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1. Introduction
Reinforced Concrete (RC) structures are foundational to 
modern infrastructure. It faces a persistent challenge from 
corrosion, a pervasive issue with significant economic and 
safety implications. A study has estimated that the direct 
economic impact of corrosion, focusing solely on highway 
bridges, amounts to an astonishing US$ 13.6 billion, with 
indirect costs potentially escalating up to ten times this 
figure (Fan & Shi, 2022). Although these structures are de-
signed with a predetermined service lifespan, the insidious 
progression of corrosion can lead to significant degrada-
tion, thereby altering the structural behavior well within its 
expected service life (Mehta & Monteiro, 2014). In severe 
cases, corrosion can cause sudden failures, especially in 
the absence of regular inspections and timely maintenance 
measures (Taiwan Transportation Safety Board, 2020). 
Therefore, it is essential to preemptively identify and com-
prehend the failure mechanisms in RC structures to miti-
gate catastrophic outcomes and prevent economic losses.

Previous investigations into corrosion-induced failure 
mechanisms in RC structures have yielded notable find-
ings. Empirical tests, alongside finite element models, 
demonstrate that reinforcement corrosion in RC structures 
compromises ductility and alters failure modes under vari-
ous loading conditions (Ramesht, 1995; Ballim et al., 2001; 
Ballim & Reid, 2003; El Maaddawy et al., 2005; Val, 2007; 
Du et al., 2007; Zhu et al., 2013; Zhang et al., 2018; Li et al., 
2022). Although specific model guidelines for corrosion as-
sessment have been developed, they highlight the inher-
ent challenges in obtaining reliable field data (Coronelli & 
Gambarova, 2004). Non-destructive testing (NDT) methods 
have gained researchers attention as viable techniques for 
damage assessment (Taheri, 2019; Senin et al., 2019; Ruc-
ka & Wilde, 2015; Behnia et al., 2014), with technologies 
utilizing electromagnetic waves (EM waves) and acoustic 
emissions being particularly effective for corrosion detec-
tion (Li et al., 2021). Radiofrequency Identification (RFID) 

2025

Volume 30

Issue 1

Pages 52–70

https://doi.org/10.3846/jcem.2024.22266

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4732-868X
https://orcid.org/0000-0001-7833-5394
mailto:cornetlin@gmail.com
mailto:cornetlin@gmail.com
https://doi.org/10.3846/jcem.2024.22266


Journal of Civil Engineering and Management, 2025, 31(1), 52–70 53

leveraging EM waves has emerged as a promising NDT 
method. RFID technology is highly adaptable, cost-effec-
tiveness, and low maintenance requirements (Meng & Li, 
2016; Zhang et al., 2017). The interaction of EM waves be-
tween RFID reader and sensor tags in RC structures has 
been extensively studied (Halabe et al., 1989; Chiba & Mi-
yazaki, 1998; Jiang & Georgakopoulos, 2011; Jiang et al., 
2012), and the integration of embedded sensors leverag-
ing RFID for damage diagnosis in RC structures remains a 
dynamic research area (Bartholmai et al., 2016; Strangfeld 
et al., 2019; Lin et al., 2021, 2022; Ferreira et al., 2022). De-
spite these foundational researches, there is an immediate 
need for more adaptable approach to enhance decision-
making related to the assessment of reduction strength in 
RC structures. Traditional methodologies for evaluating RC 
structural performance often require extensive analytical 
expertise and are labor-intensive (Azad et al., 2007; Jnaid 
& Aboutaha, 2016; Campione et al., 2017; Fernandez et al., 
2018; Chalioris et al., 2021).

In recent years, machine learning and deep learning 
techniques have emerged as powerful tools for assess-
ing civil infrastructures (Zhang et al., 2023; Nguyen & 
Chou, 2024; Obunguta et al., 2024; Tao & Xue, 2024; Lin 
et al., 2024a). These techniques leverage large datasets 
to train models capable of detecting and classifying de-
fects with high accuracy (Lin et al., 2024b). Convolutional 
Neural Networks (CNNs) have been extensively used for 
image-based inspection, detecting cracks, spalling, and 
other surface defects. Cha et al. (2017) and Laxman et al. 
(2023) developed a CNN-based framework for crack de-
tection in concrete structures, which demonstrated high 
accuracy in distinguishing cracks defect. Yeum and Dyke 
(2015) utilized CNNs to detect spalling and other surface 
anomalies, achieving high detection rates even in complex 
environments. Additionally, Dogan et al. (2023) employed 
deep transfer learning algorithm to distinguish between 
earthquake-induced and corrosion-related damages in re-
inforced concrete buildings in earthquake-prone regions. 
Atha and Jahanshahi (2018) explored CNN for autono-
mous corrosion detection, which can reduce inspection 
time and increase objectivity, while, Cavaleri et al. (2022) 
developed convolution-based ensemble learning models 
to estimate the bond strength of the corroded reinforced 
concrete. Most studies utilizing CNNs have been assessing 
local defects in reinforced concrete structures. Despite the 
significant progress in utilizing deep learning techniques 
for RC assessment, their application in predicting concrete 
strength reduction for overall structural performance due 
to corrosion has not been extensively explored. This gap 
presents a unique opportunity to advance the capabilities 
of structural health monitoring systems. The use of CNNs 
to predict and classify strength reduction could provide 
more comprehensive insights into the structural integ-
rity of RC structures, thus offering a more robust tool for 
maintenance planning and risk mitigation. By leveraging 

CNNs to extend beyond local defect detection, this study 
aims to develop a holistic approach to assess the over-
all performance of RC structures, incorporating advanced 
image processing and deep learning technique to offer 
precise evaluations.

This research investigates and develops an advanced 
methodology that integrates EM waves through RFID 
technology with image processing and deep learning 
techniques to assess the reduction in structural strength 
of reinforced concrete structures. Our approach combines 
the principles of two-dimensional (2D) Fourier transforms 
with the complex concepts of fractal dimensions and deep 
learning model prediction, enabling a comprehensive as-
sessment of the overall performance of RC structures. To 
validate our proposed method, we constructed three RC 
beam specimens with varying levels of reinforcement cor-
rosion.

2. Method

2.1. Overview of reinforced concrete  
strength assessment with EM-wave  
and deep learning technique
In this study, we investigated the reduction in strength of 
reinforced concrete structures due to the effects of corro-
sion. Three RC beam specimens with varying levels of pit-
ting corrosion were constructed. The pitting corrosion was 
introduced and controlled manually by reducing the cross-
section and the weight of reinforcement at designated lo-
cations using a grinder. Several static loading mechanisms 
were designed to observe and measure crack propagation 
and sensor responses. The loading and sensor response 
measurements continued until the RC beam specimens 
reached their maximum loading capacity or failure.

