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1. Introduction
The construction industry has long been plagued by a sig-
nificantly high number of work-related fatalities, as shown 
in Figure 1. Over the past nine years, Taiwan alone has 
reported 2,879 deaths, with nearly half occurring in this 
sector (Occupational Safety and Health Administration, 
2020). Human error accounts for approximately 80% of 
these accidents, and there is a notable delay in recogniz-
ing hazards, with 57% of dangers not identified promptly 
(Garrett & Teizer, 2009). These statistics underscore the 
urgent and pressing need for enhanced safety measures 
and innovative technologies to mitigate risks.

The high accident rates in construction highlight the 
insufficiency of current safety protocols and the urgent 
need for more effective hazard recognition strategies. 
This paper addresses these deficiencies by exploring the 
potential of hybrid brain-computer interfaces (BCIs) that 
integrate electroencephalography (EEG) and eye-tracking 
technologies (Liu et al., 2024). These technologies offer 
real-time monitoring and feedback capabilities that sig-

nificantly improve construction site hazard detection and 
response times.

EEG monitors brain activity to assess cognitive states 
such as alertness or fatigue, which are critical for accident 
prevention (Huang et al., 2024). Concurrently, eye-track-
ing technology monitors gaze direction to ensure work-
ers remain focused on potential hazards (Larsen et al., 
2024). Although these technologies have shown promise 
individually, their combined application in real-world con-
struction settings remains limited. Recent studies suggest 
integrating EEG and eye-tracking systems can significantly 
enhance hazard detection and safety responses in high-
risk environments (Cheng et al., 2022; Vortmann et al., 
2022). However, the widespread adoption of these systems 
in construction is lacking, and their full potential has yet 
to be realized.

This research addresses these gaps by advancing the 
development of wearable BCIs specifically designed for 
construction sites. Our approach synergizes EEG and eye-
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tracking data to improve situational awareness and hazard 
detection. We utilize machine learning (ML) models to an-
alyze EEG signals and eye movements, enabling construc-
tion workers to detect real-time safety, warning, or hazard 
signals. By building on Hans Berger’s foundational work 
in EEG technology and leveraging modern advancements 
in machine learning and eye-tracking accuracy (İnce et al., 
2021), this study proposes a novel solution to enhance 
construction site safety.

Reflecting on the foundational work by Hans Berger in 
EEG technology, which has been applied in various fields 
since 1929, from clinical research to marketing (Behzad-
nia et al., 2017; Vecchiato et al., 2011), our study builds 
on a rich history of technological innovation. The detailed 

structure of the brain, with its two hemispheres and four 
lobes – frontal, parietal, occipital, and temporal – is inte-
gral to understanding how these tools can be applied ef-
fectively in hazard recognition (Bui & Das, 2022), as shown 
in Figure 2. Modern EEG caps, designed using the Interna-
tional 10–20 system, ensure precise electrode placement 
for comprehensive data collection (Klem et al., 1961), as 
illustrated in Figure 3.

From 2017 to 2021, significant technological strides 
have been made, from Saghafi et al. (2017) real-time eye 
status detection with 88.2% accuracy to Noghabaei et al. 
(2021) application of machine learning to predict hazards 
with up to 98.6% accuracy in immersive environments. 
These advancements underscore the transformative po-
tential of integrating machine learning with EEG and eye-
tracking to enhance construction safety, promising a safer 
future for the industry.

2. Research method and data collection
2.1. Analysis tool
The analysis tool adopted in this study was the Waikato 
Environment for Knowledge Analysis (WEKA) (Hall et al., 
2009). WEKA was used to construct and compare models 
for onsite hazard recognition in the presence of potential 
construction site hazards. The details of the ML model pa-
rameters are provided in Appendix, Table A1. The model 
that best fits is recommended.

2.2. Machine learning
The study utilizes several established machine learning 
models to analyze data, each chosen for its specific ad-
vantages in addressing various aspects of construction site 
data, thereby enhancing our analytical precision and depth:

 ■ Decision Trees (J48): This model classifies data by 
generating a tree structure based on training data 
rules (Moore II, 1987).

Figure 1. Statistics on work-related deaths from Annual Labor Inspection Report

Figure 2. Structure of cerebrum

Figure 3. International 10–20 electrode system
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 ■ Bayesian Networks (BayesNet): Leveraging prob-
ability theory, this model assesses risks and makes 
predictions based on known conditions (Rosen & 
Krithivasan, 2012).

 ■ Artificial Neural Networks (ANNs): Inspired by 
biological neural networks, ANNs process inputs 
through multiple layers to produce outputs (McCull-
och & Pitts, 1943).

 ■ REPTree: Renowned for its efficient tree construc-
tion and reduced-error pruning, this is a variant of 
the traditional decision tree (Mohamed et al., 2012).

 ■ Logistic Regression: Adapting linear regression, this 
model classifies data into discrete categories (Hos-
mer Jr et al., 2013).

