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Article History:  Abstract. Companies in the construction precast industry usually face lack of skilled manpower, overtime working, and 
complexity of manpower allocation. The objective of this research is to identify the complexity of precast components 
using Swarm-Inspired Projection (SIP) algorithm. After conducting a comprehensive literature review regarding precast 
production, clustering, classification, cost management, manpower allocation, and optimization, expertise from field/head-
quarter supervision leads the way to SIP algorithm that drives collected data converted to certain clusters. Data collection 
was carried out to gather over 90% precast construction data in Taiwan for the recent decade. A total of 1,015,840 datasets 
were collected and then 772,212 datasets were taken  into computation SIP algorithm after data filtering. Evaluation and 
comparison  of models  reveal  SIP’s  remarkable  efficiency,  halving  processing  time while  delivering  superior  results.  The 
study identifies four complexity tiers linked to the manufacturing of building precast elements. Significant variations exist 
among these tiers, with workload increments of 18.22%, 11.71%, and 30.08% between Level 1 and 2, Level 2 and 3, and 
Level 3 and 4, respectively.
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1. Introduction
The management team at the precast concrete plant in 
Taiwan typically develops initial working plans based on 
the design specifications of each project. These plans  in-
volve compiling and consolidating information such as 
the quantity and dimensions of precast structure modules, 
types and quantities of embedded parts, as well as the 
allocation of manpower and resources along the produc-
tion line. The complexity of precast component production 
plays a crucial role in determining the production duration, 
often referring to how efficiently a precast component can 
be completed, such as production time. Various alterna-
tive solutions utilizing optimization  for precast construc-
tion have been under discussion for years. These include 

approaches such as multi-objective manufacturing, trans-
portation, and assembly (Anvari et al., 2016; Yuan et al., 
2018), optimized flow-shop scheduling (Yang et al., 2016; 
Ma et al., 2018a), optimal single-machine batch scheduling 
(Kong et al., 2017), as well as decision-making strategies 
(Arashpour et al., 2017; Wang et al., 2018). Decision mak-
ers at the precast concrete plant often rely on subjective 
judgments to determine the required production duration 
for each project based on their experience. However, this 
approach only offers an approximation of the production 
duration, resulting in disparities between the actual com-
pletion date of precast modules in each project and the 
constantly amended production schedule. This inconsist-
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ency  leads to conflicts and wastage of various resources, 
including manpower, production machinery, raw materials, 
production areas, and steel molds, among others. Uneven 
resource allocation further disrupts the normal operation 
of the precast plant, especially when orders from multi-
ple projects coincide, and shortages of skilled labor occur. 
Manufacturers may  struggle  to  optimize  their  resource 
allocation due to a lack of information regarding the 
complexity of precast components. Therefore, to achieve 
precise estimations for precast production duration, it is 
essential to determine the complexity of precast compo-
nent production. Providing complexity levels for precast 
components offers a solution  to optimize precast manu-
facturers’ resource allocation and increase profits. 

In view of the reasons above, the objective of this re-
search is to identify the complexity level of precast com-
ponents using Swarm-Inspired Projection (SIP) algorithm, 
and, thus, requires majority data of the precast compo-
nents from precast concrete plants in Taiwan over the last 
decade. The component production complexity for pre-
cast components here is the complexity level of precast 
components measured by workhours. The longer time a 
precast component is required for manufacture, the more 
complexity (or the higher complexity level) the component 
is. We anticipate that the total production time required 
for all precast components in the project can therefore 
be estimated and the task attributes of the production 
procedures of every component can be identified for bet-
ter planning.

2. Precast engineering and  
component production
The precast construction method involves carefully plan-
ning and designing the decomposition of a building’s 
main structural body  into standardized component units, 
such as beams, columns, and wall panels. Once these pre-
cast components are completed in manufacturing plants, 
they are transported to the construction site for on-site 
hoisting and assembly. This method is a well-established 
construction approach (Kieran & Timberlake, 2004). Schol-
ars have classified precast concrete plants  into  two main 
types:  long-line production for standardized components 
and short-line production for customized components tai-
lored  to specific project  specifications  (Han et al., 2016). 
These  production methods  are  further  categorized  into 
comprehensive production, where the production loca-
tion is fixed, and specialized production, which involves a 
mobile production line in a flow shop mode. Most precast 
concrete plants currently follow the comprehensive pro-
duction method, while the specialized method represents 
an industrialized production line system.

The two production approaches differ significantly due 
to variations in spatial resources, workforce allocation, and 
construction sequencing, which affect manpower and re-
source distribution on-site. Based on the concept of auto-
mated production techniques, some studies have proposed 

models built on  the standardized flow shop approach of 
precast concrete plants (Chan & Hu, 2001, 2002) to study 
the entire production system (Leu & Hwang, 2002; Ko & 
Wang, 2010; de Albuquerque et al., 2012). Research on 
supply chain management in precast construction projects 
reveals that over 95% of project managers believe more 
than 20% of project delays are caused by supply issues 
related to precast components. Additionally, studies have 
shown that project progress is impacted by factors such 
as low production quality, component damage, incorrect 
quantities of supplied components, and production delays 
(Low & Choong, 2001). 

The primary operations in precast concrete plants 
typically involve production planning, precast component 
manufacturing, storage and transportation, as well as sales 
activities. The production of precast components can take 
anywhere from several weeks to multiple months, depend-
ing on the scale and complexity of the project. To ensure 
efficient scheduling, workforce distribution, and manufac-
turing site allocation, classifying the complexity of compo-
nent production is crucial.

To develop the study framework, interviews were con-
ducted with experts who were conveniently sampled and 
have over 10 years of experience in precast manufactur-
ing. Scholars recommend that an optimal Delphi panel size 
for construction management studies ranges from 8 to 20 
participants (Hallowell & Gambatese, 2010; Ameyaw et al., 
2016). Table 1 outlines the background of the 14 interview-
ees, who are experts in precast research, design, produc-
tion, and engineering. Their expertise in the production 
process is depicted in Figure 1 (Chen et al., 2016b), and the 
data collection is categorized into three main components: 
beam, minor beam, and column. Figure 1 also illustrates 
the overall production process, while the sequence and 
detailed descriptions of the component production are 
provided as follows:

1. Cleaning the steel mold: Remove the residual con-
taminations and hardened blocks of concrete on the 
steel mold.

2. Assembling modules: The base mold, side mold and 
steel bar positioning are assembled for each precast 
component type.

