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Introduction

In order to ensure that rail infrastructure provides an ad-
equate level of service it is necessary that rail managers 
execute interventions to counter the deterioration caused 
by use and by slow environmental deterioration process, 
such as the corrosion of the reinforcement in concrete 
bridges. Since the execution of interventions normally 
results in the disruption of service it is beneficial to try 
to group interventions in a way to minimize this disrup-
tion. When multiple rail managers are involved, as is the 
case for multi-national rail corridors (e.g. Prorail in the 
Netherlands, DB in Germany, SBB and BLS in Switzer-
land and RFI in Italy for the Rotterdam-Genoa freight 
corridor) it is therefore useful for all involved organiza-
tions to agree on time to execute interventions, even if it 
is not known which type of intervention, if any will be 
executed at that time. This would most likely improve 
the coordination of interventions on multiple parts of the 
corridor, which would result in both lower intervention 
costs and lower service disruptions (Higgins et al. 1999; 
Grimes, Barkan 2006).

Given the inherent uncertainty associated with the 
conditions of rail infrastructure (e.g. tracks, bridges), an 
intervention window must be fixed in the future without 
knowing exactly the types of interventions to be executed 
on the infrastructure components. This decision will only 
be made as the time of intervention draws close and more 
condition information is known. Previous work has indi-
cated that this is possible using a real options approach, 

such as proposed by Zhao and Tseng (2003) and Santa-
Cruz and Heredia-Zavoni (2011) in other civil engineer-
ing applications. 

Previous research on the use of real option ap-
proaches has been focused mainly on the construction 
of new infrastructure. Some examples include: the con-
struction of a new airport (Smit 2003), of a high-speed 
passenger train system (Pimentel et al. 2012), of an elec-
tricity distribution network (Agusdinata 2005), and of a 
new addition to an existing highway network (Zhao et al. 
2004) or in the development construction projects in gen-
eral (Ford et al. 2002). There has been little research on 
the use of real option approaches for the maintenance of 
existing infrastructure and none was found for the main-
tenance of multi-national rail corridors. For maintenance 
of existing infrastructure (Santa-Cruz, Heredia-Zavoni 
2011) provided an example of how a real options ap-
proach could be used for the maintenance of offshore 
structures. Although no published research was found on 
the use of real options approaches in the maintenance of 
rail infrastructure, there has been on planning optimal 
maintenance interventions for rail infrastructure (Zoete-
man 2001; Patra 2009; Pimentel et al. 2012).

The real options approach presented in this paper 
is based on an adaptation of the Black and Scholes dif-
ferential equation model used to value European call op-
tions in financial engineering (Black, Scholes 1973). It 
is demonstrated by determining the optimal intervention 
window for infrastructure in a fictive rail corridor. 



Although certainly not without administrative hur-
dles, the fixing of optimal intervention windows (OIW) 
for freight corridors, or parts of freight corridors, would 
move countries in a direction that would reduce interven-
tion costs and service disruptions increasing the compet-
itiveness of rail in Europe. This is in line with Directive 
2012/34/EU (2012) which aims to reduce problems as-
sociated with co-ordination and establish a single Euro-
pean railway area. Substantial coordination has already 
occurred with respect to scheduling trains on and oper-
ating European rail corridors (EUROCOM 2008; OECD 
2005; Ghijsen et al. 2007; DG-MOVE 2011).

The remainder of this paper is consists of five addi-
tional sections. Section 1 contains a literature review, in 
which the limitations of the state-of-the-art for mainte-
nance of rail infrastructure are discussed. Section 2 con-
tains the formulation of the Black and Scholes (1973) 
real option model used. Section 3 and 4 contain an ex-
ample and a sensitivity analysis on the results to illustrate 
how the methodology can be used and how sensitive it 
is to variations in the value of numerous key parameters, 
respectively. The last section contains the conclusions 
and recommendations. 

1. Background

Due to the development of computerized decision sup-
port systems (Zoeteman 2001; Crozet 2004; Caetano, 
Teixeira 2013), there has been an increasing focus in re-
search on: 

 – The development of probabilistic models to improve 
the prediction of future infrastructure condition, e.g. 
the prediction of the deterioration of rails (Zhang 
et al. 2013), switches (Kaewunruen, Remennikov 
2008), ballasts and sleepers (Zhao et al. 2006), and 
track geometry (Guler et al. 2011).