 ■ Support Vector Machines (SVM): SVMs classify data 
by mapping it into a higher-dimensional space to cre-
ate a separating hyperplane (Smola & Vapnik, 1997).

 ■ Random Forest: An ensemble of decision trees, this 
model is designed to increase predictive accuracy 
and robustness (Liu et al., 2021).

2.3. Model validation and  
error evaluation criteria
After establishing the models, their performance and ac-
curacy were compared. The reliability of the models was 
validated, and their errors were evaluated using cross-val-
idation and performance-evaluation indices.

2.3.1. Cross-validation

K-fold cross-validation was applied to test individual mod-
els or compare the stability of two or more prediction 
models. It is particularly suitable for small datasets and 
makes good use of the information contained in each data 
item (Wei, 2021). This approach randomly divides the data 
into K subsets that alternately serve as training and test 
sets. Ten-fold cross-validation was employed, where the 
same model was trained using ten subsets. During each 

round of training, nine of the ten subsets served as the 
training set; the remaining subset did not participate in 
training and served as the validation test set. Thus, in ten 
training rounds, there are ten errors from ten different val-
idation sets. The performance of the model is the mean of 
these errors. The model’s average accuracy and robustness 
(reliability) can be assessed using the mean and standard 
deviation of the loss function values from the ten rounds.

2.3.2. Classification evaluation indices

In all classification problems, a confusion matrix is gener-
ated. From this matrix, performance indices such as True 
Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN) can be calculated. Imbalanced class-
es were not observed because the datasets exhibited a 
somewhat normal distribution. Consequently, only the 
primary classification evaluation metric, namely accuracy 
 
  
 

TP+TN
TP+TN+FP +FN

, was employed to evaluate the predic-

tion error rates of the classification models (Gong et al., 2020).

2.4. Data collection and preprocessing
The primary objective of this study was to determine the 
relationship between on-site hazard recognition and the 
characteristics of brain activity and eye movements. During 
data collection, brain signals, eye movements, and hand 
button responses formed synchronous data, compensat-
ing for the inadequacies of single physiological responses, 
thereby enabling the assessment of participants’ safety 
awareness when viewing different hazardous workplaces. 
The participants were briefed on the experimental proce-
dure (Figure 4), which encompassed background informa-
tion about the participants, the experimental instruments 
and models, and the 120 pictures they viewed. Examples 
of construction site hazard photographs are provided in 
Figure A.1, illustrating hazardous conditions, and Figure 
A.2, depicting safe conditions in the Appendix.

Figure 4. Experimental procedure combining EEG signals and eye movement for hazard recognition in construction operations

20 construction site photos (60 sets) randomly shown

EEG-eye tracking experiment for hazard recognition 
in construction operations

70 participants remained after screening

Recruited 77 construction workers

Participants gave responses

Data collection

0 Safe
1 Warning
2 Danger

0 1 20 1 20 1 20 1 2
Tobii Tobii TobiiTobii

An eye tracker recorded 
various eye movement indices 

as participants looked at photos

EEG signals 
collected using a 

32-channel EEG cap
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2.4.1. EEG-eye tracking experiment

2.4.1.1. Details related to participant background  
and experiment instruments

The data analysis for this study was carried out on a par-
ticipant randomly selected from a pool of 70. This partici-
pant, a 52-year-old construction worker with 22 years of 
experience, evaluated 120 images and achieved an accu-
racy rate of 69.17% (83 correct responses and 37 incorrect 
responses). An in-depth examination of this case provides 
valuable insights into specific cognitive patterns and reac-
tions within hazard recognition scenarios.

Future research could involve a larger pool of partici-
pants to validate further and enhance these preliminary 
findings. This expanded approach would allow for a more 
thorough assessment of the hazard recognition model’s 
applicability across various demographics within the con-
struction industry, thereby improving its practicality and 
effectiveness in enhancing safety measures.

Figure 5 shows the instruments and models employed 
in the experiment. The device at the top is an EEG cap 
(Neuracle NeuSen W), and the one below is an eye tracker 
(Tobii X320). Figure 6 shows the distributions of the EEG 
channels of the EEG cap used in this study. Based on the 

International 10–20 system, the electrodes are positioned 
at Fp1, Fp2, F3, F4, Fz, FC1, FC2, FC5, FC6, T3, T4, C3, C4, 
Cz, CP1, CP2, CP5, CP6, P3, P4, Pz, P7, P8, PO3, PO4, PO7, 
PO8, O1, O2, Oz, A1, and A2, comprising 32 EEG channels.

2.4.1.2. Experiment images

Each participant was shown 60 sets of construction site 
photographs. As shown in Table 1, each set contains im-
ages of both hazardous and safe conditions. The hazards 
within these 60 sets were categorized into five groups: 
(1) electric shock, (2) falls, (3) collapsing frames, (4) falling 
objects, and (5) others. Table 1 details the risks identified 
in construction work environments, explaining the primary 
sources of construction hazards and the prevention prin-
ciples. Table 2 presents the descriptive statistics of the im-
age dataset according to hazard type.