3. Lofting (positioning of iron components): Installation 
datum lines of the embedded parts are measured 
and marked on steel mold with level and perpen-
dicular lines.

4. Dipping the steel rod cage: Steel cage is hoisted into 
steel mold, where the length and position of dowel 
bars are adjusted.

5. Laying of embedded parts: Rubber sealing gasket, 
upper  and  lower  wood  spacer  panels  are  first  in-
stalled, interfacial steel components are next installed. 

6. Checking before pouring and concrete pouring: Steel 
reinforcement bars, steel wire mesh and other em-
bedded  parts  are  checked  and  verified  if  they  are 
placed correctly and their dimensions are installed as 
designated.
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7. Concrete placement.
8. Concrete surface whitewashing.
9. Concrete curing works and curing time: Upper part 

of the steel mold is covered with canvas cloth for 
hot steam curing and to ensure even heating of the 
concrete.

10. Removal of all related molds: Related molds are dis-
mantled.

11. Mold removal: The completed precast component is 
removed from the steel mold.

12. Component repair: If relatively large air voids or sig-
nificant damage is formed on the casted component, 
cement-sand grout is used to patch up the visible 
damages. 

13. Inspection of finished components: The final product 
of the precast concrete component is inspected for 
its marking, labelling and dimension accuracy.

14. Warehouse storage: The completed components are 
transported to the storage warehouse for aggregated 
storage.

Table 1. Experts’ information

Order Department Position Specialization Years of precast 
experience

1 President’s Office Senior
President

Management of planning, manufacturing and construction 
of precast

33

2 Precast Production 
Department

Senior 
Vice President

Management planning and manufacturing of precast 30

3 Precast Production 
Department

Senior Project 
Manager

Planning and manufacturing management of precast 29

4 Precast Production 
Department

Senior
Associate

Planning, manufacturing and management of precast 
production

28

5 Precast Production 
Department

Senior
Associate

Planning and manufacturing management of precast 24

6 Precast Research Department Vice
President

Design and planning, technical innovation, research and 
improvement of precast system

20

7 Precast Research Department Associate Technical innovation, research and improvement of precast 
system

14

8 Precast Engineering 
Department

Senior 
Vice President

Management of planning, manufacturing and construction 
of precast

31

9 Precast Design Department Senior
Associate

Precast design and planning 30

10 Precast Design Department Senior
Associate

Precast design and planning 24

11 Precast Design Department Senior
Manager

Precast design and planning 27

12 Precast Design Department Vice
President

Management of design and planning, manufacturing and 
construction of precast

21

13 Precast Design Department Vice
President

Management of design and planning and manufacturing 
for precast

20

14 Precast Design Department Manager Precast design and planning 19

【1】Cleaning the 

steel mold

【2】Assembling 

modules

【3】Lofting 

(positioning of iron 
components)

【4】Dipping the 

steel rod cage

【5】Laying of 

embedded parts

【6】Checking 

before pouring and 
Concrete pouring

【7】Concrete 

placement

【8】Concrete 

surface 
whitewashing

【9】Concrete 

curing works and 
curing time

【10】Removal of 

all related molds

【11】Mold 
removal

【12】Component 

repair

【13】Inspection 

of finished 
components

【14】Warehouse 

storage

Figure 1. Steps for production of precast components
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3. Related work to clustering analysis
The theory and methodology of computational intelli-
gence have reached a mature stage and are widely applied 
across various fields, including shift rotation and personnel 
allocation in aviation companies (Chou & Ngoc-Tri, 2018; 
Yeung et al., 2016, 2018; Arabameri et al., 2017), supply 
and dispatch issues in ready-mix concrete (Holimchaya-
chotikul & Leksakul, 2017; Cao et al., 2015), workforce 
scheduling for emergency road repairs (Liu et al., 2022; 
Zhang & Atkins, 2015; Fasanghari et al., 2015; Chou & 
Anh-Duc, 2014), and decision support systems (Davi et al., 
2014; Salama & El-Gohary, 2013). In terms of clustering 
techniques,  data  classification  is  primarily  based  on  the 
characteristics or degree of disparity between data points. 
Clustering methods are commonly applied in fields such as 
bioinformatics (Glauber & Claro, 2018), data mining (Won 
et al., 2014), web searching (Ma et al., 2018b), image clas-
sification  (Bandyopadhyay & Maulik, 2002; Omran et al., 
2005), business strategy, social analysis, scientific explora-
tion, and medical research (Ji et al., 2018). The two most 
commonly used clustering algorithms are the Partitioning 
Clustering Algorithm (PCA) and Hierarchical Clustering 
Algorithm (HCA) (Gautam & Chaudhuri, 2004). Both ap-
proaches assess data differences based on distance meas-
ures and are considered unsupervised learning methods 
in the field of data mining. They rely on the similarity  in-
dex of objects as the basis for grouping, clustering similar 
items within the same population. By defining a criterion 
function, different populations are delineated, with objects 
within populations sharing higher similarities, while those 
between populations exhibit greater dissimilarities. 

Clustering algorithms play a crucial role in data mining. 
Each data point is defined by a set of attributes, with the 
number of attributes referred to as dimensions. These al-
gorithms group data into subsets based on their attributes, 
ensuring that data points within the same subset share a 
high degree of similarity, while data points between sub-
sets are as distinct as possible (Bu, 2018; Su et al., 2009). 
The data used in clustering often involve multiple terms 
and belong to high-dimensional information, which can-
not be easily  visualized using  standard methods.  To ad-
dress this, self-organizing maps (SOM) or Kohonen maps 
are used to project high-dimensional data into a lower-di-
mensional space, making it easier to interpret visually (Han 
& Kamber, 2000). Swarm intelligence clustering is one of 
the optimization algorithms frequently used in academia, 
as  it effectively  represents  the distribution of data within 
clusters. It is widely applied in solving both continuous 
and discrete optimization problems, making it a versatile, 
multi-functional method. This approach is inspired by the 
collective behavior of animals or insects, such as the flock-
ing patterns of birds. For example, Reynolds studied the 
flight behavior of flocking birds (Reynolds, 1987), observ-
ing  that birds maintain  specific  formations during flight, 
sometimes dispersing and other times flocking together. 