The sensor response data (frequency data in kHz) were 
then analyzed using image processing techniques to build 
an image dataset, a process we define as encoding im-
ages. Once all the sensor data from the RC specimens 
were converted to an encoded image dataset, the data-
set was further processed and analyzed using the open-
source software Gwyddion. This transformation involved 
applying 2D Fast Fourier Transforms (2D-FFT) (Draudvilienė 
et al., 2022) and the Otsu method to visualize the sensor 
responses relative to the specimens’ physical conditions. 
We utilized fractal dimension analysis to measure image 
complexity at different scales, which served as an indicator 
of the reduction in strength for subsequent deep learn-
ing model predictions. Given the small image dataset and 
to mitigate potential overfitting in the model predictions, 
we employed K-fold cross-validation for our Convolu-
tional Neural Network model in predicting and classifying 
RC conditions. The technical roadmap of the proposed 
framework is illustrated in Figure 1. Our dataset and the 
associated code can be accessed at https://zenodo.org/
records/12671514.

https://zenodo.org/records/12671514
https://zenodo.org/records/12671514
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2.2. Ultra-high frequency radio-frequency 
identification system
In this study, we developed and implemented an ultra-
high frequency (UHF) radio-frequency identification 
(RFID)-based system to detect structural damage. The 
system leverages the wireless communication proper-
ties inherent to RFID technology to facilitate continuous 
structural health monitoring. The RFID system, designed 
with practicality in mind, is composed of several key com-
ponents: RFID tags, readers, antennas, and an advanced 
data processing unit. These tags are strategically affixed at 
crucial locations within the structure, enabling the system 
to detect changes indicative of damage to RC specimens. 
The data corresponding to these sensed parameters are 
then transmitted to the RFID readers via antennas, provid-
ing real-time information for structural health monitoring.

Figure 2 illustrates the overall RFID system, in which, 
Figure 2a presents an overview of the sensing mechanism, 
which integrates an RFID reader, a user interface, and ad-
vanced smart tags. The tag, detailed in Figure 2b, consists 
of an antenna coupled with a self-tuning sensor-code inte-
grated circuit (IC). This IC, which is the core of the tags, can 
adjust to 32 different capacitance states, each represented 

by a 5-bit sensor code. This allows the device to capture 
and convert specimen change indicators into digital sig-
nals. The antenna’s main role is to send these signals back 
to the RFID reader. The Electronic Product Code (EPC) is 
embedded within most smart sensor tags, which uniquely 
identifies each physical object. The tags detect analog sig-
nals, including Received Signal Strength Indicator (RSSI), 
frequency, and sensor-code value, which the self-tuning 
IC then digitizes. The RSSI explicitly measures the strength 
of the signal that the smart sensor tag sends back to the 
RFID reader after an electromagnetic wave traverses the 
path from the reader to the tag. The RC beam test during 
the loading mechanism captured by these parameters is 
displayed on a computer terminal user interface, as shown 
in Figure 2c. In RFID systems that utilize such sensing 
mechanisms, employing smart sensor tags with integrated 
single-chip ICs simplifies deployment and eliminates the 
need for maintenance or batteries. The RFID system oper-
ates in a frequency range of 902000–928000 kHz. Each 
oblong-shaped tag, measuring 101.7 mm by 31.9 mm, 
is composed of three layers: an upper antenna assembly 
extending towards both ends and covered with paper, a 
central layer housing the IC and sensing mechanism, and 
a self-adhesive base that facilitates attachment to diverse 

Figure 1. Technical roadmap of the proposed framework for evaluating strength reduction in reinforced concrete structures
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materials. Although these sensor tags are designed to 
adapt to various environmental conditions, the specific 
properties of concrete may lead to detuning, potentially 
compromising their functionality.

Additionally, compression tests posed a risk of damag-
ing the embedded tags. Thus, we developed a protective 
tag casing using 3D printing technology, as depicted in 
Figure 2d. This casing, made of 3D-printed plastic, was 
designed with a focus on protection and adaptability. It 
safeguards the tags from environmental factors and po-
tential damage and ensures their optimal performance in 
various structural settings, thus enhancing the system’s 
reliability and longevity.

2.3. Data processing
In our study, we utilized the frequency parameter as an 
indicator of structural integrity for individual segments of 
reinforced concrete beams. To assess the overall condition 
of these structures, we employed convolutional neural net-
work models in conjunction with a novel image process-
ing technique. This dataset construction involved encod-
ing frequency data obtained from RFID readings. Sensor 
data for each RCB segment were collected under normal 

conditions (for specimens without introduced pitting) and 
under conditions of reduced strength (for specimens with 
pitting corrosion on their reinforcement), and initially cap-
tured in CSV file format. The frequency data, denoted as 
ai,j, is located at the i-th row and the j-th segment of the 
RCB specimen in the spreadsheet, as depicted in Figure 3. 
Following data collection, we executed preprocessing pro-
cedures, including data normalization, to ensure uniform-
ity and enhance data quality. The processed data were 
subsequently formatted to support grayscale and depth 
representations, facilitating image reconstruction, and a 
custom-encoded program used for dataset construction 
is detailed in Appendix.

Figure 3 illustrates the image reconstruction process, 
which was conducted using Python and leverages well-
known libraries such as NumPy for data manipulation, 
Pandas and the Python Imaging Library (PIL) for image 
processing tasks, and Matplotlib for visualization purposes. 
To increase the informational value of the images, specific 
post-processing methods were implemented. During the 
preprocessing stage, frequency data encoding thresholds 
were set from 902000 to 928000 kHz. These values were 
then standardized to align with an 8-bit grayscale for-
mat, where each pixel’s intensity is represented across a 

Figure 2. RFID system for a – the overall sensing mechanism; b – RFID tag component; c – user interface;  
d – 3D-printed case for embedding applications

a) b)

c)

d)



56 A. Putranto et al. Electromagnetic wave-driven deep learning for structural evaluation of reinforced concrete strength

spectrum of 256 shades of gray. Following this, our image 
dataset underwent a transformation to a 16-bit grayscale 
format via advanced image processing techniques. The 
decision to use a reduced bit depth in the images was 
made to improve computational efficiency and memory 
utilization, which in turn facilitates faster model training 
and improved convergence rates (Putranto et al., 2024). 
Additionally, this study focused on extracting critical fea-
tures pertaining to the texture and shape influenced by 
electromagnetic waves images, which are essential for the 
image classification.