Table 1. Construction operating risk recognition

Main 
impact Source of hazard

Electric 
shock

Electromechanical equipment, overhead high-
voltage lines, underground high-voltage lines, 
power supply equipment, damaged wires on the 
ground, and wet indoor operation ground

Falls Openings in floors, openings for elevators 
and pipelines, operations on temporary work 
platforms, lack of safety protection sheds at 
ground entrances/exits of construction elevators

Collapsing 
frames

Floor support frames, floorboards, construction 
frames

Falling 
objects

Lack of safety regulation compliance with safety 
ropes and hooks in lifting operations, mobile 
cranes, and lifting materials

Others Unorganized material placing, unremoved debris, 
insufficient warning signs, exposed rebar in slope 
support, workers not wearing safety helmets

2.4.1.3. Experimental procedure

Initially, 77 male construction workers were recruited. Af-
ter the screening, we excluded one participant whose EEG 
signals contained too many artifacts, which affected over 
50% of the results. Next, we released a project manager 
who was not an onsite worker. Finally, we dropped five 
participants whose validation test data needed to be more 
reliable. The final sample size of our experiment was 70 
participants, whose ages ranged from 21 to 60, with a 
mean of 42. 

During the EEG eye-tracking experiment, participants 
were presented with 60 sets (120 images) of 2D photo-
graphs depicting construction sites displayed in random 
order. They were required to determine the presence of 
hazards based solely on their prior experience. This design 
choice mirrors real-world conditions where construction 
workers rely on their instincts and expertise for hazard 
recognition. This approach ensures that the data collect-
ed reflects genuine, spontaneous responses to potential 
hazards, which is crucial for developing an effective haz-
ard recognition model suitable for realistic settings. Par-

Figure 5. Experiment instruments:  
a – EEG cap (Neuracle NeuSen W); b – Eye tracker (Tobii X320)

Figure 6. Diagram of EEG channels

a)

b)
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ticipants expressed their evaluations by pressing a button, 
classifying the conditions depicted in the images as safe, 
worthy of caution, or hazardous.

This setup, which purposefully refrained from inform-
ing or training participants about the labels of hazards 
before the experiment, was designed to elicit intuitive and 
unaided responses. This method is instrumental in assess-
ing workers’ natural proficiency and limitations in hazard 
recognition, providing valuable insights for developing tar-
geted training programs to address specific weaknesses.

The 120 photographs of the construction sites were 
shown to the participants in random order. Each test be-
gan with a blank white screen for 0.5 seconds, followed 
by a construction site image for a maximum of 3 seconds, 
another blank white screen for 0.5 seconds, and then the 
final response screen. The participants responded by in-
structions (0 indicating safe, 1 indicating worthy of caution, 
and 2 indicating hazardous), as shown in Figure 7. Each 
participant took approximately 40 minutes to complete 
the experiment.

2.4.2. Data preprocessing

During the hazard recognition experiment, EEG signals 
were collected from participants using an EEG cap while 
their eye activities were concurrently monitored with an 
eye tracker. The training dataset comprised 36 variables, 
including signals from 32 EEG channels and four indices of 
eye movement: type of eye activity, Area of Interest (AOI), 
and the diameters of the left and right pupils. The EEG 
cap operated at a sampling frequency of 250 Hz, captur-

ing data every four milliseconds and accumulating 233,500 
original data points. In contrast, the eye tracker functioned 
at a frequency of 120 Hz, recording data every eight mil-
liseconds, yielding 103,980 original data points.

To synchronize the EEG and eye movement datasets, 
we merged them using the least common multiple of their 
sampling intervals, eight milliseconds. Missing values, in-
evitable during signal transmission, were identified and 
systematically removed. This refinement process resulted 
in a final dataset comprising 35,700 data points for our 
classification model.

In the preprocessing stage, the EEG signals underwent 
band-pass filtering to retain only frequencies between 1 Hz 
and 40 Hz, which is crucial for cognitive processing. This 
filtering was pivotal in minimizing high-frequency noise 
and slow-drift artifacts. Independent Component Analysis 
(ICA) was subsequently applied to isolate and eliminate 
artifacts associated with eye movements, muscle activities, 
and external electrical noises, ensuring the integrity of the 
brain activity signals for reliable analysis. 

Moreover, the EEG data were segmented into epochs 
centered around the stimulus onset, each spanning from 
200 milliseconds before to 800 milliseconds after the stim-
ulus. Each epoch was baseline-corrected using the pre-
stimulus period to adjust for signal variations and drifts, 
which is crucial for ensuring consistency across trials. 
These preprocessing steps, validated by recent research, 
have significantly enhanced the quality of the EEG data 
for constructing robust hazard classification models (Liao 
et al., 2022).