 – The determination of the reliability, availability, 
maintainability, and safety of rail infrastructure ob-
jects (Lyngby et al. 2008; Rhayma et al. 2013; Mac-
chi et al. 2012), as well as for networks (Caetano, 
Teixeira 2013; Macchi et al. 2012; Podofillini et al. 
2006). 

 – Determine optimal time to intervene on infrastruc-
ture. Examples of the later includes the determi-
nation of optimal intervention strategies for track 
maintenance on a railway network (Zhang et al. 
2013; Zoeteman 2001), for ballast tamping and re-
newal (Zhao et al. 2006).
Although all of this work, if implemented, will help 

rail managers decide when to intervene on rail infrastruc-
ture, it can only indirectly be used to determine the opti-
mal time to intervene if it is not known what intervention 
is to be executed; something of utmost importance when 
determining OIWs for multi-national rail corridors, to 
minimise costs and service disruptions. 

By using a real option approach it is possible to de-
termine the OIW. Real option approaches were initially 

developed in the field of financial engineering, but have 
been increasingly used in the evaluation of engineering 
problems (Santa-Cruz, Heredia-Zavoni 2011; Smit 2003; 
Chiara et al. 2007). It is often said that real option ap-
proaches are often used to value the flexibility of systems 
to adapt to uncertain changes of demand. In our case the 
system being investigated includes the infrastructure and 
the rail managers, whereas the flexibility of the rail man-
agers is being incorporated directly into the problem. The 
flexibility is considered to have a value, which is similar 
to the value of an option in the field of finance. This 
value varies as a function of the volatility of the values 
of uncertain parameters, e.g. the condition of the tracks 
and the price of fuel, and the discount factor, that affect 
which decision will be made, e.g. the type of intervention 
to be executed. 

2. Real option model

The model used in the real option approach, herein re-
ferred to as the real option model, is developed to deter-
mine an OIW during a finite time period, T, for an exist-
ing railway link. The OIW is considered to occur at time 
z. At time z the rail manager will decide which type of 
intervention will be executed. The types of intervention 
include the “do nothing” intervention. The rail manager 
is interested in determining the intervention window that 
will maximize total expected net benefits, i.e. the opti-
mal z on interval [0, T]. Net benefits are the difference 
between the money obtained from operating the rail link 
minus the costs due to routine maintenance, operation, 
and more substantial interventions, i.e. the ones executed 
at z. 

The net benefit varies over time due to fluctuations 
in all of these. It may decrease due to deterioration of the 
infrastructure which may lead to increases in the number 
of service disruptions, e.g. due to switch failures, which 
need to be repaired immediately and may result in fi-
nancial penalties. It may increase due to increases in the 
amount of goods to be shipped across the rail link. 

Some of the lowest net benefits per time unit (e.g. 
per month or per year) will be incurred in the time unit 
of execution of an intervention at z, whereas some of 
the highest net benefits per time unit will be incurred 
in the time immediately following the execution of an 
intervention, e.g. it is expensive to replace existing tracks 
with new ones, but the number of smaller realignments in 
the subsequent time units will be drastically lower than 
before. 

In the real option model used here, is similar to the 
so called “European call option” in financial engineering, 
where at a predetermined time z, the holder of an option 
is allowed to make a decision on whether the option will 
be exercised, but not the obligation to do so (Zhao et al. 
2004; Hull 2011).

Following table lists notations used in the mathe-
matical formulation of the RO model (see Table 1).

Journal of Civil Engineering and Management, 2016, 22(1): 38–46 39



Table 1. Notations

Symbol Meaning
B(t) Revenue – operating costs in time t
C Cost to execute an intervention of type d

Ni(t) Quantity of transported goods i to time t
O(t) Operating cost to time t 

R(t) Reliability of the rail link, which is calculated 
through the reliability of the objects in the link.

S(t) Annual profit to time t

Wj 
Cost of type j when an adequate level of service is 
not provided

T Investigated time period
d Intervention type
d* Reference intervention type (e.g. do-nothing)

hi(t) Price of transported good i 
z Time to execute an intervention z ∈ [0, T] 
t Running index of time t ∈ [0, T] 
ρ Discount factor (e.g. interest rate)

ρi,h
Standard deviation of the change in the value of 
hi(t)

µi Drift parameter

ωi,t 
Parameter used to model uncertainty of hi(t) using 
Wiener process with zero mean and standard 
deviation of ,i h dtσ .