To improve encoded image interpretation, we ap-
plied image transformation techniques to convert a two-
dimensional (2D) data array from the spatial domain to 
the more informative frequency domain (Putranto et al., 
2023). This transformation was facilitated by using the 2D-
FFT, a robust algorithm designed to efficiently compute an 
image’s discrete Fourier transform (DFT). The FFT substan-
tially reduces the computational burden associated with 
DFT calculations, decreasing the complexity from O(N2) to 
O(NlogN), where N represents the number of data points 
in the image. This enhancement is vital for managing the 
large volumes of data typical in image processing tasks. 
The mathematical principles underlying this transforma-
tion for an image matrix of size M×N (Gonzalez & Woods, 
2018), denoted as f(x, y), are shown below:
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In this context, F(u, v) denotes the image in the fre-
quency domain, while f(x, y) represents the original image 
in the spatial domain. The variables M and N correspond 
to the image’s height and width, respectively. The spatial 
frequencies u and v are essential for analyzing the content 
of the frequencies and are aligned with the x and y axes, 
respectively. The symbol j represents the imaginary unit, 
crucial for expressing complex numbers that capture both 
the phase and magnitude of the frequency components. In 
subsequent, we utilize Otsu’s method for image segmen-
tation and then compute the fractal dimension (D). To ex-
tract valuable insights from the encoded image, a 2D-FFT 
was applied employing Hamming windowing. A pre-pro-
cessing step was necessary that involving the separation 
of low and high frequencies within the encoded image. 

This separation was achieved by implementing a low-pass 
filter on the transformed encoded image, followed by the 
segregation of intensity bins utilizing Otsu’s segmentation 
method. In the subsequent analysis, the fractal dimension 
was employed as a metric to assess the transformed en-
coded image’s characteristics. We utilize fractal dimension 
to quantify the complexity of the texture and structural 
details within the images’ dataset.

The concept of the fractal dimension has been exten-
sively employed to discern complex patterns inherent in 
images through image processing techniques. The fractal 
dimension stands as a pivotal metric, offering insights into 
the intricacies and irregularities that typify numerous phys-
ical and engineering systems. It essentially quantifies the 
proportionality between the intricacy of a pattern and the 
scale at which it’s observed. Our study utilizing box count-
ing method to calculate fractal dimension. This technique 
entails superimposing a grid on the object of interest and 
enumerating the grid boxes that encapsulate the structure, 
observed across varying scales. The relationship between 
the logarithm of the count of boxes, N, and the logarithm 
of the reciprocal scale, h, serves to approximate the fractal 
dimension, as expressed by:
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.
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h
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The image preprocessing technique applied to the ini-
tial image dataset (shown in Figure 4a) included 2D FFT 
(with results shown in Figure 4b), Otsu’s segmentation 
(with results shown in Figure 4c), and the calculation of the 
fractal dimension for each image. These processes were 
conducted using the open-source software Gwyddion to 
prepare the dataset for the CNN model.

2.4. Deep learning model prediction with 
Convolutional neural network
In this research, we utilized Convolutional Neural Networks 
(CNNs) to analyze and classify images derived from elec-
tromagnetic wave readings of reinforced concrete condi-
tions. CNNs are particularly suited for processing data ar-
ranged in grid-like structures, such as image pixels, due to 
their ability to autonomously extract and hierarchically or-
ganize features from raw images. This capability begins at 

Figure 3. Dataset construction
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the initial convolutional layers, where simple features like 
edges and textures are identified, and progresses through 
to deeper layers that detect more complex features. Such 
progressive feature extraction significantly enhances the 
network ability to interpret visual content, making CNNs 
an ideal choice for the specific needs of this study.

The architecture of the CNN employed in this study 
is structured around several key components. It begins 
with convolutional layers that apply a series of learnable 
filters to the input images, producing feature maps that 
highlight essential visual attributes. These layers are fol-
lowed by ReLU (Rectified Linear Unit) activation functions, 
which introduce necessary non-linearities that facilitate the 
learning of complex patterns. Pooling layers subsequently 
reduce the spatial dimensions of these feature maps, thus 
decreasing the computational load while simultaneously 
increasing the robustness of the feature detection pro-
cess. The culmination of this architecture is seen in the 
fully connected layers that integrate all previously learned 
features, leading to a softmax layer that outputs a proba-
bilistic distribution across various classes, thereby enabling 
effective classification. The detail of CNN model architec-
ture is shown in Figure 5.

To ensure the reliability of our model, we implemented 
a rigorous preprocessing regimen that standardized imag-

es to uniform sizes and formats, which is crucial for consis-
tent processing by the CNN. The network was then trained 
on a well-annotated dataset using backpropagation and 
gradient descent algorithms to iteratively minimize classifi-
cation errors. To robustly evaluate the effectiveness of our 
model, we employed a K-fold cross-validation technique 
(with K set to 5), which involved shuffling the dataset (with 
a set random state of 4 for reproducibility) and dividing it 
into five subsets. This method allowed each subset to be 
used for validation once while the others were used for 
training in each iteration. Such a strategy not only maxi-
mized the use of the limited data available but also pro-
vided a thorough assessment of the model’s predictive ac-
curacy and its ability to generalize across new and unseen 
data. This comprehensive evaluation is vital for applica-
tions in structural integrity assessment, where the accuracy 
and reliability of the predictive model are paramount.

To classify electromagnetic (EM) wave images of re-
inforced concrete, we employed a CNN model (see Fig-
ure 6). Initially, we collected a dataset comprising 1800 
EM-wave images, which were subsequently labeled based 
on the condition of the concrete: 640 images were cat-
egorized as “Normal”, and 1260 images were labeled as 
“Reduced Strength”. These images were then divided into 
training and validation sets, with 70% of the images from 

Figure 4. Image data representation: a – encoded image with n×n pixels, illustrating the initial data format;  
b – frequency domain representation of the image; c – thresholded image

Figure 5. CNN model prediction architecture

a) b) c)
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each category allocated for training the model and the 
remaining 30% reserved for validation. Detail of data split 
for CNN model prediction can be seen in Table 1. The 
CNN architecture, consisting of multiple convolutional lay-
ers, pooling layers, and fully connected layers, was meticu-
lously designed and o0timized for this classification task. 
Key hyperparameters, including learning rate, batch size, 
and the number of epochs were fine-tuned to enhance 

model performance. The training process involved using 
the training dataset to enable the CNN to learn distinc-
tive features associated with normal and reduced strength 
concrete. The model’s performance was validated using 
the validation dataset, ensuring its robustness and pre-
venting overfitting. The schematic of training and valida-
tion process were shown in Figure 7.

