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Article History:  Abstract. Due to the uncertainty of soil condition and pile design characteristics, it is always a challenge for 
geotechnical engineers to accurately determine the bearing capacity of piles. The main objective of this study 
is to propose a hybrid model coupling least squares support vector machine (LSSVM) with an improved par-
ticle swarm optimization (IPSO) algorithm for the prediction of bearing capacity of piles. The improved PSO 
algorithm was used to optimize the LSSVM hyperparameters. The performance of the IPSO-LSSVM model was 
compared with seven artificial intelligence models, namely adaptive neuro-fuzzy inference system (ANFIS), M5 
model tree (M5MT), multivariate adaptive regression splines (MARS), gene expression programming (GEP), 
random forest (RF), regression tree (RT) and a stacked ensemble model. Six statistical indices (e.g., coeffi-
cient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), relative root mean 
squared error (RRMSE), BIAS and discrepancy ratio (DR)) were used to evaluate the performance of the mod-
els. The R2, MAE, RMSE, RRMSE and BIAS values of the IPSO-LSSVM model were 1, 4.27 kN, 6.164 kN, 0.005 
and 0, respectively, for the training datasets and 0.9977, 22 kN, 36.03 kN, 0.0275 and –11, respectively, for 
the testing datasets. Compared with the ANFIS, MARS, GEP, M5MT, RF, RT and the stacked ensemble models, 
the proposed IPSO-LSSVM model shows high accuracy and robustness on the test datasets. In addition, the 
sensitivity, uncertainty, reliability and resilience of the IPSO-LSSVM model were also analyzed in this study.
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1. Introduction 
In geotechnical engineering, when the soil condition is 
not enough to support the design load, it is necessary to 
use pile to improve the bearing capacity of the foundation 
(Momeni et al., 2014). However, the traditional pile bear-
ing capacity test has many disadvantages such as time 
consuming and high cost. In addition, static load tests are 
difficult to perform in some cases (Teh et al., 1997). To 
accurately predict the bearing capacity of piles, many em-
pirical models have been developed in recent years. For 
example, Pal and Deswal (2010) studied the bearing capac-
ity of piles by using Gaussian process regression model. 
Sheil and McCabe (2016) conducted a detailed study of 
the behavior of individual pile and pile groups in clay. Li 
et al. (2017) studied the time-dependent bearing capacity 
of a jacked pile. Rezazadeh and Eslami (2017) proposed an 
empirical model for determining shaft bearing capacity of 
semi-deep foundations socketed in rocks. Salgado et al. 
(2017) used an improved soil reaction model to predict 

a one-dimensional pile driving simulation and obtained 
a reliable pile driving formula. Luo et al. (2018) proposed 
a practical analysis method for the pile raft foundation. 
Wang et al. (2018) investigated the bearing capacity of 
large diameter monopiles in sandy soil by conducting a 
series of centrifuge tests.

In recent years, with the development of artificial intel-
ligence (AI), machine learning techniques such as artificial 
neural networks (ANNs), fuzzy logic, adaptive neuro-fuzzy 
inference system (ANFIS), support vector machine (SVM), 
least squares support vector machine (LSSVM), M5 model 
tree (M5MT), multilayer perceptron (MLP), multivariate 
adaptive regression splines (MARS), random forest (RF), 
regression tree (RT), etc., and their combinations with 
evolutionary algorithms (e.g., genetic algorithms (GAs), 
genetic programming (GP), evolution strategies, evolution-
ary programming, ant colony optimization, particle swarm 
optimization (PSO), etc.), have been widely used in many 
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files such as viscosity prediction of TiO2/water nanofluid 
(Ahmadi et al., 2020), estimation of densities and viscosi-
ties of amine-based solutions (Haratipour et al., 2017), nat-
ural gas water content estimation (Baghban et al., 2016a), 
prediction of true vapor pressure of petroleum products 
(Baghban et al., 2016b), modeling of viscosity for mixtures 
of Athabasca bitumen and heavy n-alkane (Baghban et al., 
2016c), estimation of CO2-Brine diffusivity (Bemani et al., 
2020a), prediction of sulfur solubility in supercritical sour 
gases (Bemani et al., 2020b), precipitation estimation of as-
phaltene during different production processes (Baghban 
& Khoshkharam, 2016), estimation of acid solvent solubil-
ity in supercritical CO2 (Bemani et al., 2020c), prediction 
of energy conservation benefits in excess air controlled 
gas-fired systems (Bahadori et al., 2016), determination of 
CO2 absorption in polyionic liquids (Kardani et al., 2018), 
pile bearing capacity prediction (Das & Basudhar, 2006; Lin 
et al., 2009; Kalinli et al., 2011; Baziar et al., 2012; Alkroosh 
& Nikraz, 2012, 2014; Armaghani et al., 2017; Nejad & 
Jaksa, 2017; Murlidhar et al., 2020; Pham et al., 2020; Ben-
bouras et al., 2021; Yong et al., 2021; Amjad et al., 2022), 
scour depth around bridge piers (Najafzadeh & Barani, 
2011; Najafzadeh et al., 2013; Najafzadeh & Azamathulla, 
2013a), scour studies of pile groups (Najafzadeh & Aza-
mathulla, 2013b; Najafzadeh, 2015; Homaei & Najafzadeh, 
2020; Najafzadeh & Oliveto, 2021), estimation of energy 
efficiency of flow-dissipating vortex dropshaft (Najafzadeh 
& Mahmoudi-Rad, 2024). 

