

Regression method R2 score MSE MAE RMSE Rank

Linear regression 0.823 0.264 0.392 0.474 6
Polynomial regression (n=2) 0.832 0.259 0.388 0.470 4
SVR linear 0.823 0.253 0.385 0.465 6
SVR polynomial 0.749 0.706 0.689 0.806 8
SVR radial basis function 0.834 0.244 0.384 0.463 3
Random forest regressor 0.847 0.224 0.374 0.446 1
DNN-MLP 0.841 0.254 0.394 0.475 2
LSTM 0.826 0.399 0.501 0.609 5

Table 9. Prediction against real data

Real 
length 
(Km)

Real 
construction 
time (Month)

Regression model construction time predictions (Months)

Linear 
Regression

Polynomial 
regression SVR linear SVR polynomial SVR RBF RF DNN-MLP LSTM

22 22 23.286 20.976 23.146 28.498 20.164 28.369 16.921 26.991
25 32 31.953 32.385 32.038 30.960 32.821 38.036 21.428 28.467
26 29 29.353 29.291 29.370 30.909 29.633 37.954 24.393 29.371
27 24 25.019 23.508 24.924 29.734 23.133 33.663 24.932 29.530
27 24 25.019 23.508 24.924 29.734 23.133 24.058 25.875 29.818
28 29 29.353 29.291 29.370 30.909 29.633 29.668 27.277 30.343
29 30 30.219 30.354 30.259 30.947 30.757 28.369 29.022 31.175
29 30 30.219 30.354 30.259 30.947 30.757 34.213 30.126 31.779
30 30 30.219 30.354 30.259 30.947 30.757 28.369 30.715 32.087
32 36 35.420 36.072 35.595 31.186 36.247 31.750 36.235 34.610
32 38 37.153 37.727 37.373 31.662 37.643 31.750 36.235 34.610
35 38 37.153 37.727 37.373 31.662 37.643 37.954 39.589 37.300
35 32 31.953 32.385 32.038 30.960 32.821 24.058 39.708 37.372
36 33 32.820 33.354 32.927 30.966 33.763 24.058 41.149 38.252
37 37 36.287 36.915 36.484 31.380 36.969 33.663 41.726 38.598
41 38 37.153 37.727 37.373 31.662 37.643 29.668 46.493 41.636
42 36 35.420 36.072 35.595 31.186 36.247 31.75 47.167 42.09

Average percentage 
accuracy (%)

98.139 98.790 98.406 87.965 97.693 93.658 87.052 89.303
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5. Discussion
In this study, the methods for performing regression are 
based on previous literature where various studies have 
reported successful use of ML models in detecting and 
producing correlation between input and output with 
smaller data sets (Zhang et al., 2021). ML models have 
also shown capability to be able to identify data patterns 
and transform historical data to support a decision-making 
system (Awad & Khanna, 2015). In other studies, findings 
demonstrated that DL models such as DNN have better 
accuracy than ML models; due to their high ability to learn 
from training data (Darko et al., 2023; Wang et al., 2022). 
Although previous studies had mentioned the benefits of 
using DL models, the results from this study shows that 
this is not necessarily true. Although, ML and DL meth-
ods have shown excellence in their respective tasks from 
previous studies, traditional numerical methods cannot be 
ignored from perspective of prediction accuracy and com-
putation time. This shows a potential in further research to 
develop and optimize ML and DL models customized for a 

specific case such as sewage pipeline construction. Moreo-
ver, contradictory findings emphasize the significance of 
data availability and contextual factors over model accura-
cy, complexity, and estimation processes (Amoore, 2023). 
The issue may even arise from hyperparameter optimiza-
tion methods. In this study, a well-known and reliable op-
timization strategy was chosen to optimize the hyperpa-
rameters despite the development of other optimization 
strategies, such as grey wolf optimization and ant lion op-
timization (Mahmoodzadeh et al., 2022c; Nair et al., 2024), 
due to its commercial availability that signifies its validity. 

DL method is a trainable model based on previous 
data that is based on a neural network with hidden layers 
and number of neurons as its main variables. In this study, 
a customizable model called DNN-MLP is used where op-
timized number of hidden layers as the input against a 
relatively simple set of data. The approach is holistically 
different to ML and statistical method. Theoretically, the 
DL method should fully learn the pattern between the de-
pendent and independent variable that produces the most 
reliable result. However, this method is dependent on a 
large amount of training data, accurate hyperparameters 
and sufficient computing power to properly execute. On 
the other hand, LSTM was chosen as it is an openly and 
commercially available deep learning prediction method. 
It’s a method where memory is retrained as it includes 
memory cells. Similar to the DNN-MLP method, this meth-
od requires a tremendous amount of training data and 
sufficient computing power to be executed.