Table 2. Descriptive statistics of hazard types

Hazard type Electric shock Falls Collapsing frames Falling objects Others

Number of 
images

28 36 12 20 24

Example photo

Description Lack of gate or 
rainproof measures 
on the distribution 
box

Lack of protection 
measures over the 
basement sump hole

Lack of tie rod on 
elevator opening 
frame

Fixed location of a 
bucket lift safety rope 
not compliant with 
safety regulations

Construction workers 
are not wearing 
safety helmets or 
protective gear.

Figure 7. Example of participant giving responses during the experiment
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Table 3. Factors adopted for the classification model

Function EEG factors Channel function Unit Variable 
symbol Description Minimum 

value
Maximum 

value Mean
SD 

(Standard 
deviation)

Stress detection FC1 Motor control Microvolt 
(µV)

X6 Names of EEG 
channels: 
F: frontal lobe; 
P: parietal lobe; 
O: occipital lobe; 
T: temporal lobe; 
C: central; 
Z: zero.

9,469 10,561 9,972 273
FC2 Motor control X7 –1,846 –455 –1,038 416
FC5 Problem-solving X8 615 3,024 1,731 630
FC6 Problem-solving X9 1,496 2,032 1,895 59
C3 Sensory motion (right) X11 –5,923 –5,369 –5,684 82
C4 Sensory motion (left) X12 –537 153 –101 149
T3 Lingual and visual 

memory
X13 –1,735 153 –560 506

T4 Emotional memory X14 4,151 5,281 4,839 119
CP1 Proprioception X15 –375,000 374,999 35,236 49,608
CP2 Proprioception X16 –375,000 374,999 30,206 51,087
CP5 Spatial perception X17 –3,687 –2,708 –3,087 215
CP6 Spatial perception X18 –2,468 294 –931 956
P3 Lingual logic and 

cognition
X20 4,740 5,265 5,027 132

P4 Mathematical logic and 
cognition

X21 8,092 8,446 8,321 67

P7 Spatial and visual 
processing

X22 7,169 8,170 7,582 255

P8 Spatial and visual 
processing

X23 –8,239 –4,095 –5,893 1,157

Stress 
detection

Emotional 
state

F3 Motion planning X4 5,621 6,229 5,955 148
F4 Motion planning X5 –358 590 –119 147

Reading ability PO3 Visual memory X24 639 1,723 1,209 202
PO4 Visual memory X25 –5,782 –4,991 –5,281 152
PO7 Language 

comprehension
X26 864 3,924 2,040 713

PO8 Language 
comprehension

X27 –15,634 –15,047 –15,276 122

Hazard recognition O1 Visual information 
processing

Microvolt 
(µV)

X29 Names of EEG 
channels: 
F: frontal lobe; 
P: parietal lobe; 
O: occipital lobe; 
T: temporal lobe; 
C: central; 
Z: zero.

–4,991 –3,017 –3,999 494

O2 Visual information 
processing

X30 –13,294 –10,775 –11,991 642

Oz Visual information 
processing

X28 4,881 6,379 5,855 405

Emotional state Fz Working memory X3 8,578 9,115 8,860 155
Reference electrodes A1 Ear reference electrode X31 –5,131 –2,598 –4,024 681

A2 Ear reference electrode X32 –3,071 –922 –1,807 628
Sensory cognition Cz Sensory motion X10 4,206 4,829 4,560 157

Pz Cognitive processing X19 4,440 4,973 4,730 104
Fatigue detection Fp1 Attention X1 –10,081 –4,991 –8,924 626

Fp2 Judgment X2 –15,908 –14,746 –15,134 654
Eye movement 
characteristics

Fixation; 
saccades; 
unclassi-
fied

– – X33 Eye movements 
are divided into 
fixation, saccades, 
and unclassified

–

AOI – – X34 0 and 1 indicate 
whether the 
fixation point 
falls within a 
designated area 
in the photos: 1 
if it does, and 0 
otherwise

–

Left and 
right pupil 
diameters

– mm X35; 
X36

Two factors: 
diameters of left 
and right pupils

1.51 5.51 2.97 0.414

1.35 4.80 2.96 0.339

Hazard recognition Safe; 
worthy of 
caution; 
hazardous

– – Y The participant's 
response may 
be safe. worthy 
of caution. or 
hazardous.

–
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Table 3 offers a detailed analysis of the variables used 
in the classification model, including the 32 EEG channels, 
types of eye movements (saccades, fixation, and unclassi-
fied), AOI, and pupil diameters. These variables were effec-
tively employed to predict hazard recognition capabilities 
among construction workers.