For example, Momeni et al. (2014) predicted the pile 
bearing capacity using a hybrid GA-based ANN model. 
Das and Basudhar (2006) investigated the undrained lat-
eral load capacity of piles in clay using an ANN model. Lin 
et al. (2009) investigated the failure potential of highway 
slopes using an ANN model. Kalinli et al. (2011) used ANN 
and ant colony optimization to study the ultimate bearing 
capacity of shallow foundations. Baziar et al. (2012) pre-
dicted the pile shaft resistance by using ANN and nonlin-
ear multi regression models. Alkroosh and Nikraz (2012) 
studied the axial capacity of driven piles in cohesive soils 
by using intelligent computing methods. Alkroosh and Ni-
kraz (2014) developed a new approach for predicting the 
dynamic capacity of piles. Armaghani et al. (2017) used a 
hybrid PSO-ANN model to predict the ultimate bearing 
capacity of piles. Nejad and Jaksa (2017) studied the load-
settlement behavior of single piles using ANNs models and 
CPT data. Pham et al. (2020) used ANN and RF algorithm 
to investigate the ultimate axial bearing capacity of driven 
piles. Yong et al. (2021) developed three soft computing 
techniques, including ANFIS, GP tree-based, and SA-GP to 
predict the ultimate bearing capacity of piles. Amjad et al. 
(2022) predicted the bearing capacity of piles using an ex-
treme gradient boosting algorithm. Murlidhar et al. (2020) 
investigated the effects of PSO and GA on ANN results in 
predicting pile bearing capacity. Benbouras et al. (2021) 
studied the bearing capacity of the driven pile by using 
advanced machine learning techniques. 

In light of the above-mentioned state-of-the-arts, the 
broader scientific literature, as well as the author’s under-

standing, little research so far has dealt with the hybrid 
model which combines an improved PSO algorithm and 
LSSVM for the prediction of pile bearing capacity. There-
fore, this study presents a novel hybrid IPSO-LSSVM model 
to predict the bearing capacity of piles. The improved PSO 
algorithm was used to optimize the LSSVM hyperparame-
ters. The performance of the IPSO-LSSVM model was com-
pared with seven AI models, namely ANFIS, M5MT, MARS, 
gene expression programming (GEP), RF, RT and a stacked 
ensemble model. Six statistical indices were used to evalu-
ate the performance of the models. In addition, the sen-
sitivity, uncertainty, reliability and resilience of the hybrid 
IPSO-LSSVM model were also analyzed in this study.

2. Methodology
2.1. Least squares support  
vector machine (LSSVM)
Assume a given data set ,i ix y    ( )1,2, ...,i N= , where xi 
is the input data, yi is the output data, and N denotes 
the number of training samples. The learning objective of 
LSSVM can be transformed into the following optimization 
problem (Suykens et al., 2001):

Minimize       ( ) T 2

1

1 1,
2 2

N

i
i

J w w wV l V
=

= + ∑   (1)

Subjected to  ( )T , 1, ..., ,i i iy w x b i Nj V= + + =   (2) 

where w is the weight matrix, l is a constant of regulariza-
tion, Vi is a positive slack variable, b is the bias, j(x) is the 
nonlinear transformation that maps input data xi to high 
dimensional feature space. 

According to Mercer’s condition (Mercer, 1909), the 
mapping function j(x) can be characterized by a kernel 
function ( ) ( ) ( )T

,i j i jK x x x xj j= . Therefore, the LSSVM 
model can be written as: 
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The radial basis function (RBF) kernel is often used: 
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where a i is the multiplier; s is the RBF kernel parameter. 

2.2. Improved particle swarm  
optimization (IPSO)
Kennedy and Eberhart first proposed the PSO algorithm in 
1995. In PSO algorithm, the update of the position (xij) and 
velocity (vij) of every particle is carried out by the following 
equations (Kennedy & Eberhart, 1995):

1t t t
ij ij ijx x v−= + ;  (5)

( ) ( )1 1 1
1 1 2 2

t t t t
ij ij ij ij j ijv v c r p x c r g xk − − −= + − + − ,

  
(6)
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where r1 and r2 denote two random numbers; c1 and c2 
denote acceleration coefficients; pij and gj denote the best 
location found by every particle and the whole swarm, re-
spectively. k is the factor of inertia weight. Herein, an im-
proved k was proposed and written as:

( ) max i
end start start

i

n n
n

k k k k
 −

= − +  
 

,  (7) 

where kend is the final inertia weight; kstart is the initial 
inertia weight; ni isthe ith iteration number; nmax is the 
maximum iterations.