In our case, the objective function is to maximize 
net benefit: 

*

0

(0 : ) = (0, ) ( , )
z T

t z d t

z

S T S t e dt e S t T e dt−ρ −ρ⋅ −ρ+ +∫ ∫
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z d d t
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   −     

∫ . (1)

In Eqn (1), the first term represents net benefit from 
time 0 until the end of the time in which an intervention 
is executed, the second term represents the net benefit 
from the end of the time in which an intervention is exe-
cuted until the end of the investigated time period if the 
“do nothing” intervention is executed, and the third term 
represents the difference in net benefits from the end of 
the time in which an intervention is executed until the 
end of the investigated time period. 

The superscript d denotes intervention type (d ∈ D), 
where do nothing is also seen as an intervention type and 
D is a set of intervention types1. 

It is implied in the third term of Eqn (1) that if the 
execution of intervention d is more beneficial than the 
execution of intervention d*, i.e. that its execution will 
result in higher net benefits, that intervention d will be 
executed. Otherwise, intervention d* will be executed. 

The net benefit ( )dS t  is given by: 

 ( ) = ( ) ( )d d dS t B t C t− ; (2)

1 The intervention considered here is the intervention on the link and 
includes the interventions to be executed all objects of the link.

 If t = z, ( ) ( )d dC t C z= , otherwise, it equals to 0. 

The total net benefit when a rail manager has the 
possibility at z to decide whether or not to execute in-
tervention d and the decision strategy in which there is 
the possibility at z to decide whether or not to execute 
intervention d*, (denoted as ∆) at time 0 (analogous to 
the payoff in European call option) is given by:

 
[ ] , ( )( ), ( , ) =

dz S tT z
Tz S z T e g Z−ρ −  ∆  

 
 , (3) 

where: , ( )dz S t
Tg Z 

 
 

  is the expected value of:

 
*( ) = ( , ) ( , ),0d dg x Max S z T S z T −  

, (4) 

where the function g(x) represents an abstract representa-
tion of the third polynomial in Eqn (1).

The solution for Eqn (3) has been extensively de-
scribed in numerous references on applying Black and 
Scholes formulation (Hull 2011; Iacus 2011) and a sum-
mary of it is given in the Appendix of the paper. The 
total net benefit can be determined using the following 
equations:

 
*( )
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where: ( )xΦ  is the cumulative distribution function for 
normal standard distribution: 
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S is calculated in each time unit as:

 ( ) = ( ) ( )S t B t C t− , 

where: 

{ }
=1
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I
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i
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(9) 

and C(t) takes the value of 0 if no intervention is execut-
ed. This is analogy to Eqn (2) but use for any time units 
with and without intervention as an explicit form. Ex-
planations of each of the variables are given in Table 1.

Here, without loss of generality, the superscript and 
subscript are ignored. 

The values of each of these variables can be mod-
eled as uncertain. In many cases, they can be modeled 
as a geometric Brownian motion (Hull 2011). For ex-
ample, if the revenue per amount of transported goods 
is uncertain: 

 , , ,( ) = ( ) ( )i i h i i h i i tdh t h t dt h t dµ ⋅ ⋅ + σ ⋅ ⋅ ω . (10)
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The expected value of uncertain variables given the 
value at time t, shown here using h(t), is given by: 

 [ ( )] = ( ) uii iE h t u h t eµ ⋅+ ⋅ , (11) 

where u  is the length of time between t to t + u.
It is assumed that the value of T is chosen so that 

the salvage value of the objects or the condition of the 
objects at T can be neglected. 

In order to find the optimal z (as a variable of 
Eqn (1)), i.e. the OIW, it is required to solve the set of 
Eqns (3) to (8). These equations, which involve the in-
tegral of an embedded stochastic process,  can be solved 
using the analytical and numerical approach suggested by 
Black and Scholes (1973) and Itō (1951). Although these 
equations can be solved to determine the OIW directly, 
they can also be used to run simulations to illustrate how 
the “value” of the intervention window changes with its 
timing. This intervention window value corresponds with 
the “option value” used in financial engineering. The en-
tire process of calculation can be simplified in following 
flowchart (Fig. 1).