3. Developing onsite hazard classification 
models using EEG and eye-tracking data
Section 3 details the development of onsite hazard clas-
sification models utilizing EEG signals facilitated by the 
WEKA platform. This initiative is critical for enhancing haz-
ard recognition among construction workers. The models, 
extensively detailed in Table 4, illustrate the selection of 
factors used for algorithm analysis and explain the objec-
tives of each model. By integrating both EEG and eye-
tracking data, these models leverage the complementary 
strengths of these technologies to improve the robustness 
and accuracy of hazard detection. This integration within 
the WEKA platform has led to the creation of advanced al-
gorithms tailored explicitly for construction sites’ dynamic 
and complex environments, ensuring that safety protocols 
are proactive and reactive.

Combining EEG and eye-tracking data enriches our 
understanding of workers’ attentional focus and cognitive 
engagement with potential hazards. While EEG data alone 
may not reliably pinpoint a worker’s attentional focus or 
identify specific environmental triggers, eye-tracking pro-
vides insights into where attention is directed but may lack 
depth in revealing cognitive and emotional responses. To-
gether, these methods offer a comprehensive perspective 
that significantly enhances hazard detection capabilities.

Our comparative studies, outlined in ‘Section 3.4’ of 
Table 4, explore the synergistic benefits of integrating EEG 
and eye-tracking data compared to using a single data 
source. This analysis aims to determine how this integrated 

approach improves the reliability of hazard recognition, 
a vital component in advancing safety measures on con-
struction sites.

Additionally, employing EEG and eye-tracking data fa-
cilitates the development of sophisticated, adaptive safety 
systems that deliver real-time feedback and alerts to con-
struction workers. This approach not only aids in immedi-
ate hazard detection but also promotes long-term behav-
ioral adjustments, significantly reducing the incidence of 
accidents on construction sites.

3.1. Comparison of single and  
ensemble models
Classification predictions were initially conducted using all 
EEG channels with seven of the most commonly employed 
algorithms from WEKA literature. These models include 
J48, BayesNet, ANN, REPTree, LR, SVM, and Random Forest. 
Cross-validation was used to compare their prediction ac-
curacy and assess model stability. The results indicate that 
the Random Forest model achieved an average accuracy of 
99.9% with a standard deviation of 0.057% in hazard rec-
ognition, using 32 channels of EEG signals. According to 
Table 5, Random Forest was the best classification model.

3.2. Optimization of EEG channels  
for hazard recognition
Each EEG channel corresponds to a distinct physiological 
response, covering a broad spectrum of EEG channels. Un-
derstanding the influence of various sensory channel fac-
tors on hazard recognition would help to identify optimal 
EEG channel combinations. The 32 channels recorded with 
the EEG cap in this study were categorized into the fol-
lowing functional areas: stress detection, emotional state, 
hazard recognition, fatigue detection, sensory cognition, 
reading ability, and reference electrodes (Noghabaei et al., 
2021; Saedi et al., 2022). 

Table 4. Summary table of classification models

Section Activity summary Validation 
method Algorithms Purpose

3.1 All EEG channels are initially used for hazard 
recognition, and the accuracy and stability of 
seven classifiers are compared.

Ten-fold
cross-validation

J48,
BayesNet,
ANN,
REPTree,
LR,
SVM,
Random 
Forest

To perform a preliminary analysis to select 
the best classifier (the tested classifiers are 
all more common techniques in reviewed 
literature).

3.2 Hazard classification (safe, worthy of 
caution, and hazardous) is performed by 
differentiating physiological responses 
corresponding to 10 EEG channels.

To test the influence of factors on model 
classification accuracy based on EEG channel 
function.

3.3 Sensitivity analysis is performed using 
EEG factors suggested in the literature 
to examine the impact of individual 
characteristics on model classification 
accuracy.

Adopting a parsimonious number of EEG 
channels to achieve adequate prediction 
accuracy with reasonable modeling costs is 
necessary.

3.4 Hazard recognition is performed using EEG 
channels and eye movement characteristics.

Evaluating the enhancement of classification 
accuracy by integrating EEG and eye 
movement data in on-site hazard recognition.
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Table 5. Analysis of seven WEKA classifiers trained using ten-fold 
cross-validation and 32 EEG channels

Classifier Modeling 
time (sec)

Average classification 
accuracy rate (%) SD (%)

J48 3.67 98.9 0.264
BayesNet 0.61 89.71 10.470
ANN 142.69 99.2 0.231
REPTree 0.99 98.5 0.351
LR 4.43 64.3 5.139
SVM 153.87 61.9 35.161
Random Forest 16.38 99.9 0.057

Figure 8 shows the locations of the EEG electrodes 
grouped according to their functional areas, with the cor-
responding colors listed in Table 6. Next, based on EEG 
channel functions and suggestions in the literature (Nogh-
abaei et al., 2021; Saedi et al., 2022), we investigated the 
influence of different factor combinations on the classifica-
tion accuracy of the hazard recognition model.