2.3. IPSO-LSSVM
In this study, the improved PSO algorithm was used to 
optimize the regularization parameter l and kernel param-
eter s, which play an important role in LSSVM. The main 
steps of the hybrid IPSO-LSSVM algorithm can be briefly 
summarized as follows.

 ■ Step 1: Initialize the population of particles with ran-
dom position and velocities. 

 ■ Step 2: Selection of fitness function. Herein, the root 
mean squared error (RMSE) is taken as the fitness 
function. 

 ■ Step 3: Update the velocity and position of each par-
ticle according to Eqns (5)–(7).

 ■ Step 4: If the stop criteria is satisfied, the procedure 
of calculation ends; otherwise, return to Step 3. 

The flowchart of the hybrid IPSO-LSSVM model is 
shown in Figure 1.

2.4. Adaptive neuro-fuzzy inference  
system (ANFIS)
The architecture of an ANFIS (as shown in Figure 2) is gen-
erally composed of premise and conclusion parts: (i) the 
fuzzy layer, (ii) the rule layer, (iii) the normalization layer, 
and (iv) the defuzzification layer. 

The expressions of the five layers can be written as 
follows (Chiu, 1994).

Layer 1: 

( )1 , 1,2, ..., ; 1,2, ..., ; ,k
j

i
jAO x j m k n i n m= = = = ×  (8)

where xj are the inputs to node j, k
jA
 
are the linguistic 

labels characterized by membership functions (MFs) k
jA .

Layer 2:

( )2 , 1,2, ..., ; 1,2, ..., ,i
j

j
i jAO w x j m i n= = = =   (9)

where wi denotes the firing strength of a rule. 
Layer 3: 
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1
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i
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w
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∑
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where iw  denotes the firing strengths of normalization. 
Layer 4: 

( )4 0 1 1 2 2 ... , 1,2, ..., ,i i i i i
i i i m mO w f w p p x p x p x i n= = + + + + = 

( )4 0 1 1 2 2 ... , 1,2, ..., ,i i i i i
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where { }0 1, , ...,i i i
mp p p  are often referred to as consequent 

parameters. 
Layer 5: 

1
5

1

1

n

i in
ii

i i n
i

i
i

w f
O w f

w

=

=

=

= =
∑

∑
∑

.  (12)

2.5. M5 model tree (M5MT)
The M5MT technique, originally developed by Quinlan 
in 1992, is a robust approach to modeling and predict-
ing phenomena that deals with complex implicit prob-

Figure 1. Flowchart of the IPSO-LSSVM algorithm Figure 2. Structure of ANFIS
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lems by dividing them into smaller ones (Najafzadeh & 
Oliveto, 2021; Homaei & Najafzadeh, 2022). In M5 model 
tree, there are two stages: (i) the input space is divided 
into sub regions, and (ii) the tree is built using the data 
from each sub region. First, the input space is divided into 
sub regions, and the data of each sub region is linearly 
fitted. Based on the input data points of the sub region, 
the regression tree is constructed in the second stage. In 
this tree, the leaves are at the bottom and the roots are 
at the top. 

Reducing standard deviation (RSD) is the criterion in 
the splitting stage of the M5MT, and the expression of 
RSD can be written as follows (Quinlan, 1992): 

( ) ( )i
i

X
RSD sd X sd X

X
= −∑ ,  (13)

where X is the set of samples which enter the node, Xi 
shows the examples’ subset corresponding to ith value of 
the potential set and sd is the standard deviation. In the 
first stage, the M5MT selects the partition with the largest 
RSD after checking all available partitions. However, after 
this process, a larger tree-like structure is obtained. In the 
second stage, the overgrown trees obtained in the first 
stage are pruned and subtrees are used to replace the 
linear regression models. Further descriptions of M5MT 
can be found in Quinlan (1992). 

2.6. Multivariate adaptive regression  
splines (MARS)
As a nonlinear nonparametric regression method, MARS 
models the nonlinear relationships between different vari-
ables through a series of piecewise linear splines of differ-
ent gradients. The details of MARS can be summarized as 
follows (Friedman, 1991).

Considering the general model form of the relationship 
between the input x and the target output y as follows 
(Friedman, 1991):

( ) ( )0
1

M

m m
m

y f x a a B x
=

= = +∑ ,  (14)

where a0 is a constant; am is the coefficient of basis func-
tions (BFs) Bm.

MARS uses the following bilateral truncated power 
functions as the spline BFs (Friedman, 1991): 

( ) ( ) q
qb x t x t±

+
 − = ± −  ,  (15)

where t is the knot location, q is the order of the spline. 
The analysis of variance decomposition of the MARS 

model is given by the following equation (Friedman, 1991): 
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1m

i i
K

f x
=
∑  is over all BFs that involve only 

a single variable. The second sum ( )
2

,
m

ij i j
K

f x x
=
∑  is over all 

BFs that involve exactly two variables. Similarly, the third 
sum ( )

3

, ,
m

ijk i j k
K

f x x x
=
∑  represents (if present) the contribu-

tions from three variable interactions. 
Equation (16) involves the sum of the product of func-

tions, and the form is similar to the following (Friedman, 
1991):

( ) ( ),b x s t s x t
+

 = −  .  (17)

To solve this problem, the strategy is to replace each 
such function with a corresponding truncated cubic func-
tion of the form (Friedman, 1991):
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with t x t− +< < . 