Research has offered explanations  regarding  the be-
havior of  raised fish,  suggesting  that  they gain  valuable 

experience and  foraging direction  from other fish shoals 
during their search for food. These experiences enable the 
shoals to make better choices during food competition. 
Their behavior illustrates how information sharing among 
individuals  benefits  both  the  individual  and  the  group. 
The algorithm based on this concept has been tested on 
several datasets, including the iris dataset, breast cancer 
dataset, chromosome dataset, dual-elliptical dataset, and 
a 20-dimensional non-overlapping dataset. When the re-
sults were compared to those of  the K-means and Fuzzy 
C-means (FCM) algorithms, the SIP algorithm was found to 
provide the best clustering outcomes for four of the case 
studies. However, for the breast cancer dataset, the FCM 
algorithm achieved the highest clustering similarity, likely 
due to the dataset’s characteristics, which do not display 
clear clustering patterns.

Some literature explains that the SIP algorithm is mod-
eled after the foraging patterns of pigeons, a process di-
vided into three stages: (1) Establish uniformly distributed 
points in space and treat them as pigeon locations. (2) 
Treat each data point as pigeon feed and distribute it to 
the pigeons. (3) Observe the foraging behavior of individu-
als as they migrate toward neighboring areas with more 
abundant food sources. Without specific assumptions, the 
SIP algorithm tends to produce better clustering results 
(Bu, 2018). Based on these studies, the SIP algorithm has 
proven to be highly accurate when a dataset exhibits sig-
nificant clustering characteristics, and its accuracy remains 
stable even as dimensionality increases. Therefore, this 
study has selected the SIP algorithm for clustering opera-
tions.

4. Data collection and analysis
For more than a decade, this study engaged with the larg-
est precast concrete plants in Taiwan to deeply investigate 
and understand its production system. The aim was to par-
ticipate in and comprehensively examine the operations 
of  precast  plants  through  extensive  field  research.  Per-
sonnel conducted thorough observations, measurements, 
and data collection to understand the characteristics and 
durations of each manufacturing process in the field. The 
data collection focused on the primary production times of 
three types of structural components: main beams, minor 
beams,  and  columns.  This  study gathered  and  analyzed 
data on precast structural components from over 90% 
of precast construction projects in Taiwan spanning the 
past decade. The data were sourced from orders placed 
by both public and private sectors, each order detailing 
quantities of precast components, dimensions, and client 
specifications.  The  projects  encompassed  various  types 
such  as  collective  residences,  schools,  office  buildings, 
large shopping malls, technology and biotech factories, 
as well as collective townhouses and compound malls. As 
a result, the investigated precast concrete plant recorded 
time production in minutes for all 14 steps shown in Fig-
ure 1 as well as the data source for the study. Missing 
values are referred to the empty fields in each data or the 
misplaced data during data import or manual input. Ex-
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treme value is the value which has extremely large differ-
ence from other values of the same field within the same 
database. This study adopted standardized residual check 
and defined data that is above 2 times the standard devia-
tion as extreme value (outliers). These two conditions often 
caused the deviation and invalidity of outcomes during 
clustering and statistical analysis. SPSS statistical software 
is hence utilized to filter and remove values with missing 
or extreme fields to prevent analysis error. The threshold 
of the extremums was set to ±2 standard deviation (4.6% 
of the total) away from the mean value for each attribute 

(process name) because the threshold has not only statisti-
cal but practical evidence support. Any orders falling into 
the extremum category are customized,  tiny, or  insignifi-
cant. Due  to  their  insignificance  in  terms of volume,  the 
decision and the following analysis are not affected even 
if extremums are considered. The original database gath-
ered in this study had 72,560 components with a total of 
1,015,840 production information. The database contain-
ing main beam, minor beam and column precast compo-
nents was consolidated and processed using SPSS version 
19.0 to remove invalid data as shown in Tables 2 to 4.  

Table 2. The datasets of the girders’ product process

Progress name Total items Average Standard 
Deviation

Missing Value Extremum itemsª

Items Percentage Minimum Maximum

Cleaning the steel mold 26608 23.652 3.472 138 0.52% 48 432
Assembling modules 26608 18.5072 4.26724 267 1.00% 43 158
Lofting (positioning of iron components) 26608 10.1519 4.21608 169 0.64% 26 881
Dipping the steel rod cage 26608 22.0891 3.98388 367 1.38% 31 126
Laying of embedded parts 26608 34.8589 12.50582 152 0.57% 11 963
Checking before pouring and Concrete 
pouring

26608 13.3943 3.65394 125 0.47% 72 71

Concrete placement 26608 15.5814 2.60231 163 0.61% 13 39
Concrete surface whitewashing 26608 40.1912 3.59262 89 0.33% 7 120
Concrete curing works and curing time 26608 10.8656 18.3966 71 0.27% 18 55
Removal of all related molds 26608 17.5553 5.38304 39 0.15% 46 102
Mold removal 26608 14.0378 2.87126 76 0.29% 33 178
Component repair 26608 40.2499 14.75031 155 0.58% 28 733
Inspection of finished components 26608 15.6986 3.33023 331 1.24% 25 102
Warehouse storage 26608 19.664 2.57596 376 1.41% 23 147

Note: ª – Extremum (Average-2*SD, Average+2*SD).

Table 3. The datasets of the beams’ product process

Progress name Total items Average Standard 
Deviation

Missing Value Extremum itemsª

Items Percentage Items Percentage

Cleaning the steel mold 21480 22.9457 2.7968 208 0.97% 111 26%
Assembling modules 21480 19.8923 3.98912 19 0.09% 62 288%
Lofting (positioning of iron components) 21480 10.3241 4.71305 71 0.33% 13 302%
Dipping the steel rod cage 21480 21.6775 3.24493 80 0.37% 75 102%
Laying of embedded parts 21480 35.9386 12.99222 85 0.40% 4 358%
Checking before pouring and Concrete 
pouring

21480 16.1241 3.8073 199 0.93% 5 70%

Concrete placement 21480 15.1905 1.91026 158 0.74% 0 169%
Concrete surface whitewashing 21480 31.4543 4.37761 63 0.29% 2 109%
Concrete curing works and curing time 21480 11.2678 1.61068 61 0.28% 18 66%
Removal of all related molds 21480 16.9319 3.97995 107 0.50% 22 56%
Mold removal 21480 12.9149 2.94961 71 0.33% 17 123%
Component repair 21480 40.4221 15.85232 269 1.25% 37 375%
Inspection of finished components 21480 12.0435 3.35277 93 0.43% 198 112%
Warehouse storage 21480 19.1983 3.25813 266 1.24% 98 181%

Note: ª – Extremum (Average-2*SD, Average+2*SD).
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Based on the information in Tables 2 to 4, the typical dura-
tion for producing girders, beams, and columns falls within 
the ranges of 10.15 to 40.24 minutes, 10.32 to 40.42 min-
utes, and 7.46 to 69.85 minutes, respectively. An initial 
statistical analysis does not reveal any discernible data 
clustering patterns. There is a pressing need for an effec-
tive data analysis tool to handle the vast amount of data 
in order to better understand the production complexities 
associated with these precast components.