The ML model training results, considering all or a 
screened portion of the factors, are presented in Table 7. 
The baseline model was initially examined, where all chan-
nel features were used as input factors. Parsimonious 
feature-channel combinations were tested for accuracy to 
minimize data collection expenses.

The preliminary analysis showed that the baseline 
model achieved a hazard recognition classification ac-
curacy of 99.98%, with Random Forest identified as the 
optimal training model. The second-best model, which uti-
lized stress-detection feature channels (18 EEG channels), 
achieved a classification accuracy of 99.96% in hazard rec-
ognition. Using only four reading-ability feature channels, 
the third-best model achieved a classification accuracy of 

Figure 8. EEG electrode locations grouped by functional area

Table 6. EEG features corresponding to channel functions

EEG 
feature Channel function

Color 
corresponding 
to the sensory 

channel

FC1 Motor control

FC2 Motor control

FC5 Problem-solving

FC6 Problem-solving

C3 Sensory motion (right)

C4 Sensory motion (left)

T3 Lingual and visual memory

T4 Emotional memory

CP1 Proprioception

CP2 Proprioception

CP5 Spatial perception

CP6 Spatial perception

P3 Lingual logic and cognition

P4 Mathematical logic and cognition

P7 Spatial and visual processing

P8 Spatial and visual processing

F3 Motion planning

F4 Motion planning

PO3 Visual memory

PO4 Visual memory

PO7 Language comprehension

PO8 Language comprehension

O1 Visual information processing

O2 Visual information processing

Oz Visual information processing

Fz Working memory

A1 Ear reference electrode

A2 Ear reference electrode

Cz Sensory motion

Pz Cognitive processing

Fp1 Attention

Fp2 Judgment

    

 
Stress 

detection

(P)

Reading 

ability

(R)

Hazard 

recognition

(D)

Emotional 

state

(E)

Reference 

electrodes

(Re)

Sensory 

cognition

(Pe)

Fatigue 

detection

(F)

A2
A1

97.92%. The analysis of the hazard-recognition feature in-
dicated that the three EEG channels could provide a clas-
sification accuracy of 90.28%. 

Next, the factors and hazard awareness-related EEG 
channels proposed by Saedi et al. (2022) and Noghabaei 
et al. (2021) were incorporated. The results revealed that 
using the ten EEG channels suggested by Saedi et al. 
(2022) (FC5, FC6, P7, P8, F3, F4, O1, O2, Fp1, and Fp2) 
achieved a classification accuracy of 99.49%. However, 
adopting the three EEG channels suggested by Noghabaei 
et al. (2021) (FC5, O1, and O2) achieved a classification 
accuracy of 90.94%.
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Table 7. ML model training results based on considering all or a portion of the factors screened according to channel function

Channel function All 
channels

Stress 
detection

Reading 
ability

Hazard 
recognition

Emotional 
state

Reference 
electrodes

Sensory 
cognition

Fatigue 
detection

Saedi  
et al. 

(2022)

Nogha-
baei  
et al.  

(2021)

FC1 Motor control V V
FC2 Motor control V V
FC5 Problem-solving V V V V
FC6 Problem-solving V V V
C3 Sensory motion (right) V V
C4 Sensory motion (left) V V
T3 Lingual and visual 

memory
V V

T4 Emotional memory V V
CP1 Proprioception V V
CP2 Proprioception V V
CP5 Spatial perception V V
CP6 Spatial perception V V
P3 Lingual logic and 

cognition
V V

P4 Mathematical logic 
and cognition

V V

P7 Spatial and visual 
processing

V V V

P8 Spatial and visual 
processing

V V V

F3 Motion planning V V V V
F4 Motion planning V V V V

PO3 Visual memory V V
PO4 Visual memory V V
PO7 Language 

comprehension
V V

PO8 Language 
comprehension

V V

O1 Visual information 
processing

V V V V

O2 Visual information 
processing

V V V V

Oz Visual information 
processing

V V

Fz Working memory V V
A1 Ear reference electrode V V
A2 Ear reference electrode V V
Cz Sensory motion V V
Pz Cognitive processing V V

Fp1 Attention V V V
Fp2 Judgment V V V
Total number of factors 
(channels)

32 18 4 3 3 2 2 2 10 3

Optimal algorithm Random 
Forest

Random 
Forest

Random 
Forest

Random 
Forest

Random
Forest

J48 J48 J48 Random
Forest

Random
Forest

Average accuracy rate (%) 99.98 99.96 97.92 90.28 78.99 86.92 78.38 71.59 99.49 90.94
SD (%) 0.057 0.056 0.656 3.664 7.267 4.020 7.803 8.398 0.116 3.828
Model training time (sec) 16.38 11.81 8.88 6.52 6.91 0.58 0.67 0.45 10.94 6.34
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3.3. Sensitivity of model accuracy  
to EEG channels
Accuracy was employed as the evaluation criterion to as-
sess the influence of the EEG channel factor on the clas-
sification model predictions. With M, the performance 
value of the baseline model, as the benchmark, and M*, 
the model’s accuracy following the removal of factor i, 
we determined that the sensitivity of model accuracy to 
factor i is (M* – M)/M. By definition, a factor positively 
influences model accuracy when its removal causes the 
model’s prediction accuracy to decrease; thus, its presence 
increases the accuracy of model classification. If the accu-
racy reduces significantly, the factor positively influences 
the prediction model.