Setting

( ) ( )22 3 ,p t t t t t+ + − + −= + − −

( ) ( )32 ,r t t t t t+ + − + −= − − −

( ) ( )23 2 ,p t t t t t− − + − += − − −

( ) ( )32r t t t t t− − + − += + − −  (19)

causes ( )| , , ,BF x s t t t− +  to be continuous and have contin-
uous first derivatives. More details of MARS can be found 
in Friedman (1991). 

2.7. Gene expression programming (GEP)
The GEP model is a new form of genetic programming 
(GP). In contrast to the GP model, the individuals of the 
GEP model are designed to have a linear string (genome 
or chromosome) of a certain length. According to Ferreira 
(2001), chromosomes contain one or more genes, and a 
gene consists of a head and a tail. A function or terminal is 
a GEP symbol. Both the functions and terminals are stored 
in the head of the genes, while the tail contains only the 
terminals. More details of GEP can be found in Ferreira 
(2001). 

2.8. Random forest (RF)
RF refers to a classifier that uses multiple trees to train and 
predict samples. RF is a supervised learning method that 
builds decision trees on data samples, generates and ac-
cumulates predictions for each sample, and then votes on 
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the best of them. When developing an RF model, two hy-
perparameters need to be determined, namely the depth 
of the decision tree and the number of decision trees. The 
RF algorithm is briefly described as follows (Daneshvar & 
Behnood, 2020): 

(1) The bagging method is used to randomly extract 
samples from the original training set and con-
struct k sample subsets. 

(2) Using the random subspace method, F features are 
randomly extracted from all X feature attributes for 
node splitting, and the regression decision tree is 
constructed.

(3) Based on the concept of ensemble learning, the 
output of each regression decision tree is aver-
aged to obtain the prediction results, as shown in 
Eqn (20) (Daneshvar & Behnood, 2020): 

{ }RF
1

1( ) ( , )
T

t
t

h x h x
T

q
=

= ∑ ,  (20)

where RF( )h x  represents the predicted result, T rep-
resents the number of regression decision trees, 
( , )th xq  represents the output based on qt and x, 
qt represents an independent and identically dis-
tributed random vector, and x represents an inde-
pendent variable.

2.9. Regression tree (RT)
RT has been widely used in machine learning and data 
mining community. Given a target data for prediction, RT 
is constructed by recursively partitioning a data set and 
fitting a simple model to each partition. As a result, the 
partitioning can be represented graphically as a decision 
tree. Regression trees are for dependent variables that 
take continuous or ordered discrete values, with predic-
tion error typically measured by the squared difference 
between the observed and predicted values. In practice, 
the performance of RT during the tree building/prediction 
phase relies heavily on the local mean of a single node 
sample while ignoring global information from different 
nodes, which also plays an important role. More details of 
RT can be found in Breiman et al. (1984).

2.10. Stacked ensemble model
Stacking is an ensemble learning method that combines 
multiple classification or regression models through a 
meta-classifier or a meta-regressor. Specifically, individual 
models were first developed on the training datasets and 
then, based on the results of each model, a meta-learner 
was used to develop the stacked ensemble model. In this 
study, seven AI models including IPSO-LSSVM, ANFIS, 
M5MT, MARS, GEP, RF and RT were first considered to 
develop the models for pile bearing capacity prediction. 
Then, according to the predicted results, three models with 
good performance are selected from the seven models 
to form a stacked ensemble model for more robust com-
parisons. More details of the proposed stacked ensemble 
model can be found in Section 4. 

2.11. Statistical indices
In this study, six statistical indices, namely coefficient 
of determination (R2), root mean squared error (RMSE), 
mean absolute error (MAE), relative root mean squared 
error (RRMSE), BIAS and discrepancy ratio (DR) (Najaf-
zadeh et al., 2016; Najafzadeh & Oliveto, 2021; Homaei 
& Najafzadeh, 2022) were used to evaluate the predic-
tion performance of the models. The expressions of these 
six statistical indices can be written as follows (Najafzadeh 
et al., 2016; Najafzadeh & Oliveto, 2021; Homaei & Na-
jafzadeh, 2022): 
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DR log pred
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 
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 
 

,  (26)

where ,pred iy  and ,obs iy  represent the predicted and ob-
served results, respectively. predy  and obsy  represent the 
average value of the predicted and observed results, re-
spectively. n represents the total sample size.

3. Database 
In this study, the following four parameters of piles, i.e., 
pile diameter (D), embedded length of pile (L), the average 
lateral resistance of pile k( )siq  and ultimate end bearing 
resistance of pile (qpk) were considered as the inputs, while 
the pile bearing capacity (Ruk) was the output. The data-
base collected by Zheng et al. (2006) was used to verify 
the model, and the details of which are summarized in 
Appendix Table A1. 