Figure 6. Sample of EM-wave images dataset for training and validation

Figure 7. Training and validation process

Table 1. Training and validation split for CNN model

Classification Training (images) Validating (images) Total (images)

Normal 448 192 640
Reduced strength 812 348 1160
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3. Experimental design
In this study, we constructed three specimens of reinforced 
concrete beams (RCBs) to investigate the impact of pit-
ting corrosion on the mechanical performance of rein-
forced concrete structures. The dimensions of the RCBs 
were 120 mm × 250 mm × 1500 mm and were cast using a 
mix proportion of 1:2:3:0.8 (cement: fine aggregate: coarse 
aggregate: water). The first specimen, hereafter referred as 
RCB-1, was constructed under normal conditions without 
artificial pitting on its reinforcement. The second speci-
men, hereafter referred as RCB-2, was constructed with 
artificial pitting corrosion on the longitudinal bars. Mean-
while, the third specimen, hereafter referred as RCB-3, was 
constructed with artificial pitting corrosion on both the 
transversal and longitudinal bars. The specific locations of 
the artificial pitting corrosion on the RCB reinforcement 
can be seen in Figure 8. The severity of corrosion on RCBs 
are defined as follows: the RCB-1 represented the normal 
condition with no pitting corrosion present. Next, the RCB-
2 is classified as a moderate condition due to the partially 
corroded on its longitudinal bars. The last is the RCB-3, 
which represented a severe condition due to corroding 
on both the transversal and longitudinal bars. The cor-
rosion in this study was evaluated and classified as the 
wide-shallow pit (ASTM International, 2021).

We meticulously designed an experiment to investigate 
the impact of pitting corrosion on the structural strength 
of reinforced concrete beams by simulating realistic cor-
rosion conditions on reinforcement bars. The experiment 
commenced with a thorough inspection of each steel re-
inforcement bar, during which pre-determined locations 
for inducing pitting were systematically marked. These 
locations were strategically selected along a grid pattern 
on both longitudinal and transversal reinforcements, em-
phasizing critical areas such as mid-spans and supports 
where stress concentrations are typically higher.

The corrosion simulation involved precisely grind-
ing down small sections of the steel bars to reduce their 
weight by exactly 2.5 grams at each marked location on 
both the front and back sides of the beam specimen (the 
front side is shown in Figure 8a. The pitting corrosion de-
tails are provided in Figure 8b, where the location (x, y) 
of (0,0) is defined as the bottom-left side of the beam 
specimen, followed by specific coordinates of pitting cor-
rosion in the reinforcement framework. This process was 
rigorously controlled using a precision grinder, ensuring 
uniformity in the simulation of pitting across all bars. To 
verify the accuracy of this material removal, the weight 
of each bar was measured before and after the grinding 
process using a high-precision digital scale with an ac-
curacy of 0.01 grams. Following the preparation and veri-
fication of the reinforcement bars, they were placed in 
molds corresponding to the dimensions of the designed 
beams – 120 mm × 250 mm × 1500 mm. These dimen-
sions and the reinforcement layout were chosen to align 
with standard design practices, ensuring a realistic simula-
tion of field conditions. The concrete mix was then poured 
into the molds and carefully compacted to eliminate voids 
and air pockets, forming the beam specimens. Lastly, the 
experimental procedure was the curing of the concrete 
beams, which was conducted under standard conditions 
for 28 days. This duration was critical to achieve optimal 
strength development in the concrete, ensuring that the 
beams were adequately prepared for subsequent mechan-
ical loading tests.

Each specimen was embedded with 24 smart sensor 
tags attached on one side of transversal reinforcement. 
The smart sensors are grouped into eight sections along 
the specimen. The smart sensors were protected with the 
3D-printed case made from polylactic acid with dimen-
sions 110 mm × 35 mm × 3 mm to prevent sensor damage 
during the loading phase. The RCB configuration can be 
seen in Figure 9.

Figure 8. The artificial pitting corrosion: a – displayed on the reinforcement framework;  
b – detailed location (observed on both sides of the reinforcement framework)

a) b)
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In order to obtain data on reinforced concrete me-
chanical behavior, the test was set and detailed as follows. 
First, a wire-strain gauge was attached to each longitudinal 
bar in the middle section of the RCB, and a linear dis-
placement sensor (LVDT) was used to measure midspan 
deflection. Next, the radio frequency identification reader 
is set 50 cm away from the reinforced concrete surface and 
reads the concrete side attached with smart sensor in se-

quential (from segment G1 to G8). The EM-wave with radio 
frequency (902000–908000 kHz) will be transmitted and 
sent back during measurement time (90 seconds for each 
group). The frequency measurement was conducted dur-
ing each loading phase. The overall measurement process 
can be seen in Figure 10. Last, the cracks on the reinforced 
concrete surface are measured using a digital microscope 
for their formation and propagation at post-loading phase.

Figure 9. Reinforced concrete beam showing: a – a longitudinal section; b – cross-sections; c – smart sensors on reinforcement bars

Figure 10. Schematic of the overall experimental architecture

a)

b) c)

a) b)
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4. Results
4.1. Relation between structural  
strength and fractal dimension
This study undertook a comprehensive investigation in-
volving the testing of reinforced concrete beam specimens 
subjected to a series of five distinct loading phases. The 
load-deflection curves were meticulously analyzed for 
three specimens exhibiting varying degrees of corrosion, 
and the findings are thoughtfully presented in Figure 11. 
The reinforced concrete beams analyzed included RCB-1 
(normal condition), RCB-2 (moderate corrosion), and RCB-3  
(severe corrosion), with detailed mechanical properties 
documented in Tables 2, 3, and 4, respectively. Our ob-
servations revealed that RCB-1 and RCB-2 exhibited no 
significant differences in their performance. This similarity 
can be attributed to the relatively minor degree of corro-
sion present on the longitudinal reinforcement of RCB-2, 
which, in turn, exerted only a marginal influence on the 
overall structural integrity.