5. Proposed model
After summarizing  the  literature  review on efficient clus-
tering methods, the SIP algorithm was selected. Subse-
quently,  the  database  was  normalized  by  assigning  a 
maximum value of 1 and a minimum value of 0 to each 
characteristic. All values are transformed into value rang-
ing from 0 to 1 through the following equations, by substi-
tuting the original data to be converted and the maximum 
and minimum values of  the specific characteristics. After 
the normalization of all characteristic fields, the grade gap 
between different  fields would diminish while maintain-
ing relative high-low positions for all data within the same 
field, further analysis is next conducted.

SIP is inspired by the foraging behavior of doves. In 
this method, each data pattern x in a dataset is treated 
as an artificial crumb. These artificial crumbs, representing 
data patterns, are sequentially scattered onto a two-di-
mensional artificial ground, encouraging the flock of doves 
to adjust their movements in search of them. Individual 
doves benefit from the discoveries of others since each is 
influenced by  the  success of  the best-performing mem-
ber, leading to an instinctive desire to imitate the most 
successful  individual.  Over  time,  the  flock  divides  into 
groups based on the distribution of  the artificial crumbs. 

These groups,  representing financial variables,  form clus-
ters within the dataset, exhibiting similarities within each 
cluster and differences from neighboring clusters. The ar-
rangement on the two-dimensional ground allows for a 
quick estimation of the number of clusters inherent in the 
dataset (Su et al., 2009; Chen et al., 2016a):

min
max min

Y  −
=

−
.

The procedures of SIP algorithm are performed as fol-
lows.

The  definition  of  notations  used  in  SIP  algorithm  is 
elaborated as follows:
x – Data mode/pattern in database; 
w – Multidimensional sensory organ vector of pigeons;
p – 2D location vector of pigeon;
e – Epoch number;
k – Time index;
f e

j – The degree of satiate for j-th pigeon at epoch e;
bf – Pigeon with closest distance to feed;
bs – Pigeon with highest satiety;
M×N – Pigeon amount.

The SIP Algorithm procedures are listed as follows.
Step 1: Determine the amount of pigeons, assuming the 
amount of M×N and randomly distributed around an 
imaginary artificial plane.
Step 2:  Define  epoch  number  to  e = 0 and set satiety 
degree to 0,  for  1, ,e

jf j M N= = … × .  Initialized  multidi-
mensional sensory organ, ,  for  1, ,jw j M N= … × . There 
are three methods to  initialize  this  term, one of  the sim-
plest way is to  initialize the multidimensional sensory or-
gan randomly into small valued vectors. The second way 
is to randomly select from the data and the data mode 
with the same amount of data and randomly allocate them 

Table 4. The datasets of the columns’ product process

Progress name Total items Average Standard 
Deviation

Missing Value Extremum itemsª

Items Percentage Items Percentage

Cleaning the steel mold 24472 23.2738 2.95224 285 1.16% 160 36%
Assembling modules 24472 18.8229 3.46196 110 0.45% 36 443%
Lofting (positioning of iron components) 24472 7.4614 3.98143 90 0.37% 12 178%
Dipping the steel rod cage 24472 32.9428 7.68624 116 0.47% 5 64%
Laying of embedded parts 24472 40.7658 33.52384 93 0.38% 10 501%
Checking before pouring and Concrete 
pouring

24472 14.8983 5.99388 201 0.82% 103 363%

Concrete placement 24472 27.6775 4.89601 107 0.44% 2 139%
Concrete surface whitewashing 24472 52.654 8.63711 66 0.27% 31 308%
Concrete curing works and curing time 24472 13.1075 2.83263 3 0.01% 74 271%
Removal of all related molds 24472 7.862 2.90099 52 0.21% 16 13%
Mold removal 24472 16.1487 3.79836 45 0.18% 66 162%
Component repair 24472 69.8593 13.94626 36 0.15% 171 562%
Inspection of finished components 24472 14.3553 3.61085 20 0.08% 196 105%
Warehouse storage 24472 20.43492 4.72846 188 0.77% 147 18%

Note: ª – Extremum (Average-2*SD, Average+2*SD).
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as the initial sensory organ vector, while the third way is 
based on basic instinct. Through adopting the special ini-
tialization method, the location vector of the pigeon group 
would be assigned to corresponding multidimensional 
sensory organ vector.
Step 3: Calculate the total satiety of the pigeon group:

( )
1

.
M N

e
j

j

T e f
×

=

= ∑  (1)

Step 4: Place the artificial feeds xk to the artificial plane.
Step 5: Use the smallest distance method to determine 
the pigeon bf that are the closest to the feed.

( )argmin w , for  1, , .f k jj
b x k j M N= − = … ×  (2)

Step 6: Use the following equation to add in the satiety 
degree of each pigeons:

( ) ( )
( ) ( )new old .k bfe e

j j
k j

x w k
f f

x w k


−
= +

−
 (3)

Step 7: Pigeon with the highest satiety is selected using 
the following equation:

1
a .arg m x e

s jj M N
b f

≤ ≤ ×
=  (4)

Step 8: The sensory organ vector and location vector pj of 
the pigeons is updated with the equation below, including 
the learning rate of hw and hp:

( ) ( ) ( )( )
( )
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1

,   for  ;

,bf w k bf f
j

j f
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Step 9: Proceed back to Step 4 and reiterate this operation 
until all data are completed.

Step 10: If ( ) ( )
1

new
N M

e
j

j

f T e 
×

=

− ≤∑  criterion is met, this 

loop would be terminated, otherwise, increase the epoch 
number and return to Step 3.