Table 1. Statistical results of the experimental data 

Parameter Mean Max Min Standard 
deviation

D/mm 485 600 400 66
L/m 39 59 24 10

ksiq /kPa 15 21.1 8.4 4

pkq /kPa 1704 3400 550 824

ukR /kN 1332 2700 450 783
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Table 1 lists the statistical results of the collected ex-
perimental data. The Pearson correlation coefficients be-
tween different parameters are shown in Table 2. As ob-
served from Table 2, there is a significant correlation be-
tween ultimate bearing capacity and four input variables, 
and their correlation coefficients are all greater than 0.7. 

Table 2. Pearson correlation coefficients between different 
parameters

Parameter D/mm L/m ksiq /kPa pkq /kPa ukR /kN

D/mm 1
L/m 0.632 1

ksiq /kPa 0.698 0.671 1

pkq /kPa 0.518 0.452 0.547 1

ukR /kN 0.855 0.805 0.907 0.720 1

4. Results and discussion
4.1. Development of models
In this study, the optimal parameters of the IPSO-LSSVM 
model are as follows: acceleration coefficients c1 = c2 = 2,  
swarm size Np = 10, maximum iterations nmax = 100, and 
the RBF kernel parameter s = 0.7448. The optimal param-
eter of ANFIS and GEP models are shown in Tables 3 and 
4, respectively. 

Table 3. Different parameter types and their values used for 
training ANFIS

ANFIS parameter type Setting

MF type Gaussian
Number of fuzzy rules 4
Number of linear parameters 4
Number of nonlinear parameters 35
Number of training data pairs 50
Number of testing data pairs 30
Number of nodes 41
Total number of parameters 39

Table 4. Optimal parameters of the GEP model

Parameter Setting Parameter Setting

Population size 1000 Chromosome length 50
Linking function addition 

(+)
Number of genes 20

Gene transposition 
rate

0.7 IS transposition rate 0.3

Gene 
recombination rate

0.7 RIS transposition 
rate

0.3

Two-point 
recombination rate

0.4 Head size 15

One-point 
recombination rate

0.4 Mutation rate 0.1

4.2. Performance comparison  
of seven AI models
This section presents the performance comparison results 
of seven AI models. The forecasting performance compari-
sons of these seven AI models are displayed in Figure 3, 
Tables 5 and 6, respectively. Figure 4 to Figure 6 plot the 
Violin diagram, Taylor diagram and DR diagram of these 
seven AI models, respectively. 

Table 5. Performance comparison of seven AI models on the 
training set

Model MAE/kN RMSE/kN RRMSE R2 BIAS

IPSO-LSSVM 4.27 6.164 0.005 1 0
MARS 20.76 28.713 0.021 0.999 0
GEP 195.30 285.77 0.213 0.773 –61
M5MT 21.20 33.374 0.025 0.998 0
RF 0 0 0 1 0
RT 0 0 0 1 0
ANFIS 0.03 0.064 0 1 0

a) Training

b) Testing

Figure 3. Performance comparison among seven AI models
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As observed from Figure 3, Tables 5 and 6, MARS, 
M5MT, RT, RF, ANFIS and IPSO-LSSVM models all have 
good effects in the training stage, where RT model (R2 = 
1, RMSE = 0 kN, MAE = 0 kN, RRMSE = 0, BIAS = 0) and 
RF model (R2 = 1, RMSE = 0 kN, MAE = 0 kN, RRMSE = 
0, BIAS = 0) had the best effect, followed by IPSO-LSS-
VM model (R2 = 1, RMSE = 6.164 kN, MAE = 4.27 kN, 
RRMSE = 0.005, BIAS = 0). However, the training effect 
difference between IPSO-LSSVM and RT and RF models is 
very small and can be considered to be almost the same. 

In the test stage, IPSO-LSSVM model (R2 = 0.9977, RMSE = 
36.03 kN, MAE = 22kN, RRMSE = 0.0275, BIAS = –11) has 
the best effect and the closest distance to the observed 
value, which indicates that although the training effect of 
IPSO-LSSVM is slightly inferior to that of RF and RT mod-
els, its prediction ability is the most outstanding.

In addition, it can be seen from Figure 4 that in the 
training stage and the test stage, the data structure of 
the GEP model and the observed value is quite different, 
while the data structure of MARS, M5MT, RT, RF, ANFIS 
and IPSO-LSSVM models and the observed value are the 
same, indicating that these models have better prediction 
effect. As can be seen from Figure 5, the closer the Taylor 
chart model is to the observed value, the better the model 
effect is. It is found that in the training stage and the test 
stage, the GEP model has the farthest distance from the 
observed value and the worst effect. As can be seen from 
Figure 6, the closer DR is to 0, the better the prediction 
effect is. It can be found that in the training stage, the DR 
values of MARS, M5MT, RF, RT, ANFIS and IPSO-LSSVM 
models are all closely around 0, among which RT and RF 
are the best. However, in the test phase, the DR values of 
IPSO-LSSVM model are closest to 0, indicating that the 
IPSO-LSSVM model has the best prediction effect.