For RCB-1, the uncorroded beam, the load-deflection 
curve demonstrated a typical response with initial flexural 
cracking occurring at approximately 10 kN, yielding of the 
reinforcement at around 40 kN, and a maximum load ca-
pacity (Pmax) of 58.88 kN. The maximum deflection (δmax) 
was 14.494 mm. Strain measurements showed minimal ini-
tial strains in both the rebar and concrete, with significant 
increases at higher loads, reflecting the expected progres-
sion of cracking and deformation. The crack width analysis 
revealed a gradual increase in crack width, reflecting typi-
cal flexural cracking behavior.

The RCB-2 beam, subjected to moderate corrosion, 
showed a slight reduction in initial stiffness compared to 
RCB-1, with flexural cracking occurring at around 9 kN. The 
beam’s load capacity was slightly higher at 59.69 kN, with 
a δmax of 14.526 mm. Strain data indicated higher initial 
strain values in both the compression and tension zones, 
particularly at higher loads, pointing to an earlier onset 
of yielding and more extensive cracking due to corrosion. 
However, the overall performance of RCB-2 was not sig-
nificantly different from RCB-1, attributed to the relatively 
minor degree of corrosion present on the longitudinal re-
inforcement, which exerted only a marginal influence on 
the overall structural strength.

RCB-3, representing severe corrosion, diverged nota-
bly from RCB-1 and RCB-2. It exhibited heightened pitting 
corrosion on both its transverse and longitudinal reinforce-
ment elements, resulting in a significant reduction in stiff-
ness and load capacity. Initial flexural cracking occurred at 
approximately 8 kN, and the maximum load capacity was 
reduced to 59.49 kN. The δmax was the highest among 
the three beams at 15.260 mm, indicating significant de-
formation. The strain measurements for RCB-3 showed 
early and substantial increases, particularly in the tension 
zone, reflecting extensive damage and reduced structural 
strength. The crack width analysis revealed wider cracks at 
lower load levels, indicating severe structural distress and 
potential bond failure between the rebar and concrete.

Notably, once RCB-3 surpassed the 85% threshold of 
the ultimate load, it exhibited a discernible shift towards 
increased brittleness, marked by the emergence of wider 
cracks in comparison to RCB-1 and RCB-2. This transition 
to a more brittle behavior aligns with the findings of Du 
et al. (2007), highlighting the pivotal role of corrosion in 
both the tension and compression zones of under-rein-
forced beams, leading to decreased ductility and a more 
brittle failure mode.

The results of our study underscore the profound im-
pact of corrosion on the mechanical properties of rein-
forced concrete beams. When confronted with elevated 
levels of pitting corrosion affecting both transverse and 
longitudinal reinforcements, these beams exhibit de-
creased ductility, eventually culminating in brittle failure 
as a result of a progressive loading mechanism. This in-
vestigation further revealed that the extent of corrosion on 
the reinforcement significantly influenced the formation 
of cracks within the reinforced concrete beams. Specifi-
cally, the emergence of cracks induced by applied loads 
was observed to manifest at approximately 25% of the 
beam’s ultimate load when corroded reinforcement was 
present, whereas the corresponding non-corroded rein-
forcement exhibited crack formation at approximately 15% 
of the ultimate load. This observation underscores the pro-
found impact of corrosion on the structural integrity of 
the beams, with corrosion acting as a pivotal factor in the 
initiation and progression of cracks.

Moreover, the analysis of maximum deflection in the 
specimens revealed a distinct pattern. RCB-3 exhibited 
the highest maximum deflection, followed by RCB-2 and 
RCB-1, respectively. This pattern of deflection aligns con-
sistently with the degree of corrosion present, with RCB-3 
exhibiting the most extensive pitting corrosion on its rein-
forcement elements. To provide a comprehensive overview 
of the physical condition of the reinforced concrete beams, 
detailed information on deflection and mechanical proper-
ties is presented in Tables 2 to 4. These tables offer valu-
able insights into the behavior of the specimens, allowing 
for a clear comparison of their performance under varying 
corrosion levels.

Figure 11. Load-mid span deflection curve
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In addition, the progression of crack formation in each 
reinforced concrete beam specimen is visually depicted in 
Figures 12 through 14. These figures serve as illustrative 
representations of the profound influence of corrosion on 
crack initiation and propagation during the loading phase. 
Specifically, Figures 12a, 13a, and 14a visually capture the 
crack patterns in RCB-1, RCB-2, and RCB-3 at various load 
levels, while Figures 12b, 13b, and 14b quantify the load 
corresponding to each crack width. These figures highlight 

the load levels at which these cracks occurred, providing 
a clear correlation between applied load and crack pro-
gression. The type of failure observed in the figures for 
RCB-1, RCB-2, and RCB-3 is predominantly flexural failure. 
This is indicated by the pattern of vertical and inclined 
cracks developing primarily at the mid-span region, where 
the bending moment is highest. The progression and wid-
ening of these cracks under increasing loads reflect the 
beams’ flexural response to the applied forces.

Figure 12. Crack propagation at the surface of RCB-1 during the loading phase: a – crack width; b – applied load

Figure 13. Crack propagation at the surface of RCB-2 during the loading phase: a – crack width; b – applied load

Figure 14. Crack propagation at the surface of RCB-3 during the loading phase: a – crack width; b – applied load

a)

a)

a)

b)

b)

b)
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Table 2. Mechanical properties of RCB-1 during the loading phase

Load Mid-span deflection, d
Rebar strain, eS Concrete strain, eC

Crack width
Compression zone Tension zone Compression zone Tension zone

(kN) (mm) (mm)

8.26 0.939 0.00007 0.00021 0.0001 0.0001

0.06
to
1.9

15.32 1.522 0.00012 0.00063 0.0003 0.0005
29.64 3.305 0.00013 0.00129 0.0005 0.0016
49.81 7.085 0.00044 0.01479 0.0014 0.0094
58.88 14.494 0.00124 0.01262 0.0026 0.0163

Table 3. Mechanical properties of RCB-2 during the loading phase

Load Mid-span deflection, d
Rebar strain, eS Concrete strain, eC

Crack width
Compression zone Tension zone Compression zone Tension zone

(kN) (mm) (mm)

8.26 1.016 0.00004 0.00007 0.0001 0.0001

0.03
to
3.3

15.32 1.595 0.00263 0.00179 0.0002 0.0005
29.64 3.218 0.00248 0.00688 0.0006 0.0010
49.81 7.044 0.00247 0.45447 0.0016 0.0060
59.69 14.526 0.00124 0.01262 0.0026 0.0122