The results of the regression showed a more than ac-
ceptable line of best fit across the numerous regression 
method conducted. Two sets of results were performed 
where statistical evaluation criteria were used to make 
an initial evaluation and a prediction was made against 
a validation dataset, that had no influence in the train-
ing and producing the regression models. The validation 
is conducted to make a prediction on construction dura-
tion depending on the sewage pipeline length. The pre-
dicted construction duration was then compared to the 
real construction duration in order to achieve an average 
of prediction accuracy. For the former, statistical evalua-
tion criteria, RF regressor produced the best result where 
Pearson’s correlation of 0.847 was calculated. The MAE, 
MSE and RMSE reflected the Pearson correlation where it 
was calculated to be 0.224, 0.374 and 0.446, respectively. 
However, despite the more reliable statistical evaluation 
criteria, it ranked fifth when predicting the construction 
duration against a real pipe length. This shows that for 
ML and deep learning methods, statistical evaluation cri-
teria may not be the most suitable choice for a regression 
method with a small amount of dataset. 

As mentioned previously, the results from this study 
shows that statistical performance criterions do not nec-
essary reflect the prediction capability of the regression 
models whether that be derived from numerical, ML or DL 
methods despite the celebrated research trend in the lat-
ter. Moreover, computation time for the DL methods that 

Figure 9. Regression model performance criteria results

Figure 10. Average percentage accuracy for respective 
regression models against real data
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included the hyperparameter optimization far exceeded 
than those of statistical and ML processes. This begs the 
question: is the state-of-the-art method necessarily better 
than its predecessor for specific cases such as: predict-
ing sewage pipeline construction duration? Especially for 
those dealing with a simpler form of numerical data, could 
modern methods be overpowered for more simpler tasks 
with simpler inputs? Are state-of-the-art regression frame-
works reliable in that it is capable of producing accurate 
and reliable results?

Upon observation of the graphs in Figure 8, majority 
of the validation data falls closely to the regression line 
produced by the respective methods. In general, for deep 
learning methods, observation showed that validation da-
tasets fell within the regressed line of best fit for shorter 
sewage pipe length. This was deemed to be thought due 
to the amount of available data for training purposes. 
Therefore, it shows potential to be used when sufficient 
amount of data is available. 

Analysis and validation show, RF, DNN-MLP and SVR 
RBF kernel and the random forest model demonstrated the 
highest predictive accuracy, while statistical linear regres-
sion yielded the lowest accuracy. As for the deep learning 
models, they demonstrated low accuracy in comparison 
with the machine learning models. This suggests that nov-
el machine learning and deep learning methods may not 
necessarily reflect the best outcome when compared to 
statistical methods. It is essential that appropriate regres-
sion method is chosen by specialists with knowledge re-
garding: construction, management and numerical analysis 
in order to provide a more reliable regression outcome to 
those in management responsible for planning the con-
struction determining the outcome of project success.

6. Conclusions 
Given the scarcity of sewage pipeline data, numerous 
methods based on previous studies needs to be explored 
and compared to sustain the developing technologies in 
the field of machine learning and deep learning. Providing 
reliable data for project and construction managers within 
civil engineering sector is significant that take into account 
for: environmental risk, health risk and traffic disruption. In 
order to minimize the mentioned and unmentioned risks, 
predicting construction duration, that is dependent on the 
scale, of sewage pipeline construction is essential.

This research is a methodological based study that 
compared methods suggested by previous works and was 
evaluated using statistical evaluation method and validat-
ed by predicting actual construction. 83 previous success-
ful sewage pipeline construction data is collected where 
dependent and independent variable was extracted ac-
cording to correlation against pipe line length; that deter-
mines the scale of the construction. The 83 datasets were 
separated to training and validation dataset with the ratio 
of 8:2. The training dataset was strictly used to produce 
the regression models using statistical regression of linear 

and polynomial in the order to 2. The same dataset was 
used to perform 4 machine learning and 2 deep learning 
regression methods called: SVR linear, polynomial, RBF, RF, 
DNN-MLP and LSTM. 