Figure 4. Violin diagram of seven AI models Figure 5. Taylor diagram of seven AI models

Table 6. Performance comparison of seven AI models on the 
test set

Model MAE/kN RMSE/kN RRMSE R2 BIAS

IPSO-LSSVM 22 36.03 0.0275 0.9977 –11
MARS 51 64.839 0.0494 0.9930 –16
GEP 237 317.342 0.2419 0.8807 –94
M5MT 44 60.752 0.0463 0.9951 –29
RF 20 42.817 0.0326 0.9968 –13
RT 30 70 0.0534 0.9915 –25
ANFIS 35 73.883 0.0563 0.9905 –24

a) Training a) Training

b) Testing b) Testing
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4.3. Development of stacked ensemble model
As can be seen from the above, out of the seven AI mod-
els, IPSO-LSSVM, RF, and RT models performed better, so 
we used these three AI models to form a stacked ensem-
ble model for more robust comparisons. RF and RT models 
were used as single-based algorithms, and the IPSO-LSS-
VM model was employed as a meta-leaner in the stacked 
ensemble model. Five-fold cross-validation is used for the 
evaluation of the proposed models. The flowchart of the 
methodology is presented in Figure 7. The performance of 
the stacked ensemble model is shown in Table 7. 

It can be seen from Table 7 that the R2, RMSE, MAE, 
RRMSE and BIAS values of the stacked ensemble model 
are 0.995, 23.826 kN, 56 kN, 0.0417 and 0, respectively, for 
the training datasets and 0.9407, 120 kN, 184 kN, 0.1402 
and 99.4834, respectively, for the test datasets. Compared 
with the RT, RF and IPSO-LSSVM models, the performance 
of the stacked ensemble model is not good, indicating 
that the stacked ensemble model is not suitable for the 
datasets used in this study. 

4.4. Compared with models in literature
The superior performance of the IPSO-LSSVM model can 
be attributed to its powerful global search capability, espe-
cially when dealing with non-linear and high-dimensional 
data sets. The model adopts dynamic adjustment strategy 
to accelerate the convergence speed and reduce the risk 

of overfitting. This approach enhances the generalization 
power of the model, enabling it to adapt and perform well 
in a variety of prediction problems. Table 8 lists the com-
parison between the predicted results in this study and 
those in the literature. It can be seen from Table 8 that 
the R2 of IPSO-LSSVM model is the highest, indicating that 
the IPSO-LSSVM model proposed in this study has certain 
advantages compared with other research models.

Figure 6. DR diagram of seven AI models

Figure 7. Flowchart for stacked ensemble model 
implementation

a) Training

b) Testing

Table 7. Performance of the stacked ensemble model

Statistical indices Training set Test set

R2 0.995 0.9407
MAE/kN 23.826 120
RMSE/kN 56 184
RRMSE 0.0417 0.1402
BIAS 0 99.4834
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4.5. Sensitivity analysis
To investigate the influence of the input parameters (i.e., D, 
L, ksiq  and qpk) on the prediction performance, four hybrid 
IPSO-LSSVM models were developed with different kinds 
of inputs. The statistical indices of the IPSO-LSSVM model 
on the training and test data sets are shown in Table 9.

As observed from Table 9, regardless of the training 
or testing datasets, the IPSO-LSSVM model with all the 
parameters has the highest R2 and the lowest MAE, RMSE, 
RRMSE and BIAS, indicating that the IPSO-LSSVM with all 
the parameters has the best performance. For the test data 
sets, the R2 of the IPSO-LSSVM model without D is 0.7601 
lower than that of the IPSO-LSSVM with all parameters. 
The MAE, RMSE and RRMSE values of IPSO-LSSVM model 
without D are greater than those of the IPSO-LSSVM with 
all parameter, indicating that pile diameter D has the most 
significant influence on pile bearing capacity.

4.6. Performance of uncertainty,  
reliability and resilience analysis
In the process of using IPSO algorithm to optimize LSS-
VM, a number of RBF kernel parameters are generated. In 
this study, five typical kernel parameters (e.g., s = 0.7448, 
0.3189, 0.0174, 0.8538, 0.4482, respectively) are selected 
for comparative analysis in three aspects: uncertainty, reli-
ability and resilience. The index U95 is used for uncertainty 
analysis. Specifically, U95 restricts the uncertainty of pile 
bearing capacity Ruk at a 95% confidence level. Obviously, 
the smaller the U95, the more accurate the pile bearing ca-
pacity Ruk. The other two indices, Reliability and Resilience, 
are used for reliability and resilience analysis respectively. 
The higher the value of these two indices, the more ac-
curate the prediction result. A brief introduction to un-
certainty, reliability and resilience analysis is given below 
(Saberi-Movahed et al., 2020). 

Uncertainly analysis (Saberi-Movahed et al., 2020):

( ) ( )2 2

1 1

1.96 ˆU95
N N

i i i
i i

y y y y
N

= =

 
= − + − 
 

∑ ∑ ,  (27)

where yi and ˆ iy  are the ith measurement and the ith pre-
dicted values, respectively, y  is the average of the meas-
urement, N is the total number of samples. 