The analysis revealed that using the ten EEG features 
suggested by Saedi et al. (2022) achieved an accuracy of 
99.49%. We adopted this model as our baseline and evalu-
ated the impact of different factors on model prediction for 
statistical parsimony analysis to achieve adequate accuracy 
with the minimum amount of data. We employed ten-fold 
cross-validation to test the feature sensitivity, as shown in 
Figure 9. The vertical axis represents the average accuracy, 
and the horizontal axis represents the removed factor. “BL” 
represents the baseline model, with no factors eliminated. 
The graph demonstrates that all factors exerted varying 
degrees of positive influence on the model’s classification 
accuracy. If the collection of EEG channel features is sub-
ject to limitations or data acquisition cost considerations, 

Figure 9. Sensitivity analysis of model prediction accuracy to removal of EEG channels

critical factors selected based on their degree of influence 
can be collected first, and the adequacy of the resulting 
model prediction accuracy can be assessed afterward.

Figure 10 shows the accuracy of classification mod-
els constructed using ten-fold cross-validation and the 
positive influence factors ranked by the suggested feature 
channel data. The results show that using the top-six posi-
tive influencing factors achieved an accuracy of 99.04%. 
These factors included the EEG channels with stress 
detection (P8, P7, and FC5), hazard recognition (O2 and 
O1), and fatigue detection (Fp1) functions. We can balance 
model quality and electrode count by selecting these six 
channels, offering an optimal trade-off between cost and 
accuracy. This investigation also indicates that accuracy 
decreases significantly when the number of EEG factors 
is less than three, based on the ten EEG features recom-
mended by Saedi et al. (2022).

Figure 11 provides a comprehensive view of the accura-
cy trends in our hazard recognition models, which are influ-
enced by the number of EEG channels used across various 
brain regions. For instance, when four factors are used, the 
“Reading Ability” (R) functional area demonstrates a mean 
accuracy of 97.92%. With three factors, the channels rec-
ommended by Noghabaei et al. (2021) outperform others, 
achieving a mean accuracy of 90.94%. This finding highlights 
the role of different brain regions in the model’s perfor-
mance. Finally, when two factors are used, the mean accuracy 
for the “Reference Electrodes” (Re) functional area is 86.92%.

Rank Positive influence factor
1 P8
2 P7
3 O2
4 FC5
5 Fp1
6 O1
7 F4
8 Fp2
9 FC6

10 F3

Figure 10. Average accuracy rates of classification models trained with varying numbers  
of positively influencing EEG channel factors
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3.4. Modest gains in accuracy from 
integrating EEG and eye movement data

Our data analysis demonstrates that EEG channel features 
alone can provide satisfactory model performance. How-
ever, this section further explores the integration of spe-
cific EEG channel datasets with eye movement factor da-
tasets to assess model classification accuracy thoroughly. 
The EEG channel datasets employed included all channels 
designated for stress detection, those recommended in 
the literature, and those targeted for hazard recognition. 

We enhanced these datasets with eye movement charac-
teristics, precisely the type of eye movement (fixation and 
saccades), area of interest (AOI), and pupil diameter, as 
depicted in Figure 12.

Including eye-tracking factors resulted in only a mod-
est increase in accuracy. This observation highlights the 
potential benefits of incorporating eye-tracking data to 
enhance model performance. Specifically, when exclusively 
focusing on EEG channels associated with hazard recogni-
tion (O1, O2, and Oz) and combining them with eye move-
ment factors for hazard identification, the classification ac-

Figure 11. Classification model accuracy trends corresponding to different brain regions
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curacy improved from 90.28% to 91.57%. Simultaneously, 
the error rate decreased by 13.3%. This empirical analysis 
suggests that while the combination of EEG signals with 
eye-tracking data does improve model accuracy, the en-
hancement in the accuracy of hazard recognition classifi-
cation models is relatively minor.

4. Conclusions and suggestions
This study underscores the efficacy of ensemble ML mod-
els in elucidating the complex interactions among vari-
ous factors involved in onsite hazard recognition. Through 
the analysis of EEG signals and eye movement data, the 
research establishes a strong correlation between these 
factors and the accuracy of hazard recognition. Notably, 
specific EEG channels – P7, P8, FC5, O1, O2, and Fp1 – 
markedly improve classification accuracy, reaching an 
impressive 99.04%, with Random Forest models showing 
particular effectiveness.