In the flowchart, equations shown in the boxes 
correspond to the explicit mathematical form shown in 
Eqn (1). ( )Diff z  is used to represent the Max{} function 
of the third polynomial. The intervention window with 
the highest value is the OIW. 

3. Example
3.1. Description
The real option approach is demonstrated for a possible 
future situation where the rail managers of a trans-Euro-
pean rail corridor are asked to decide on a period of time 
where they will reduce the traffic on the corridor and dur-
ing this time execute sufficient preventive interventions 
so that they guarantee service until the end of the inves-
tigated time period. This situation is one that is likely 
with the increased integration required by the European 
Union (Directive 2012/34/EU 2012; EUROCOM 2008; 
OECD 2005). The example is fictive but realistic. It is 
a high level example to ensure comprehension without 
being lost in technical details. The intervention window 
is to be fixed immediately following an agreement to fix 
an intervention window.

It is assumed that the rail link can be represented 
as consisting of 10 sections2, which could be further di-
vided. It is assumed that they reliability of each section 
can be modeled using the Weibull function with the val-
ues of the scale and shape parameters shown in Table 2.

Table 2. Values of reliability parameters

Before intervention After intervention

Section
Scale Shape Scale Shape

λ k λ k
1 128 3.264 122 2.652
2 125 3.200 120 2.600
3 115 2.944 110 2.392
4 131 3.360 126 2.730
5 129 3.296 124 2.678
6 124 3.168 119 2.574
7 138 3.520 132 2.860
8 119 3.040 114 2.470
9 121 3.104 116 2.522
10 133 3.424 128 2.782

The reliability of the link, in each time unit (tu), is 
then given by:

 

10 10

1 1
( ) ( ) exp .

mk

m
mm m

tR t r t
= =

 
= = − 

λ 
∏ ∏

 
(12)

In Eqn (12), m represents index of each rail section 
in a link. The parameters λ

 
and k

 
are scale parameter and 

shape parameter of the Weibull function used to model 
the change in reliability over time. Values of these pa-
rameters can be estimated using historical data (Macchi 
et al. 2012).

The interventions to be executed in the interven-
tion window are substantial maintenance interventions, 
e.g. replacing the tracks. Routine maintenance, e.g. track 

2 A rail section includes rail track components.

Fig. 1. Flowchart of the RO model
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alignment, is done on a regular basis and being consid-
ered as a part contributing to the operating cost. It is 
assumed that the amount of routine maintenance required 
increases as a function of time since the start of the in-
vestigated period and the last intervention window. These 
increasing costs are expressed as through decreasing reli-
ability of the link. For example, the longer the time since 
the start of the investigated time period the higher the 
probability that the tracks will need a realignment that is 
considered to be routine maintenance. Each realignment 
costs the same amount of money. In other words, the rail 
link has an increasing failure rate. Failure here of course 
means that an adequate level of service is not provided 
and not necessarily something catastrophic.

Once the intervention window arrives the rail man-
ager has to decide which intervention to execute. In this 
example it is assumed that the two possible intervention 
types are: 

 – A renewal intervention, where the link is restored in 
a way that its reliability, immediately following the 
intervention is 100% and starts to decrease again in 
following time units, and

 – Do nothing.
This decision is then made dependent on the value 

of the uncertain variables when the intervention window 
arrives. In this case, when the intervention window is in 
tu 46 the amount that can be charged to transport goods 
must be above 21 mus.

It is assumed that the interventions to be executed 
will take no more than one unit of time. The task of the 
rail manager is to determine the optimal intervention 
window within an 80 tus time period. It is assumed that 
the reliability of the rail link at the end of the 80th tus is 
not important and therefore no salvage value is required 
in the analysis.

The values of all variables used in the model are 
given in Table 3.

Table 3. Model’s input parameters

Symbol Value Unit
Cd 4×106 mus

N(t = 0) 3×105 units
Od (t) 5×105 mus

T 80 tus
W 5×105 mus
d Renewal NA

d * Do-nothing NA
h(t = 0) 15 mus

ρ 2 %
σ 0.2 NA
µ 0.0003 NA

Note: mus stands for monetary units; tus stands for time units; 
subscript i and j shown in Table 1 are omitted for general 
representation (e.g. one type of good N and one type of cost 
W incurred).