Reliability analysis (Saberi-Movahed et al., 2020): 

1

100%Reliability
N

i
i

k
N

=
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where ki is determined by the relative average error (RAE), 
which is defined as a vector whose ith component can be 
written as (Saberi-Movahed et al., 2020):

ˆ
RAE i i

i
i

y y
y
−

= .  (29)

If RAEi is less than 0.05 (i.e., 5% error) set for this study, 
ki is 1, otherwise it is 0.

Resilience analysis (Saberi-Movahed et al., 2020): 
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where ri is the probable number of times the prediction 
model can recover from an inaccurate estimate to an ac-
curate estimate in the ith data sample. 

Table 8. Comparison with other models

Model Reference R2

IPSO-LSSVM This study 0.998
GA-ANN Momeni et al. (2014) 0.990
Gaussian process (GP) 
regression Pal and Deswal (2010) 0.950

ANN Pham et al. (2020) 0.811
RF Pham et al. (2020) 0.866
ANFIS Yong et al. (2021) 0.910
GP Yong et al. (2021) 0.971
SA-GP Yong et al. (2021) 0.981
XGBoost Amjad et al. (2022) 0.955
AdaBoost Amjad et al. (2022) 0.950
DT Amjad et al. (2022) 0.925
SVM Amjad et al. (2022) 0.878
PSO-ANN Ramesh et al. (2020) 0.993
DNN Benbouras et al. (2021) 0.995
ELM Benbouras et al. (2021) 0.869
Lasso Benbouras et al. (2021) 0.925
PLS Benbouras et al. (2021) 0.939
Kridge Benbouras et al. (2021) 0.890
Ridge Benbouras et al. (2021) 0.885
LS Benbouras et al. (2021) 0.886
SVR Benbouras et al. (2021) 0.868

Table 9. Single parameter sensitivity analysis of the IPSO-LSSVM model

Model
Training Testing

R2 MAE/kN RMSE/kN RRMSE BIAS R2 MAE/kN RMSE/kN RRMSE BIAS
With all parameters 1 4.27 6.164 0.005 0 0.9977 22 36.03 0.0275 –11
Without D 0.9996 28 32.42 0.0241 0 0.7601 195 370 0.282 –72.96
Without L 0.9997 14 17.57 0.0131 0 0.9406 83 184 0.14 –38.37

Without ksiq 0.9987 27 39.17 0.0291 0 0.7709 177 357 0.272 –75.02

Without pkq 0.9993 21 26.78 0.0199 0 0.8476 140 295 0.225 –53.71
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The uncertainty, reliability and resiliency results of the 
proposed RBF network are shown in Table 10.

It can be seen from Table 10 that the U95, reliabil-
ity and resilience values of the IPSO-LSSVM (s = 0.7448) 
model are 219.094, 100% and 100%, respectively, for the 
training datasets, and 271.084, 90% and 98%, respectively, 
for the testing datasets. In the testing stage, compared to 
other IPSO-LSSVM models, the U95 of the IPSO-LSSVM 
(s = 0.7448) model is the smallest, while reliability and 
resilience are the largest, indicating that the IPSO-LSSVM 
model (s = 0.7448) has the best predictive performance. 
Meanwhile, it can be found that the values of different 
kernel parameters will affect the prediction performance of 
the model, so it is necessary to choose the optimal kernel 
parameters. 

5. Conclusions

This study presents a hybrid IPSO-LSSVM model for the 
prediction of bearing capacity of piles. The improved PSO 
algorithm was used to optimize the LSSVM hyperparam-
eters. The performance of the IPSO-LSSVM model was 
compared with seven AI models, ANFIS, M5MT, MARS, 
GEP, RF, RT and a stacked ensemble model. Six statistical 
indices (e.g., R2, MAE, RMSE, RRMSE, BIAS and DR) were 
used to evaluate the performance of the models. The R2, 
MAE, RMSE, RRMSE and BIAS values of the IPSO-LSSVM 
model were 1, 4.27 kN, 6.164 kN, 0.005 and 0, respec-
tively, for the training datasets and 0.9977, 22 kN, 36.03 
kN, 0.0275 and –11, respectively, for the testing datasets. 
Compared with the ANFIS, MARS, GEP, M5MT, RF, RT and 
the stacked ensemble models, the proposed IPSO-LSSVM 
model shows high accuracy and robustness on the test 
datasets.

Compared with the literature results, the IPSO-LSSVM 
model has higher prediction accuracy, and the R2 of the 
test datasets is 0.998. 

The sensitivity analysis results show that the MAE, 
RMSE and RRMSE values of IPSO-LSSVM model without 
D are greater than those of the IPSO-LSSVM with all pa-
rameter, indicating that pile diameter D has the most sig-
nificant influence on pile bearing capacity. 

The uncertainty, reliability and resiliency results show 
that the U95, Reliability and Resilience values of the IPSO-
LSSVM (s = 0.7448) model are 219.094, 100% and 100%, 
respectively, for the training datasets, and 271.084, 90% 
and 98%, respectively, for the testing datasets. In the test-
ing stage, compared to other IPSO-LSSVM models, the 
U95 of the IPSO-LSSVM (s = 0.7448) model is the small-
est, while Reliability and Resilience are the largest, indicat-
ing that the IPSO-LSSVM model (s = 0.7448) has the best 
predictive performance. 