The source code can be seen at http://140.115.51.174: 
5000/fbsharing/qLs1i1lP (Chen et al., 2016b). Upon the 
completion of clustering method, this study studies the 
clustering outcomes of the resulting populations, which 
mainly presented two characteristics. (1) There is certain 
difference in characteristics between populations. (2) There 
are certain similar features for data within the same popu-
lation. These two characteristics are the ultimate target of 
this study through the implementation of clustering al-
gorithm and automated clustering approach, in order to 
reveal  the difference between various production works. 

The difference between different orientations  should be 
obvious while the dissimilarity between the same orienta-
tion should be small.

6. Results
This study processed a sum of 55,158 effective production 
components, totaling in 772,212 data. The data of pro-
duced components were separated into main beam, minor 
beam and column, and they were input into SIP algorithm 
for automated clustering. For determining the number of 
clusters in cluster analysis, this study uses the two crite-
ria mentioned in the previous section. In the scatter plots 
shown in Figure 2a, the positions of the doves represent 
data points, helping to reveal the underlying structure of 
the data. Observing the data, one can see that the updat-
ing rules cause the doves to gather around their respec-
tive food sources, which correspond to the data’s inherent 
structure.  By  the  end of  this process,  the final positions 
of the doves are reflected in a scatter plot. From this im-
age, the number of clusters can be visually identified, with 
each cluster representing a food source. Figure 2b illus-
trates that the process resulted in four distinct clusters. As 
the data amount increased, no matter which production 
data of precast components, their corresponding research 

Figure 2. SIP Girder clustering
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modes would gradually form into populations with dif-
ferent characteristics. Data of all three components were 
clustered into four populations with significant characteris-
tics. This study presented the SIP clustering result for each 
component type as shown in Figure 2b.
(1) Component  production  complexity  classification  of 

precast main beam component
This study gathered 19,559 production data of main 

beam and clustered through SIP algorithm. The manufac-
turing information of the main beam components within 
the gathered database would cluster automatically ac-
cording to their characteristics. Table 5 displays the clus-
tering outcome of SIP for the production complexity of 
each component type. Based on the clustering results, the 
component production complexity of the main beam’s 
precast component was clearly clustered into four popu-
lations, this study therefore defined them into four grades. 
For grade one component production complexity of the 
main beam, 6,054 components were clustered and their 
average production time was 239.91 minutes, where the 
minimum and maximum production time were 227.22 and 
252.74 minutes respectively. 7,276 components were clus-
tered for grade two component production complexity 
with a mean production time of 295.45 minutes, while the 
minimum and maximum production time were 274.90 and 
311.94 minutes respectively. Grade three component 
production complexity clusters had 3,996 components 
with average manufacturing duration of 338.79 minutes, 
ranging from 321.96 minutes to 358.56 minutes. The last 
cluster of grade four component production complexity 
had 2,233 components with production time averaged 
at 382.68 minutes and lies between 364.19 minutes to 
396.18 minutes.
(2) Component  production  complexity  classification  of 

precast minor beam component 
As for the production information of minor beams, this 

study analyzed 16,731 components and clustered through 
SIP algorithm, where the production data of the precast 
components of the minor beams would automatically clus-

ter together according to data characteristics. Clustered 
classification of  the precast  components of minor beam 
is shown in Table 5. According to the clustered outcome, 
the component production complexity of the minor beam 
components was classified  into  four populations,  so  this 
study defines  these populations  into  four grades. Popu-
lation rated grade one component production complex-
ity of the minor beam had 4,532 components in cluster 
with an average production time of 216.24 minutes per 
component, while the minimum and maximum production 
time were 202.75 and 231.17 minutes respectively. 4,643 
components were clustered for grade two component 
production complexity with a mean production time of 
273.19 minutes, ranging from 258.98 to 289.81 minutes 
per beam. Grade three component production complexity 
clusters had 4,788 components with average manufactur-
ing duration of 318.26 minutes, ranging from 302.97 min-
utes to 333.96 minutes. The last cluster of grade four 
component production complexity had 2,768 components 
with production time averaged at 367.82 minutes, with a 
minimum and maximum production time of 350.69 and 
383.49 minutes per components.
(3) Component  production  complexity  classification  of 

precast column component
This  study  analyzed  a grand  total  of  18,868  compo-

nents for precast column production data. These data 
are also analyzed through SIP algorithm and they would 
automatically cluster into several populations based on 
data characteristics. Clustered classification of the precast 
components of the column is shown in Table 5. Accord-
ing to the clustered outcome, the component production 
complexity of the column components was classified into 
four populations, so this study rated these populations 
into four grades. Grade one component production com-
plexity of the column clustered 5,073 data with an average 
production time of 282.90 minutes per component, rang-
ing from 265.31 minutes to 299.61 minutes. As for grade 
two component production complexity, 7,011 components 
were included in this cluster with a mean production time 

Table 5. The manufacturing complexity of each type components (unit: min)

Component 
name Measure item Unit

Grade one 
manufacturing 

complexity

Grade two 
manufacturing 

complexity

Grade three 
manufacturing 

complexity

Grade four 
manufacturing 

complexity

Girders

Quantity set 6,054 7,276 3,996 2,233
min process time min 227.22 274.90 321.96 364.19 
max process time min 252.74 311.94 358.56 396.18 
average time min 239.91 295.45 338.79 382.68 

Beams

Quantity set 4,523 4,643 4,788 2,768
min process time min 202.75 258.98 302.97 350.69
max process time min 231.17 289.81 333.96 383.49
average time min 216.24 273.19 318.26 367.87

Columns

Quantity set 5,073 7,011 2,486 4,298
min process time min 265.31 320.94 359.69 461.56
max process time min 299.61 345.67 389.68 506.98
average time min 282.90 334.44 373.60 485.99
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of 334.44 minutes while the minimum and maximum pro-
duction time were 320.94 and 345.67 minutes respectively. 
Grade three component production complexity clusters 
had 2,486 components with production time averaged at 
373.60 minutes per components, ranging from 359.69 min-
utes to 389.68 minutes. The last cluster of grade four com-
ponent production complexity had 4,298 components with 
average component production duration of 485.99 min-
utes, whereas their minimum and maximum production 
time were 461.56 and 506.98 minutes per components.
(4) Integrated cluster analysis on the component produc-

tion complexity of three types of precast components 
Integrated analysis outcome of all the component 

production particulars of main beam, minor beam and 
column components are shown in Table 6. The total pro-
duction duration of main beam components of  the first 
and  second  grade  has  average  production  time  differ-
ence of 55.54 minutes, requiring an extra 23.15% work-
load. The difference between the first and the third grade 
population is 98.88 minutes and a workload increment of 
41.22%  is  required. Whereas  the difference between  the 
first and the  fourth-grade clusters  is 142.77 minutes gap 
and require an additional 59.51% workload. Each compo-
nent production complexity clustering was obvious. The 
difference of  total production duration between the sec-
ond and the third grade is 43.34 minutes and required 
14.67% more workload, while the difference between the 
second and the fourth grade is 87.23 minutes and involved 
29.52% extra workload. The gap of the total production 
time between the third and the fourth grade population 
is 43.89 minutes and an additional of 12.95% workload, 
which the complexity grade gap was quite apparent. As 
for the total production time for the minor beam compo-
nents,  its first and second grade had an average produc-
tion  time difference of 56.95 minutes,  requiring an extra 