Table 4. Mechanical properties of RCB-3 during the loading phase

Load Mid-span deflection, d
Rebar strain, eS Concrete strain, eC

Crack width
Compression zone Tension zone Compression zone Tension zone

(kN) (mm) (mm)
8.26 0.566 0.00007 0.00004 0.0002 0.0001 0.06

to
3.9

15.32 1.166 0.00016 0.00368 0.0002 0.0003
29.64 2.905 0.00030 0.00913 0.0006 0.0010
49.81 6.760 0.00101 0.00277 0.0014 0.0048
59.49 15.260 0.00274 0.00000 0.0032 0.0109

Figure 15. EM-wave images at each loading phase corresponding to their fractal dimension index
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Subsequent to our initial analysis, we delved deeper 
into exploring the intricate relationship between the me-
chanical properties of reinforced concrete structures and 
the fractal dimension corresponding to distinct loading 
phases. To unravel this complex interplay, we generated a 
series of encoded images at each loading phase, as depict-
ed in Figure 15. We explored the correlation between the 
fractal dimension of each specimen and their mechanical 
properties, as showed in Figure 16. Figure 16 presents the 
correlation between the fractal dimension, maximum de-
flection, and maximum crack width for the three RCB spec-
imen under varying levels of corrosion. The result shows 
that as the corrosion level increases from normal (RCB-
1) to moderate (RCB-2) to severe (RCB-3), the average of 
fractal dimension (DAvg) decreases, indicating a reduction 
in structural strength. In contrast, both the maximum de-
flection and maximum crack width increase significantly, 
reflecting the deteriorating mechanical properties due to 
corrosion. These results collectively underscore the close 
connection between the encoded images of EM-wave’s 
fractal dimension and the behavior of reinforced concrete 
structures. The fractal dimension is then used as indicator 
to labeled the image dataset for subsequent deep learning 
predictive model.

4.2. Predictive model performance evaluation
In the methodological exploration of fine-tuning our deep 
learning model, Table 5 succinctly encapsulates the hyper-
parameter search conducted to optimize model perfor-
mance. The table presents a structured experimentation 
framework where each of the 10 experiments systemati-
cally varies key hyperparameters, specifically the learning 
rate and epoch size, while maintaining consistency in other 
parameters such as shear range, zoom range, dense layer 
count, and dropout rate.

The experiments are designed to evaluate the effects 
of different learning rates and training durations on model 
efficacy. Experiments 1 through 5 alternate the learning 
rate between 0.001 and 0.0001 while progressively increas-
ing the epoch size from 16 to 64. This first set of tests is 
aimed at understanding the basic impacts of learning rate 
adjustments on short to moderate training cycles. Experi-
ments 6 through 10 extend this exploration by maintain-
ing learning rate between 0.001 and 0.0001 while further 

increasing the epoch sizes from 64 to a substantial 256, 
providing insights into the model’s performance over lon-
ger training periods.

This systematic variation allows us to dissect the inter-
play between learning rate and training duration, crucial 
for identifying an optimal balance that maximizes accu-
racy without incurring unnecessary computational costs or 
overfitting. The shear range and zoom range are fixed at 
0.2 and 0.5, respectively, ensuring that the model’s respon-
siveness to input data augmentation remains constant and 
does not confound the effects of learning rate and epoch 
adjustments. The consistency in the dropout rate at 0.5 
across all experiments is a strategic choice to mitigate any 
potential overfitting as the network complexity increases 
with more prolonged training. Similarly, keeping the num-
ber of dense layers fixed ensures that any observed chang-
es in performance are primarily attributable to the varied 
learning rates and epoch sizes, rather than architectural 
modifications.

Table 6 shows the performance metrics of our CNN 
model over 10 training epochs, providing insights into the 
model’s learning efficacy and generalization capabilities. 
The table shows a consistent increase in training accuracy, 
from 0.865538 in the first epoch to 0.889442 by the tenth 
epoch, indicating a steady improvement in the model’s 
ability to learn from the training dataset. Corresponding-
ly, the training loss decreases from 0.30625 to 0.299674, 
which further substantiates the model’s growing proficien-
cy in minimizing prediction errors as training progresses.

Table 5. Hyperparameter search for fine-tuning model performance

No Shear range Zoom range Learning rate Batch size Epoch Dense layer Dropout

1 0.2 0.5 0.001 16 10 3 0.5
2 0.2 0.5 0.0001 16 10 3 0.5
3 0.2 0.5 0.001 32 15 3 0.5
4 0.2 0.5 0.0001 32 15 3 0.5
5 0.2 0.5 0.001 64 10 3 0.5
6 0.2 0.5 0.0001 64 10 3 0.5
7 0.2 0.5 0.001 128 15 3 0.5
8 0.2 0.5 0.0001 128 15 3 0.5
9 0.2 0.5 0.001 256 10 3 0.5
10 0.2 0.5 0.0001 256 10 3 0.5

Figure 16. Correlation of fractal values with mechanical 
properties of RC structures
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Table 6. Model metrics performance

Epoch Training 
accuracy

Validation 
accuracy Training loss Validation 

loss

1 0.865538 0.894531 0.30625 0.257315
2 0.87251 0.896484 0.29696 0.239555
3 0.871514 0.888672 0.284058 0.346328
4 0.868526 0.902344 0.313598 0.266706
5 0.884462 0.908203 0.271442 0.31352
6 0.893426 0.904297 0.266156 0.314864
7 0.888446 0.904297 0.27976 0.218981
8 0.896414 0.892578 0.26823 0.217366
9 0.875 0.892578 0.305072 0.300236
10 0.889442 0.90625 0.299674 0.214367

Interestingly, the validation accuracy and loss, which 
are critical indicators of the model’s ability to generalize 
to new, unseen data, exhibit a slightly different pattern. 
While validation accuracy begins at 0.894531 and peaks 
at 0.908203 during the fifth epoch, it shows minor fluc-
tuations but closes at a high of 0.90625 in the final ep-
och. Validation loss mirrors this pattern to some extent, 
starting at 0.257315 and ending at its lowest point of 
0.214367 in the tenth epoch. These trends are indicative 
of the model’s robustness, as the validation metrics do 
not diverge negatively from the training metrics, thereby 
suggesting that overfitting is minimal. The close tracking 
of training and validation accuracy alongside the reduction 
in losses across both domains suggests that the model is 
well-calibrated and continuing to learn effectively up to 
the tenth epoch. This is further evidenced by the gradual 
convergence of accuracy and loss, highlighting efficient 
learning without overfitting.