The regression models, upon observation, showed 
generally reliable results where majority of validation da-
tasets falls within the boundaries of the confidence in-
terval. From further analysis, statistical evaluation criteria 
of MSE, MAE and RMSE was performed with high scores. 
Moreover, prediction against the validation dataset was 
performed where sewage pipeline length was used a de-
pendent variable to extract the construction duration that 
outperformed other ML and DL based methods.

The novelty of this study comes from the small amount 
of available data collected where only few studies have 
performed similar study with sufficient amount of data on 
a particular case such as the sewage pipeline construction. 
The results from this study highlights the need for more 
development in the ML and DL methods of performing 
numerical management tasks with a limited amount of 
available data. Though there are a wide existing body of 
knowledge on topic of construction duration prediction 
for various fields. While the state-of-the-art methods are 
celebrated in terms of accuracy and reliability, the findings 
from this study shows otherwise. The contradicting result 
may arise from various sources such as: data preprocess-
ing, hyperparameter optimization, cross validation or even 
the regression functions. There is a need for further study 
that explores this to improve the ML and DL framework 
to achieve higher accuracy and reliability. Furthermore, 
in terms of computation time, ML and DL has been the 
least efficient in performing calculations. Therefore, state-
of-the-art methods that are heavily dependent on the 
computation power may not be most suitable method for 
obtaining reliable results for this particular problem. 

The results in this paper shows that among the re-
gression techniques employed, the RF regressor achieved 
the highest R2 score of 0.847 that averaged from the k-
fold cross validation. On the other hand, SVR polynomial 
demonstrated the lowest R2 score at 0.749 showcasing 
its comparatively low ability to forecast accurately. More-
over, when comparing the predicted results against the 
real data, the polynomial regression model demonstrated 
highest predictive capabilities achieving an average per-
centage accuracy of 98.79%. Moreover, both the SVR lin-
ear and linear regression models consistently provided 
estimations of construction time that closely matched the 
actual data, showing an average percentage accuracy of 
approximately 98.406% and 98.139%, respectively. The 
inaccuracy; however, of the DNN-MLP presented an aver-
age percentage accuracy of 87.052%, which reveals their 
limited precision in predicting construction durations com-
pared to machine learning models. In summary, the results 
indicate that numerical methods of producing linear and 
polynomial regression cannot be ignored while most of 
the focus and attention in academic studies are geared 
towards ML and DL methods. While the ML and DL meth-
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ods are capable in making reliable predictions, it may not 
necessarily be the correct choice when taking into account 
for computation time and power requirements also.

The contribution to this study is as follows: first, it 
showcased that ML and DL methods are capable of reliably 
predicting construction duration for a sufficient amount of 
dataset. Second, statistical processes have outperformed 
the novel ML and DL methods highlighting the outdated 
methods still needs to be taken into consideration de-
pending on the problem and data available. Third, there 
is a need to explore and develop even more methods that 
improves the general ML and DL based frameworks by 
investigating alternative hyperparameter optimization al-
gorithms and cross validation methods. 

According to the results of this research, using statis-
tic-based regression in future prediction of the construc-
tion duration of sewage pipelines can outperform modern 
methods deriving from ML and DL. Furthermore, more re-
search exploring the prediction of the construction costs 
in the field of sewage pipeline using: different frameworks, 
hyperparameter optimization and cross validation meth-
ods is necessary to improve the ML and DL frameworks.

The limitation of this study comes in two folds of ex-
ploration and availability in data. While there are con-
ventional and well-known optimization algorithms, based 
on evolutionary and numerical processes, there are still 
emerging methods that needs to be explored such as Ant-
lion optimization and Grey Wolf optimization to name a 
few (Nair et al., 2024). As the information age progresses, 
studies in exploring as much available options as possible 
is necessary with the aim obtaining the best result pos-
sible as is the primary aim of optimization. Moreover, op-
timization parameter needs to be explored further as this 
study has opted for a conservative 500 generations in the 
optimization strategy. Although this study has provided 
sufficient data to allow for a fairly reliable result, there are 
still plenty of room for improvement. With more data in 
more diverse situations for a specific purpose, ML and DL 
techniques shows potential in forecasting project variables 
that influences project planning. Moreover, this study was 
only performed on available data and computation power 
that neglected other influential factors that may hinder the 
project outcome such as: weather and environment condi-
tions, financial resources, and labor availability. 
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