Integrating EEG and eye-tracking data leverages the 
distinct benefits of each technology. EEG data provide in-
sights into workers’ cognitive and emotional states, while 
eye-tracking data pinpoint their focal points of attention. 
These datasets offer a comprehensive perspective that sig-
nificantly bolsters hazard detection capabilities.

Further comparative studies reinforce the robustness 
of the Random Forest model. Utilizing 32 EEG channels, 
this model achieves an average accuracy of 99.9% with a 
very low standard deviation of 0.057%, highlighting the 
advantages of using extensive EEG data for precise hazard 
recognition.

The optimization of EEG channel selection is critical 
for practical applications. The research demonstrates that 
even a reduced subset of EEG channels – tailored to spe-
cific functions such as stress detection, hazard recogni-
tion, and fatigue monitoring – can maintain high accuracy 
while reducing data collection costs. For instance, using 
18 channels for stress detection (P) reached 99.96% accu-
racy; 4 channels for assessing reading abilities (R) achieved 
97.92% accuracy; and three channels for hazard recogni-
tion (D) attained 90.28% accuracy.

Sensitivity analysis further highlights the significant 
impact of specific EEG channels on model accuracy. For 
example, employing ten channels recommended by Saedi 
et al. (2022) resulted in a classification accuracy of 99.49%, 
while using three channels recommended by Noghabaei 
et al. (2021) achieved 90.94%. These findings suggest 
adopting a more focused and efficient data collection ap-
proach that emphasizes the most impactful channels to 
enhance model performance.

The study recommends prioritizing the integration of 
selected EEG and eye movement features to refine hazard 
recognition models specifically for construction applica-
tions. Streamlining data collection to focus on these key 
EEG channels could significantly reduce costs and com-
plexity, making this advanced technology more practical 
for everyday use. The potential integration of biomechani-
cal data with EEG and eye-tracking information could fur-

ther enhance these models, providing a more comprehen-
sive understanding of worker states and improving hazard 
detection.

Advances in real-time data processing algorithms are 
essential as they could transform these models from static 
to dynamic, offering immediate feedback and revolutioniz-
ing safety protocols across various construction scenarios. 
The research also underscores a significant correlation be-
tween subjective responses and physiological measures, 
including EEG, eye movement, and pupil diameter, which 
are sensitive to brain responses before potential hazards 
are detected.

Future studies should explore the complex interactions 
among EEG channels, eye movements, and pupil diam-
eter regarding construction site hazards, assessing their 
combined impact on visual responses. By aggregating data 
from a more significant number of subjects, researchers 
can minimize individual variances and derive more gener-
alized, objective conclusions.

Further research might examine how different levels 
of work experience influence EEG and eye movement re-
sponses during hazard recognition tasks. Including partici-
pants with varying experience levels will provide deeper 
insights into the role of expertise in hazard recognition 
and enhance the practicality and effectiveness of safety 
measures.

The application of AI, mainly through developing so-
phisticated ML algorithms and integrating with the Inter-
net of Things (IoT), holds significant promise for creating 
networked safety models that can anticipate and respond 
to hazards in real time. This advancement represents an 
important step forward in the development of intelligent 
construction sites.

Customizing hazard recognition models to suit specific 
construction environments and conducting longitudinal 
studies to assess the durability and effectiveness of wear-
able technologies under various conditions could address 
the unique challenges encountered in these settings, en-
hancing both safety and operational efficiency.

This study highlights the practical configurations that 
could transform construction management through en-
hanced human-computer interactions and advocates for 
broader adoption and further development of wearable 
EEG and eye-tracking technologies. These technologies 
significantly benefit the construction industry by improv-
ing worker safety and operational efficiencies.
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APPENDIX

Table A1. WEKA parameter settings

Machine learning model Parameter Parameter value

Decision tree
(J48)

BatchSize 100
MinNum 2
NumDecimalPlaces 2
NumFolds 3
Seed 1

Bayesian network
(BayesNet)

Batch size 100
Estimator SimpleEstimator
Number of decimal places 2
Search algorithm K2

Artificial neural networks 
(Multilayer Perceptron, MLP)

Batch size 100
Learning rate 0.3
Momentum 0.2
Training time 500
Validation threshold 20

REPTree BatchSize 100
InitialCount 0.0
MaxDepth –1
MinNum 2.0
MinVarianceProp 0.001
NumDecimalPlaces 2
NumFolds 3
Seed 1

Logistic regression Batch size 100
Number of decimal places 4
Ridge 1.0E–8

Support vector machine 
(SMO)

BatchSize 100
C 1.0
Kernel PolyKernel
NumDecimalPlaces 2
NumFolds –1

RandomForest BatchSize 100
MaxDepth 0
NumDecimalPlaces 2
NumFeatures 0
Seed 1
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Figure A1. Examples of hazardous conditions at construction sites
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Figure A2. Examples of safety practices at construction sites