26.34% workload. The difference between the first and the 
third grade is 102.02 minutes and a workload increment 
of 47.18% is required. Whereas the difference between the 
first and the  fourth grade clusters  is 151.63 minutes gap 
and require an additional 70.12% workload. Each com-
ponent production complexity clustering of the average 
production  time was obvious. The difference of  the  total 
production time of the minor beam between the second 
and the third grade is 45.07 minutes and required 16.50% 
additional workload, whereas the gap between the sec-
ond and the fourth grade is 94.68 minutes and involved 
34.66% extra workload. The gap of the total production 
time between the third and the fourth grade population 
is 49.61 minutes and an additional of 15.59% workload, 
indicating that the complexity grade gap was quite appar-
ent. Average production time for the column components 
had 51.54 minutes difference between its first and second 
grade, which involved an additional 18.22% workload. The 
differences between  the first and  third population grade 
is 90.71 minutes of average production time, demanding 
an extra 32.06% workload. While the gap between the first 
and the last population cluster was 203.09 minutes and 
require an extra 71.79% workload, all of which indicated 
the dissimilarity between component production com-
plexity clusters was clear. For the total production time 
of column components, the second grade differs with the 
third grade by 39.16 minutes and required 11.71% more 
workload; differs with the fourth grade by 151.55 minutes 
and  increased  45.31% workload.  The  third  grade  differs 
with the fourth grade by 112.39 minutes and required an 
additional 30.08% workload, which again suggested that 
the complexity grade gap was apparent. In summary, the 
gaps between these 4 levels are significant and the work-
load increases between Level 1 and 2, Lever 2 and 3, Level 
3 and 4 are 18.22%, 11.71%, and 30.08%, respectively.

Table 6. The difference between the manufacturing complexity of each type components (unit: min)

Component 
name Measure item

Grade one 
manufacturing 

complexity 

Grade two 
manufacturing 

complexity

Grade three 
manufacturing 

complexity

Grade four 
manufacturing 

complexity

Girder Average process time 239.91 295.45 338.79 382.68 
Difference from grade one 0 0 55.54 23.15% 98.88 41.22% 142.77 59.51%
Difference from grade two –55.54 –23.15% 0 0 43.34 14.67% 87.23 29.52%
Difference from grade three –98.88 –41.22% –43.34 –14.67% 0 0 43.89 12.95%
Difference from grade four –142.77 –59.51% –87.23 –29.52% –43.89 –12.95% 0 0

Beam Average process time 216.24 273.19 318.26 367.87 
Difference from grade one 0 0 56.95 26.34% 102.02 47.18% 151.63 70.12%
Difference from grade two –56.95 –26.34% 0 0 45.07 16.50% 94.68 34.66%
Difference from grade three –102.02 –47.18% –45.07 –16.50% 0 0 49.61 15.59%
Difference from grade four –151.63 –70.12% –94.68 –34.66% –49.61 –15.59% 0 0

Column Average process time 282.90 334.44 373.60 485.99 
Difference from grade one 0 0 51.54 18.22% 90.70 32.06% 203.09 71.79%
Difference from grade two –51.54 –18.22% 0 0 39.16 11.71% 151.55 45.31%
Difference from grade three –90.70 –32.06% –39.16 –11.71% 0 0 112.39 30.08%
Difference from grade four –203.09 –71.79% –151.55 –45.31% –112.39 –30.08% 0 0
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7. Model comparison and evaluation
The primary goals in evaluating the proposed model are to 
assess (1)  its convergence efficiency and (2) computation 
time. The results of the proposed model are recommend-
ed to be compared with widely used clustering algorithms 
such as k-means and hierarchical clustering (Chen et al., 
2023). The k-means algorithm, a fundamental clustering 
technique, selects initial centroids randomly and assigns 
data points to the nearest centroid, while hierarchical clus-
tering creates a tree-like structure where each data point 
starts as its own cluster, progressively merging similar clus-
ters. Using the same dataset of 772,212 entries divided into 
10 subgroups with 10-fold cross-validation, and visualizing 
the high-dimensional results via the Sammon projection 
method in a two-dimensional plot, Figure 3 presents the 
clustering outcomes from both k-means and hierarchical 
algorithms. Notably, the results from k-means and hierar-
chical clustering show no signs of convergence, with data 
points visibly scattered. Additionally, their computation 
times are significantly  longer compared to  the proposed 
model, as shown in Figure 2b. Specifically, neither k-means 
nor hierarchical clustering successfully converged the data 
points into distinct clusters, even with nearly double the 
processing time: 396 minutes for SIP vs. 815 minutes 
for k-means and 902 minutes for hierarchical clustering.

8. Implementation and discussion
This study based on the aforementioned outcomes of the 
grading, type and amount of precast components clusters, 
and constructed spreadsheet to compute the total compo-
nent production duration for each precast components us-
ing Office Excel software. This enabled us to estimate the 
total production time of each structural body components 
in the precast concrete plant, which allowed the rapid 
computation of total production duration of each project 
by inputting the planned embedded type, amount, dimen-
sion, and component amount of each structural modules.

Based on the convenient sampling concept, the case 
selected for the implementation is an actual order from 
the Taiwan construction industry which is then processed 
by the largest precast concrete plant in Taiwan. The proj-
ect site is located in northern Taiwan with a base area or 
8,166 m2, which is a large compound business building 
consisted of 3 basement floors below ground and 15 floors 
above ground. The produced amounts of main beam, mi-
nor beam and column are 477, 231 and 414 components 
respectively, which totaled in 1,122 components. This 
study based on the graphic information of the project site 
and initially compiled the production type information of 
the main beams as shown in Table 7. There were 6 types of 
component dimensions, which all have 4 embedded parts 
for hoisting. Other component types have embedded parts 
quantity ranging from 1 to 6 parts, in which main beam 
of 60×65×789 and 80×70×889 dimension had the high-
est amount of 8 parts. As for beam tubing, dimensions of 
60×62.4×789 had the largest amount. Whereas in terms 

of component quantity, beam dimension of 60×62.4×789 
had the largest quantity of 108 components, 70×65×800 
had the smallest quantity of 63 members. 