One limitation of this study is that the proposed model 
is only applicable to the current range of data and pa-
rameters, and cannot guarantee high prediction accuracy 
when the data exceeds the predetermined range. In addi-
tion, the values of different kernel parameters will affect 
the prediction performance of the model, so it is necessary 
to choose the optimal kernel parameters. Therefore, the 
accuracy of the proposed IPSO-LSSVM model still needs 
to be improved, and more data samples are needed for 
calibration.

Author contribution 
Li Tao: Conceptualization, Methodology, Writing-original 
draft. Xinhua Xue: Conceptualization, Methodology, Writ-
ing-reviewing, Editing, Supervision. 

Funding 
No funding is associated with this article. 

Data availability 
Data will be made available on reasonable request.

Conflict of interest 
The authors declare that they have no conflict of interest. 

Ethical approval 
This article does not contain any studies with human par-
ticipants or animals performed by any of the authors.

Table 10. Uncertainty, reliability and resiliency results of the proposed RBF network

Model
Training Testing

U95 Reliability 
(%)

Resilience 
(%) U95 Reliability

(%)
Resilience

(%)

IPSO-LSSVM (s = 0.7448) 219.094 100 100 271.084 90 98
IPSO-LSSVM (s = 0.3189) 219.138 96 99 271.277 77 85
IPSO-LSSVM (s = 0.0174) 219.087 100 100 289.97 70 70
IPSO-LSSVM (s = 0.8538) 219.157 98 98 271.258 86.7 80
IPSO-LSSVM (s = 0.4482) 219.089 100 100 271.105 90 80
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APPENDIX

Table A1. Experimental datasets 

Datasets No. D/mm L/m ksiq /kPa pkq /kPa ukR /kN

Training

1 500 47 20.7 1400 1900
2 500 45 18.5 1400 1650
3 500 47 20.8 2000 2000
4 500 45 19.2 2000 1800
5 400 39 9.345 3000 800
6 500 31 8.5 600 500
7 400 28 13 800 500
8 550 51 19.9 3000 2500
9 400 24 12.8 850 450
10 500 30 12.9 850 900
11 500 35 11.7 1900 1050
12 500 29 12.8 1800 1050
13 400 27 10.4 1300 500
14 400 30 12 1300 500
15 500 26 13.3 1800 900
16 500 46 13.3 800 1100
17 600 57 18.5 2300 2700
18 400 38 11.4 1300 700
19 500 40 11.6 1300 1000
20 500 47 12.6 1000 1050
21 500 49 13.5 800 1150
22 400 34 11.5 1000 600
23 400 27 10.3 1200 510
24 400 31 10.5 1200 550
25 600 38.5 21 3200 2500
26 500 47 21.1 1400 1900
27 500 45 18.3 1300 1650
28 500 47 20.1 2100 2000
29 500 48 19.2 2000 1800
30 400 39 9.2 3000 800
31 400 40 9.1 3000 800
32 550 51 19.8 3000 2500
33 550 52 20.1 3000 2500
34 500 32 8.4 550 500
35 500 30 8.6 550 500
36 400 26 12.7 800 450
37 400 25 12.6 800 450
38 600 59 18.5 2400 2700
39 600 58 18.7 2400 2700
40 600 38 21.1 3400 2500
41 600 39 20.9 3400 2500
42 500 46 20.5 1400 1900
43 500 46 18.4 1400 1650
44 500 46 21 2000 2000
45 500 46 19.1 2000 1800
46 400 40 9.3 3000 800
47 500 31 8.5 600 500
48 400 28 13 800 500
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Datasets No. D/mm L/m ksiq /kPa pkq /kPa ukR /kN

Training

49 550 51 19.9 3000 2500
50 400 24 12.8 850 450
51 500 30 12.9 850 900
52 500 35 11.7 1900 1050
53 500 29 12.8 1800 1050
54 400 27 10.4 1300 500
55 400 30 12 1300 500
56 500 26 13.3 1800 900
57 500 46 13.3 800 1100
58 600 57 18.5 2300 2700
59 400 38 11.4 1300 700
60 500 40 11.6 1300 1000

Testing

61 500 47 12.6 1000 1050
62 500 49 13.5 800 1150
63 400 34 11.5 1000 600
64 400 27 10.3 1200 510
65 400 31 10.5 1200 550
66 600 38.5 21 3200 2500
67 500 47 21.1 1400 1900
68 500 45 18.3 1300 1650
69 500 47 20.1 2100 2000
70 500 48 19.2 2000 1800
71 550 52 19.8 2900 2600
72 550 53 20 2900 2600
73 600 59 19 2500 2700
74 600 36 21.1 3400 2500
75 400 26 10.5 1300 500
76 400 31 12 1400 600
77 500 30 12.7 850 800
78 500 36 11.8 1800 1100
79 500 28 12.8 1900 1150
80 400 39 11.3 1300 700

End of Table A1