It is important to note that there is no attempt in this 
paper to suggest the values of discount rate, drift parame-
ters, the standard deviations in the Wiener process, or the 
values of reliability of a rail link to trigger intervention. 
The values selected are only to chosen to allow an illus-
trative example to be conducted. 

3.2. Results
The value of an intervention window at each tu z to the 
rail manager (Eqn (3)), i.e. the value of being able to de-
cide in tu z whether or not a renewal intervention is to be 
executed or nothing is to be done is given in Figure 2. For 
example, if the intervention window is in tu 46, the inter-
vention window has a value of 69.42×106 mus (point A 
in Fig. 2). This value is representative of the additional 
profit that would be possible for the rail manager when 
compared the situation where there was no possibility to 
execute a renewal intervention for the entire 80 tus. The 
value of total revenue if do-nothing strategy is defined 
from beginning till the end of the investigated period is 
170.23×106 mus, which is calculated as cumulative sum 
of the first two term in Eqn (1).

As can be seen from Figure 2, the maximum value of 
an intervention window is 69.42×106 mus, which occurs 
when the intervention window is in tu 46. The 69.42×106 
mus is the difference between the expected benefits if 
there was no intervention window, and therefore no inter-
vention would be executed for the entire 80 tus, and the 
expected benefits if the intervention window is in tu 46 
and the rail manager makes the best decision at that time 
as to whether or not an intervention should be executed.

The optimal intervention window depends on the 
expected amount that can be charged for transporting 
goods. It can also be seen in Figure 2 that if the interven-
tion window was moved earlier (e.g. to tu 20 (point C)) 
or later (e.g. to tu 65 (point B)) that the value of the 
intervention window would be less. 

As the intervention window approaches t = 0, its 
value decreases because the increase in knowledge with 
respect to the price of transporting goods decreases. In 
other words, it is less and less likely that the price of 
transporting goods will be known with enough certainty 
to justify the execution of a rehabilitation intervention. 
Between t = 0 and t = 10 the value of the intervention 

Fig. 2. Values of intervention windows
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window is 0 (Fig. 2) due to the maximum sign in the 
third polynomial of the objective function (Eqn (1)), i.e. 
there is no value of transporting goods that will justify 
the execution of a rehabilitation intervention. 

As the intervention window approaches T its value 
decreases because there is insufficient time in the inves-
tigated period to recoup the money spent on the rehabil-
itation intervention if executed.

4. Sensitivity analysis

The values of the discount factor ρ, parameters of ge-
ometric Brownian motion µ and standard deviation of 
the price of transporting good, σ, could have a signifi-
cant effect on the value of the intervention window and 
therefore the optimal time to have an intervention win-
dow. The effect of variations in their values was investi-
gated using the ranges of values shown in Table 4. The 
ranges selected were considered to be representative of 
the largest variations that one would expect in practice. 
The value and z of the optimal intervention window are 
shown in Figures 3, 4 and 5 for the different values of 
the discount factor, drift parameter and standard devia-
tion, respectively. 

Table 4. Ranges of values used in the sensitivity analysis

Parameter

Minimum Maximum

Value
Percentage 
of initial 
estimate

Value
Percentage 
of initial 
estimate

ρ 1% N/A 10% N/A
µ 0.0001 –85 0.01 +85
σ 0.10 –70 0.60 +70

It can be seen from Figures 3–5, that the value of 
the intervention window and the optimal intervention 
window: 

 – Depend on the value of discount factor. The higher 
the value of the discount factor the higher the value 
of the intervention window and the earlier the op-
timal intervention window occurs (Fig. 3). For ex-
ample, if the discount factor increases by 0.01, the 
value of the intervention window increases 5×106 
mus, and if the discount factor increases by 0.02, 
the value of the optimal intervention window moves 
forward in time by approximately one tu. This is 
logical because as the value of the discount factor is 
increased the value of future benefits are decreased 
and, and therefore, it is better to have the interven-
tion window earlier than later. 