Table 8 shows the production type information of mi-
nor beam components. There are five component dimen-
sions, all of which had 4 embedded hoisting parts. Other 
types of embedded parts had quantity ranging from 1 to 8 
parts, in which the minor beam of 40×50×625 dimension 
had the most amount of 8 components. As for beam tub-
ing, minor beam of 40×52.4×650 dimension had the most 
amount of 3 sets. For component quantity, beam dimen-
sion of 50×60×750 had the largest quantity of 80 compo-
nents, 55*65*920 had the smallest quantity of 9 members. 
Production type data of column components are listed in 
Table 9. There are 5 types of column dimensions and all 
are designed with 4 embedded parts for hoisting. Other 
forms of embedded parts ranges between 2 to 6 compo-
nents in precast columns, where column with dimensions 
of 100×100×450 and 110×110×350 had the most amount 
of 6 components. Power distribution box is designed into 
columns with dimensions of 100×100×250, 100×100×45, 
110×110×250 and 110×110×650. As for component quan-
tities, column with 100×100×250 dimension had the most 
components of 172 while column with 110×110×650 di-
mension had the least amount of 30 components. 

This study further consolidated the precast component 
production type information of the large compound busi-
ness mall into the spreadsheet to estimate the total project 
duration as shown in Table 10. This information included 
the types and amount of the embedded parts type and the 
quantity and dimensions of the precast component, and so 

Figure 3. Girder clustering results by k-means and hierarchical 
clustering algorithms
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Table 7. The production time of the girder component of Big Mall project 

Component 
name Section (cm) Embedded component 

quan.
Other type embedded 

parts quan.
Quan. of the

pipe penetration sleeve Component quan.

Girder

60×62.4×789 4 1 0 58
60×62.4×789 4 2 0 32
60×62.4×789 4 2 1 8
60×62.4×789 4 3 4 10
60×65×789 4 6 0 42
60×65×789 4 4 1 22
60×65×789 4 4 2 16
70×68×700 4 2 0 46
70×68×700 4 2 1 20
50×60×800 4 4 0 45
50×60×800 4 4 1 20
50×60×800 4 4 3 18
70×65×800 4 2 0 36
70×65×800 4 2 1 15
70×65×800 4 4 2 12
80×70×889 4 2 0 36
80×70×889 4 6 0 25
80×70×889 4 4 2 16

Section: width×depth×length.

Table 8. The production time of the beam component of Big Mall project 

Component Section (cm) Embedded component 
quan. 

Other type embedded 
parts quan. 

Quan. of the
pipe penetration sleeve Component quan.

beam 40×50×625 4 1 0 25
40×50×625 4 2 0 26
40×50×625 4 8 0 6
40×50×625 4 4 1 4

40×52.4×650 4 1 0 22
40×52.4×650 4 4 0 18
40×52.4×650 4 6 1 8
40×52.4×650 4 2 3 10
50×60×750 4 2 0 28
50×60×750 4 4 0 28
50×60×750 4 2 1 12
50×60×750 4 4 2 12
50×60×880 4 4 0 15
50×60×880 4 6 1 4
50×60×880 4 8 2 4
55×65×920 4 2 1 5
55×65×920 4 4 2 4

Section: width×depth×length

forth. First of all, the production details regarding the main 
beam component are analyzed. According to the cluster-
ing results, component production complexity of Grade 1 
has 208 components, which constitute around 43.61% and 
their production time is 49,901 minutes. Grade 2 has 88 
components in clusters and take up 18.45% with produc-
tion time of 26,004 minutes. Cluster of Grade 3 has 109 
components and was 22.85% of all beams, with production 
time of 36,928 minutes. There are 72 components in the 

cluster of Grade 4, constituting 15.09% and their produc-
tion time is 27,552 minutes. Summing up all main beam 
components above, the overall total production time for 
main beam is 140,386 minutes. For the production analy-
sis of minor beam, the clustering outcome showed that 
Grade 1 has 101 components, which constitutes around 
33.77% and requires 21,816 minutes of production time. 
Grade 2 has 78 components and approximately 18.45% 
of all beams, with production time of 21,309 minutes.  
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There are 10 components in Grade 3, constituting 4.33% 
and their production time is 3183 minutes. Whereas Grade 
4 has 42 components in clusters and take up 18.18% with 
production time of 15,451 minutes. Total production time 
of all minor beam components take up 61,760 minutes. As 
for the production data analysis of columns, Grade 1 has 
132 components and was 31.88% of all columns, which 
took 37,342 minutes to produce. There were 94 compo-
nents Grade 2, constituting 22.71% and their production 
time is 31,433 minutes. Grade 3 has 134 components and 
approximately 32.37% of all columns, with production time 
of 50,062 minutes. Whereas Grade 4 has 54 components 
in clusters and take up 13.04% with production time of 
26,244 minutes. Total production time of the precast col-
umn components summed up to be 145,082 minutes.

In summary, Tables 7–9 show the details information 
for the case study. Tables 10 and 11 demonstrate how pro-

duction complexity estimation works by plugging the data 
into SIP algorithm, indicating that, for example, 43.61% 
of  girder  components  can  be  categorized Grade  1 with 
estimated production time of 49,901 minutes; 18.18% 
(5.19% + 8.66% + 4.33%) of beam components can be cat-
egorized  as Grade  4 with  estimated production  time of 
15,451 (4414 + 7358 + 3679) minutes. This case study of an 
actual project  site  is analyzed  in  this  study, by  inputting 
all precast component types into a grade-clustered total 
production time spreadsheet. Through this spreadsheet, 
the total production time and component production 
complexity of  each  components  can be  identified accu-
rately and clearly. The decision making and management 
teams at the precast concrete plant can plan the detailed 
resources scheduling below according to the above-men-
tioned project duration.

Table 9. The production time of the column component of Big Mall project 

Component Section (cm) Embedded 
component quan. 

Other type embedded 
parts quan. 