The confusion matrices generated by our CNN model 
were scrutinized to determine the model’s effectiveness 
in differentiating between normal and reduced strength 
conditions within reinforced concrete structures. To gauge 
the classification efficacy of the model, we employed four 
critical performance indicators: precision, recall, accuracy, 
and the F1-score.

Precision is defined as the proportion of true positive 
predictions (TP) relative to the total number of positive 
predictions made, including both true positives and false 
positives (FP). This metric illustrates the model’s accuracy 
in identifying only relevant instances as positive. Recall, on 
the other hand, measures the model’s capability to correct-
ly identify all actual positives from the dataset, accounting 
for both true positives and false negatives (FN), thereby 
highlighting the model’s sensitivity to detecting positive 
instances. Accuracy provides a measure of the overall cor-
rectness of the model by considering both true positives 
and true negatives (TN). Additionally, the F1-score serves 
as the harmonic mean between precision and recall, of-
fering a balanced measure of the model’s performance 
across these two metrics. These evaluations are derived 
from the following mathematical formulas:

TPPrecision ;
TP FP

=
+

 (3)

TPRecall ;
TP FN

=
+

 (4)

TP TNAccuracy ;
TP FP TN FN

+
=

+ + +
 (5)

Precision RecallF1 score 2 .
Precision Recall

×
− = ×

+
 (6)

The following results is the optimal model that we set 
with the learning rate, batch size, and epoch, are 0.001, 
128, and 10, respectively. The model demonstrated a ro-
bust ability to classify both conditions with considerable 
accuracy. Specifically, it correctly identified 169 instances 
as normal and 320 instances as reduced strength. How-
ever, the model also exhibited some limitations, with 23 
false negatives for the normal class and 28 false positives 
for the reduced strength class. The result of the model 
confusion matrix can be seen in Figure 17.

The true positives for normal and reduced strength 
suggest that the model is generally effective at recogniz-
ing and categorizing the correct conditions. However, the 
presence of false negatives and positives indicates areas for 
improvement. False negatives, where the model incorrectly 
labeled normal conditions as reduced strength, could lead 
to unnecessary interventions, potentially increasing opera-
tional of maintenance costs for practical application. Con-
versely, false positives, where reduced strength conditions 
are misclassified as normal, pose a significant risk as they 
may lead to the oversight of critical structural weaknesses.

These discrepancies underscore the need for further 
model refinement to enhance its precision and recall, par-
ticularly to minimize risks in practical applications. Opti-
mizing the model could involve more sophisticated data 
preprocessing, feature selection, or exploring more com-
plex model architectures. Our analysis not only validates 
the model’s current utility in structural health monitoring 
but also highlights the critical pathway for future research 
aimed at improving the reliability and safety of infrastruc-
ture assessments.

Figure 17. Confusion matrix
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In subsequent analysis, we investigate the classification 
performance of our deep learning model, which was de-
veloped to discern between normal and reduced strength 
conditions in reinforced concrete structures. Table 7 sys-
tematically reports on three critical evaluation metrics – 
precision, recall, and F1-score – alongside the overall 
model accuracy, providing a comprehensive insight into 
the model’s effectiveness. For the classification of normal 
conditions, the model achieved a precision of 0.86. This 
precision metric indicates that 86% of the instances clas-
sified as normal were correct, reflecting a high level of 
accuracy in identifying structures that do not exhibit signs 
of degradation. The recall of 0.88 for the normal condi-
tion suggests that the model successfully identified 88% 
of all actual normal cases, illustrating its ability to capture 
the majority of non-problematic instances without signifi-
cant omissions. The F1-score, at 0.87, indicates a strong 
balance between precision and recall, signifying that the 
model performs reliably in scenarios where the strength of 
the structure is not compromised.

In the more critical of reduced strength classification, 
the model displayed even higher efficacy, with a precision 
of 0.93. This demonstrates that when the model predicts a 
reduced strength condition, there is a 93% likelihood that 
such a prediction is accurate, which is crucial for safety-
critical applications where the cost of a false positive can 
be significant. The recall for reduced strength stood at 
0.92, indicating that 92% of all actual deteriorated con-
ditions were correctly identified by the model. This high 
recall is particularly important in preventive maintenance 
and safety assessments, where failing to detect an actual 
case of structural weakening could lead to catastrophic 
outcomes. The F1-score of 0.93 reinforces the model’s ro-
bustness, showing a superior capability to balance preci-
sion and recall in detecting these crucial conditions. The 
overall accuracy of the model is reported at 0.91, which 
encapsulates its general efficiency across both classes. This 
high level of accuracy indicates that the model is highly 
capable of distinguishing between normal and compro-
mised structural conditions, suggesting the model predic-
tion could be effectively implemented in real-world moni-
toring systems for early detection of potential failures in 
reinforced concrete structures. The detail of classification 
result can be seen in Table 7.

We present a comprehensive analysis of our classifi-
cation model performance through the Precision-Recall 
curve (as shown in Figure 18), which showcases a notably 
high area under the curve (AUC) of 0.983. This curve is cru-
cial in illustrating the model’s precision and recall balance 
across varying thresholds, providing our audience with a 
deep understanding of its predictive accuracy in classifying 
the conditions of reinforced concrete structures as either 
normal or reduced strength.

The curve begins with an exceptionally high precision 
close to 1.00, which remains above 0.95 across most of 
the recall spectrum. This robust capacity of the model to 
accurately identify true reduced strength conditions while 
maintaining a low rate of false positives is a testament to 

its reliability, which is crucial for applications where the 
integrity of structural assessments is paramount. However, 
as the recall extends towards 1.00, a slight but gradual 
decrease in precision is observed, a common characteristic 
in classification tasks, where increasing the sensitivity to 
capture all positive cases typically leads to accepting more 
false positives.

Significantly, there is a sharp decline in precision at the 
high recall end, where precision decrease to around 0.65. 
This drop underscores the model’s limitations where maxi-
mizing recall to capture every potential reduced strength 
instance increases the false positive rate. This aspect of 
the model’s performance highlights the inherent trade-off 
between recall and precision that needs careful consider-
ation, especially in safety-critical applications like structural 
health monitoring.

This analysis confirms the model’s effectiveness in de-
tecting critical conditions with high precision and empha-
sizes the practical implications of selecting an operational 
point on the curve. Depending on the threshold chosen, 
one can balance the need to minimize missed detections 
of compromised structures against the cost implications 
of false alarms. By adjusting the threshold according to 
specific risk tolerance and operational requirements, the 
model can be tailored to optimize both safety outcomes 
and operational efficiency in real-world applications.