 – Are not significantly dependent on the value of the 
drifting parameter, i.e. the base rate of increase in 
the price of transporting goods. The higher the value 
of the drifting parameter the higher the value of the 
optimal intervention window and the later the op-
timal intervention window occurs. These changes 
are, however, relatively small. As can be seen in  

Figure 4, if the value of the drifting parameter in-
creases by 1×10–4 there is an increase in the value 
of the intervention window by approximately 
1×106 mus, and the time of the optimal intervention 
window increases by only approximately one unit of 
time (e.g. one year). This is logical because as the 
rate of price increase increases it becomes increas-
ingly beneficial to have the possibility to execute an 
intervention at a later time.

 – Depend greatly on the standard deviation of the 
price of transporting goods (Fig. 5). The higher the 
value of the standard deviation the higher the value 
of the optimal intervention window and the later the 

Fig. 3. Values of optimal intervention windows for different 
values of the discount factor

Fig. 4. Values of optimal intervention windows for different 
values of the drift parameter

Fig. 5. Values of optimal intervention windows for different 
standard deviations of the price of transporting goods
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optimal intervention window is. This is logical be-
cause as the standard deviation increases there is an 
increased uncertainty and, therefore, more value in 
waiting to determine whether or not to execute an 
intervention. This effect would continue so until one 
was sufficiently close to the end of the investigated 
time period that the benefits of executing an inter-
vention would no longer outweigh the costs. 

Conclusions

A real option approach to the determination of the opti-
mal intervention window for a rail manager was present-
ed. The approach is based on an adaptation of the Black 
and Scholes (1973) differential equation model used to 
value European call options in financial engineering. It 
is demonstrated by determining the optimal intervention 
window for a rail manager who manages infrastructure 
in a fictive rail corridor. The presented approach is one 
that would be useful in the management of rail infra-
structure that belongs to a multi-national rail corridor 
where multiple railway organizations are responsible for 
maintenance. Once the value of all possible intervention 
windows for each rail manger were determined, the rail 
managers would be better positioned to negotiate with 
each other to select the intervention window(s) for the 
freight corridor. The selection of this intervention win-
dow by the rail managers would ensure that both inter-
ventions and train schedules could be better planned. The 
former would result in reduced costs by being able to 
combine interventions on multiple infrastructure objects. 
The latter would result in a reduction of disruption to 
users of the freight corridor. This is in line with Direc-
tive 2012/34/EU (2012) which aims to reduce problems 
associated with corrdination and establish a single Euro-
pean railway area. 

As the selected intervention window would cer-
tainly not be the one that is optimal for all rail managers 
it is feasible that rail managers for which it is not optimal 
are, in some way, compensated for being forced to select 
a non-optimal intervention window. The amount of this 
compensation could be related to the difference between 
the exact interventions executed, and ones that would be 
executed if the rail manager was not constrained by the 
intervention window.

Future research work should be focused on applying 
this approach to a real world example, with particular 
focus on the administrative hurdles to be overcome, the 
complexity of dealing with many infrastructure objects 
that comprise a freight corridor, the complexity of train 
schedules and the determination of appropriate levels of 
compensation for rail managers who accept to execute 
interventions, which are for them, at non-optimal time. 
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Appendix 

The proof of Black and Scholes equation
The proof of Black and Scholes equation has been shown 
extensively in numbers of books on real option. For ease 
of understanding a brief description of the valuation of 
the European call option is given here. It is an abbrevi-
ated version of that given in Iacus (2011). 

Let Bz be a standard Brownian motion and define 
x
zB  as Brownian motion that starts from x at time 0, 

which is given by: 

 =x
z zB x B+ . (A.1)

To obtain Brownian motion that starts at x at time z, 
i.e. translated Brownian motion is used: 

 
, =z x

T zTB x B B T z+ − ≥,
 T ≥ z. (A.2)

The translated geometric Brownian motion can then 
be defined as: 

 

, , ,= ,
T T

z x z x z x
u u uT

z z

Z x Z du Z dB+ µ + σ∫ ∫
 

(A.3) 

which is a geometric Brownian motion which is at x at 
time z. 

The process { }, ,z x
TZ T z≥  satisfies the stochastic 

differential equation:

 
, , ,=z x z x z x

TT T TdZ Z ds Z dBµ + σ , (A.4)

with the following explicit solution: 

( ) ( ), 21= exp .
2

z x
T zTZ x T z B B

  µ − σ − + σ −  
    

(A.5) 

If ( )T zB Bσ −  is rewritten as: 

 ( ) = ,T zB B T z Yσ − σ − ⋅  (A.6) 

with = ( ) / (0,1)T zY B B T z− − ≈ Φ . 