Quan. of the pipe 
penetration sleeve Component quan. 

column

100×100×250 4 2 0 96
100×100×250 4 4 0 56
100×100×250 4 2 1 20
100×100×450 4 2 0 62
100×100×450 4 6 0 22
100×100×450 4 3 1 12
100×100×450 4 4 1 8
110×110×250 4 2 0 36
110×110×250 4 4 1 8
110×110×350 4 2 0 38
110×110×350 4 6 0 26
110×110×650 4 2 0 24
110×110×650 4 2 1 6

Section: width×depth×length

Table 10. The production time of the girder component of Big Mall project 

Grading of the 
manufacturing 

complexity

Embedded 
components

Other type embedded 
parts quan.

Pipe penetration 
sleeve

Average production 
time Quantity Percentage Production 

time (min)

Grade 1 4 < 2 0 239.91 208 43.61% 49,901

Grade 2 
4 3~5 0 295.50 45 9.43% 13,297
4 0 1 295.50 0 0% 0
4 1~2 1 295.50 43 9.01% 12,706

Grade 3 

4 6~8 0 338.79 67 14.05% 22,698
4 0 2~3 338.79 0 0% 0
4 3~5 1 338.79 42 8.81% 14,229
4 1~2 2 338.79 0 0% 0

Grade 4 

4 > 8 0 382.68 0 0% 0
4 > 6 1 382.68 0 0% 0
4 0 > 4 382.68 0 0% 0
4 > 3 2 382.68 28 5.87% 10,715
4 > 1 3 382.68 44 9.22% 16,837

Total 477 100% 140,386
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1. Manpower: (1) Demand and allocation of project 
engineers. (2) Related technical personnel alloca-
tion can be divided into common personnel and 
professional technicians. Common personnel: work-
force targeted for mold cleaning and assembly, steel 
cage hoisting and so on. Professional technicians: 
workforce responsible for the layout of embedded 
parts, marking and layout of steel parts, component 
maintenance and so forth.

2. Planning of mechanical equipment and machineries: 
Bridge/overhead crane,  cable  crane,  steel bending 
machines and others.

3. Material planning: (1) Total concrete amount is cal-
culated and daily concrete demand is hence de-
duced. This enabled decision makers to identify if 
the concrete supplied within the concrete plant is 
sufficient. (2) Material amount related to production: 
the production scheduling of the embedded parts 
and manufacturing tools.

4. Factory area: Planning and setup of the production 
and storage areas.

5. Steel mold amount planning: Plan the steel mold 
quantity according to the progress demand of each 
project and the production area.

9. Conclusions 
This study aimed at enhancing all related resources plan-
ning and utilization of precast concrete plants. The com-
ponent production complexity clustering of the structural 
components in precast building was identified specifically 
for main beam, minor beam and column. This study first 
reviewed past literatures and gathered critical information 
of precast concrete plants in Taiwan over the last decade. 
These data included the operation duration for each pro-
duction process involved for the structural components and 
the basic attributes of each projects. Through the clustering 

outcome from SIP algorithm, the structural components of 
precast structures, such as main beam, minor beam, col-
umn and other components, were significantly clustered 
into four populations in terms of component production 
complexity. The  required production  time and difference 
between each populations of the structural components 
are clearly presented in the tables above. Even though 
the use of SIP algorithm is an effective and successful ap-
plication, we have considered it as a minor contribution 
compared with the major novelty contributions as follows. 
Therefore, the research major novelty and contributions 
lie in the elaboration associated with: (1) the component 
production complexity of precast structural body and dif-
ference  in production  time,  reasonably beneficial  to  the 
management operation of precast concrete plants, such as 
the plant prearrangement prior to order acquisition, sub-
sequent progress tracking, and management planning; (2) 
the real-life precast concrete plant industry that gives sug-
gestions for manpower allocation, material planning, fac-
tory configuration, and steel mold planning; (3) rapid com-
putation for precast component production time for entire 
structural components in the new project. This could serve 
as an important reference for the optimal allocation of 
manpower, machineries and equipment, in order to push 
the production process in to optimal operation mode. 
The research limitation and suggestions for future work 
are highlighted as follows. The study does not deal with la-
bor cost control that has always been one of the key issues 
of precast concrete plant management. This can also be 
integrated with the clustering outcome of the component 
production complexity from this study. Through resource 
leveling assessment, the overtime issue of labors and the 
optimal model of manpower dispatch can be investigated 
in order to achieve labor cost control. The research also 
investigates only on beam, minor beam, and column com-
ponents. It can be further extended to the component pro-
duction complexity clustering investigation of wall panels, 

Table 11. The production time of the beam component of Big Mall project 

Grading of the 
manufacturing 
complexity

Embedded 
components

Other type 
embedded 
parts quan.

Pipe 
penetration 
sleeve

Average 
production 
time

Quantity Percentage Production time 
(min)

Grade 1 4 < 2 0 216.00 101 43.72% 21,816
Grade 2 4 3~5 0 273.20 61 26.41% 16,665

4 0 1 273.20 0 0% 0
4 1~2 1 273.20 17 7.36% 4,644

Grade 3 4 6~8 0 318.3 6 2.60% 1,909
4 0 2~3 318.3 0 0% 0
4 3~5 1 318.3 4 1.73% 1,273
4 1~2 2 318.3 0 0% 0

Grade 4 4 > 8 0 367.9 0 0% 0
4 > 6 1 367.9 12 5.19% 4,414
4 0 > 4 367.9 0 0% 0
4 > 3 2 367.9 20 8.66% 7,358
4 > 1 3 367.9 10 4.33% 3,679

Total 231 100% 61,760
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balcony panels, staircase, lattice beam and other structural 
forms, aiming to further improve the component produc-
tion operation of the entire precast structure. For those ex-
tremums, follow-up studies are suggested working on this 
matter and tries to figure out the association between the 
orders and production processes. It could explore further 
useful information for the precast construction practice. To 
bolster the theoretical contributions, it is recommended to 
conduct thorough comparisons with other theories and 
algorithms. Such comparative analyses can provide more 
robust support for the research findings. Moreover, a ho-
listic approach to comparison, encompassing not only pre-
cast product processes but also considering cost data and 
manpower allocation, would yield comprehensive insights. 
This multifaceted comparison has the potential to signifi-
cantly enrich  the  study’s  value, benefiting both  the aca-
demic community and practical practitioners in the field. 
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