5. Conclusions and future work
This study presents a pioneering framework for evaluating 
the structural performance of reinforced concrete struc-
tures by integrating electromagnetic wave data obtained 
via RFID technology with advanced image processing and 

Figure 18. Precision-recall curve

Table 7. Classification result

Classification Precision Recall F1-score

Normal 0.86 0.88 0.87
Reduced strength 0.93 0.92 0.93

Accuracy 0.91
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deep learning technique. Our interdisciplinary approach 
successfully combines RFID technology, 2D Fourier trans-
form, fractal dimension analysis, and convolutional neural 
networks into a cohesive and innovative method for struc-
tural health monitoring. The theoretical contributions of 
this research include the advancement of non-destructive 
testing methods through the use of EM waves for assess-
ing structural integrity and the novel application of CNNs 
for classifying structural conditions based on EM wave im-
ages. The integration of fractal dimension analysis provides 
a quantitative measure of image complexity that correlates 
with structural integrity, enhancing the predictive capabili-
ties of our model. Practically, this framework offers a cost-
effective and low-maintenance solution for monitoring of 
RC structures, enabling early detection of potential failures 
and facilitating timely preventive maintenance. Its high ac-
curacy (0.91) and F1-score (0.93) ensure efficient resource 
utilization, minimizing false positives and negatives, which 
is critical for safety and operational efficiency. Moreover, 
the framework’s scalability and adaptability make it suit-
able for diverse applications, from small-scale infrastruc-
ture projects to large-scale urban development, providing 
a robust tool for engineers and maintenance professionals.

While our study has demonstrated significant promise, 
several areas for future research can further enhance the 
framework’s capabilities. Enhanced feature engineering will 
involve exploring additional image processing techniques 
and features extracted from EM wave data to improve 
model accuracy and robustness, as well as integrating 
other types of sensors and data sources for a more com-
prehensive assessment of structural health. Algorithm op-
timization is another key area, where optimizing the CNN 
architecture and training process, including experiment-
ing with different network architectures, hyperparameters, 
and training strategies, will be essential. Implementing 
advanced machine learning techniques such as ensemble 
learning and transfer learning can further enhance predic-
tive capabilities. Expanding the dataset by including more 
varied structural conditions and larger sample sizes will 
improve model generalization and reliability. Additionally, 
conducting long-term monitoring studies will validate 
the framework’s performance over extended periods and 
under different environmental conditions. Finally, field tri-
als on actual RC structures will evaluate the framework’s 
effectiveness in real-world scenarios, providing valuable 
insights into practical challenges and potential improve-
ments. Collaborations with industry partners to integrate 
the framework into existing structural health monitoring 
systems will facilitate broader adoption and practical im-
pact. Addressing these areas in future research will build 
upon the foundational contributions of this study, advanc-
ing the state-of-the-art in structural health monitoring 
and contributing to safer and more efficient infrastructure 
management.
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APPENDIX

Encoding raw data into image
Algorithm 1
Input: CSV file
Output: Encoded image of EM-wave
1: Import libraries (os, numpy, pandas, and PIL)
2: def create_image(type, weight, timing, scale, chunk_size):
3:   path = f”{type}/{weight}/{timing}”
4: print(f”start on data {path}”)
5: data = pd.DataFrame()
6: for i in range(1, 9):
7:     filename = f”./data/{path}/group{i}.csv”
8:     try:
9:         df = pd.read_csv(filename, header=None, names=[
10:             ‘node’, ‘unamed’, ‘rssi_label’, ‘rssi’, ‘freq_label’, ‘freq’, ‘ensor_label’, ‘ensor’])
11:         data[i] = df[‘freq’]
12:      except FileNotFoundError:
13:         print(f”File not found: {filename}”)
14:         continue
15: data = data.fillna(0).astype(int)
16: min_val = 902750
17: max_val = 927250
18: img_width = 8
19: img_height = chunk_size
20: # Data Normalization
21:  norm_data = (data - min_val) / (max_val - min_val)
22: # Convert data to range 0-255
23: norm_data_255 = np.clip(norm_data * 255, 0, 255).astype(‘uint8’)
24:  data = norm_data_255
25: sisa = data.shape[0] % chunk_size
26:  if sisa!= 0:
27:     padding = pd.DataFrame(
28:          np.zeros((chunk_size - sisa, data.shape[1])), columns=data.columns)
29:      data = pd.concat([data, padding])
30:  chunks = [data.iloc[i:i+chunk_size, :] for i in range(0, data.shape[0], chunk_size)]
31: for i, chunk in enumerate(chunks):
32:     imgs_data = []
33:     img = Image.new(‘L’, (img_width*scale, img_height*scale), color=0)
34:      df_array = chunk.values
35:      try:
36:         resize_img = np.repeat(np.repeat(df_array, scale, axis=0), scale, axis=1)
37:        img.putdata(resize_img.flatten().tolist())
38:        imgs_data.append(img)
39:    except KeyError:
40:         print(f”KeyError: {df_array}”)
41:         continue
42:   # Create Image
43:    combined_img = np.concatenate([np.array(img) for img in imgs_data], axis=1)
44:    combined_img_pil = Image.fromarray(combined_img)
45:    # Save Image
46:    img_path = f”dist/8x{chunk_size}/images_{scale}x/{path}”
47:    if not os.path.exists(img_path):
48:        os.makedirs(img_path)
49:    img_name = f”{i+1}.png”
50:    try:
51:      combined_img_pil.save(f”{img_path}/{img_name}”)
52:      print(f”saved image on {img_path}/{img_name}”)
53:  except PermissionError:
54:     print(f”PermissionError: Cannot save image to {img_path}/{img_name}”)
55:     continue
56:    print(f”data {path} finished \n\n”)
57: weights = [‘0.77tf’, ‘1.54tf’, ‘2tf’, ‘3tf’, ‘4tf’, ‘5tf’, ‘6tf’]
58: times = [‘90sec’, ‘180sec’, ‘300sec’]
59: RBS = [“RB1”, “RB2”, “RB3”]
60: scale = [10]
61: chunk_size = [8]
62: for c in chunk_size:
63:   for s in scale:
64:       for rb in RBS:
65:          for w in weights:
66:            for t in times:
67:              create_image(rb, w, t,s, c)