Then ,( )z x
Tg Z  can be calculated as: 

{ } ,ln,max ,0 = max ,0
z xZz x TTZ K e

   − =      
 

 
(A.7)

1 2ln ( )( )
2max ,0

x T z T z Y
e K

+ µ− σ − +σ − ⋅   −  
    

 .
 

(A.8)

The benefit (payoff of a European call option) is 
zero if ,z x

TZ  is lower than the value of K (strike value of 
the European call option) and hence the expected value 
above will be zero as well. If only the expected value of 
the positive trajectories are calculated, than:

 

1 2ln ( )( )
2max ,0 = 0

x T z T z Y
e K

+ µ− σ − +σ − ⋅ 
− 

  
.
 

(A.9) 

If

 
1 2ln ( )( ) log2 =

x T z T z Y Ke K e
+ µ− σ − +σ − ⋅

≤ , (A.10) 

or, better, if:

21log ( )( ) < log
2

x T z T z Y K+ µ − σ − + σ − ⋅ ,
 

(A.11) 

then: 

 

21log log ( )( )
2<

K x T z
Y

T z

− − µ − σ −

σ −
,
 

(A.12) 

which can be rewritten as 2<Y d− , where:
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( )2

2

1ln
2=

x T z
Kd

T z

   + µ − σ −   
   

σ −
.
 

(A.13) 

Thus: 

 
{ } { }{ },

> 2
max ,0 = 1z x

T Y dZ K Y −
 − =  

 
(A.14) 

 
1 2ln ( )( )
2

2

( )
x T z T z y

d

e K y dy
∞

+ µ− σ − +σ − ⋅

−

 
 − φ
 
 

∫
   

 

2 ( )
( ) 2

2 2

( ) ( )
T z T z yT z

d d

xe e y dy K y dy
σ −∞ ∞

− +σ − ⋅µ −

− −

φ − φ∫ ∫ , 

where ( )yφ  is the density function of the standard Gauss-

ian random variable, i.e 
2 2

2 2( ) = / 2 2
y y

y e
− −

φ π π . By 
symmetry of the Gaussian density:

2 2 2
2

( ) = ( > ) = ( < ) = ) )
d

y dy P Y d P Y d d
∞

−

φ − Φ∫
 

(A.15) 

and then: 

{ },

2 ( )
( ) 2

2 2

max ,0

( ) ( )

z x
T

T z T z yT z

d d

Z K

xe e y dy K y dy
σ −∞ ∞

− +σ − ⋅µ −

− −

 − = 

φ − φ∫ ∫



.

 

(A.16) 

If the variable of integration in the first integral is 
changed to =w y T z− δ − :

 

2 ( )
2

2

( )
T z T z y

d

e y dy
σ −∞

− +σ − ⋅

−

φ∫ .
 

(A.17) 

Then the following is obtained: 
2 2

2

( ) ( )( )
2 2

1
2

T z w T zT z w T z

d T z

e e dw
σ − +σ −∞

− +σ − ⋅ +σ − −

− −σ − π∫ ;

  
 

2 2 2 2

2

1 1 1( ) ( ) ( )
2 2 2

1
2

T z T z w T z w T z w T z

d T z

e dw
∞

− σ − +σ − ⋅ +σ − − − σ − − σ −

− −σ − π∫ ;
  

 2

2

1
2

2

w

d T z

e dw
−∞

− −σ − π∫ ;
  

(A.18) 
 

( ) ( )2 12 ( )P Y d T z P Y d T z d> − −σ − = < + σ − = Φ .

Together, Eqns (A.16) become: 

{ },

1 2 ( )( ) 2 2

2

max ,0

( ) ( )

z x
T

T z T z yT z

d

Z K

xe e y dy K d
∞

− σ − +σ − ⋅µ −

−

 − = 

φ − Φ∫



 
( )

1 2( ) ( )T zex d K dµ − Φ − Φ .                                       (A.19)

Therefore, if that: 

 
[ ] ( ),( ), = z xT z

Tz x e f Z−ρ −∆  , (A.20) 

then: 

 [ ] ( )
1 2, = ( ) ( )T zz x x d e K d−ρ −∆ Φ − Φ . (A.21)
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