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Article History:  Abstract. Fires are one of the most dangerous hazards and the leading cause of death in construction sites. This pa-
per proposes a video-based firefighting mobile robot (FFMR), which is designed to patrol the desired territory and will 
constantly observe for fire-related events to make sure the camera without any occlusions. Once a fire is detected, the 
early warning system will send sound and light signals instantly and the FFMR moves to the right place to fight the fire 
source using the extinguisher. To improve the accuracy and speed of fire detection, an improved YOLOv3-Tiny (namely 
as YOLOv3-Tiny-S) model is proposed by optimizing its network structure, introducing a Spatial Pyramid Pooling (SPP) 
module, and refining the multi-scale anchor mechanism. The experiments show the proposed YOLOv3-Tiny-S model 
based FFMR can detect a small fire target with relatively higher accuracy and faster speed under the occlusions by out-
door environment. The proposed FFMR can be helpful to disaster management systems, avoiding huge ecological and 
economic losses, as well as saving a lot of human lives.
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1. Introduction
Construction sites are extreme hazardous due to its dy-
namic, temporary and decentralized nature (Li et al., 2015). 
Among the numerous risks and accidents facing the con-
struction workers, fires are the most dangerous hazards 
and the leading cause of death in construction. According 
to the Campbell’s Data Report, an average of 3840 fires 
occurred in buildings under construction, killing 4 people, 
hurting 49 more and causing the direct economic loss of 
0.3 billion yuan every year from 2013 to 2017 (Campbell, 
2020). In China, 252 thousand fires were reported in 2020, 
of which the number of fires on the construction sites 
accounted for about 1.1% (Management & Emergency, 
2020), resulting in more than 296 people injured and 259 
people died (Bosheng, 2022). The construction site is usu-
ally in a state of high fire risk, which is mainly due to the 
following two reasons. The first one is that there is lot of 
hot work (such as electric welding and cutting tasks, etc.) 
on the construction site, especially in the crossing areas 
when multi-tasks are underway, which is easy to ignite 
combustibles and cause fire (CE Safety, 2020; Fire Safety 

Matters, 2020). The second reason is the difficulty of fire 
control and timely safety management, due to the main 
challenges of early fire detection and confusion created 
in emergency response (Su et al., 2021). For instance, a 
fire accident took place at the construction site of a hotel 
(Palmer, 2012). The construction workers attempted to put 
out the fire initially by themselves, so they delayed notify-
ing fire officials. By the time firefighters arrived, the fire has 
spread into a fully developed stage due to the wind. These 
highlight that lack of fire information and the bad deci-
sion making are critical threats to firefighting and rescue 
operations (Zhang et al., 2022).

To promptly report the fire while it is in an early stage 
is an important way to minimize the damage caused by 
a fire accident (Ahn et al., 2023). In the beginning, early 
fire detection and warning methods were done by using 
sensor equipment (such as infrared, ion, or optical sensors, 
etc.) and video surveillance (Qiu et al., 2018). Current fire 
alarm sensors capture flame or smoke with the help of 
light, temperature, smoke or gas signals to judge whether 
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a fire occurs (Hong et al., 2019). However, the sensors (like 
temperature detectors, smoke detectors, thermal cameras 
etc.) have low sensitivity and poor prediction accuracy be-
cause of the detection distance and installation position, 
especially in large space environment. To cope with these 
limitations, numerous video-based fire detection methods 
have been proposed and applied in this field (Muhammad 
et al., 2018; Jiao et al., 2019; Wu et al., 2019; Yang et al., 
2019; Xie et al., 2020; Xu et al., 2020), which are motivated 
by the encouraging advantages such as lower cost, larger 
coverage of surveillance area, less human interference and 
more available details like fire size, location, and degree of 
burning (Muhammad et al., 2018). Besides, the light gener-
ated by the combustion of flame propagates faster than 
the smoke or heat diffusion, which is more suitable for 
video fire detection. Despite these advantages, they still 
encounter some problems, e.g., the occlusion of hot work 
under scaffolding, the long warning distance between 
fixed cameras and operation areas, the received untimely 
fire alarming due to construction noise and the impossi-
bility to put out the fire instantly. For example, fixed cam-
eras may detect a fire at first, but they cannot put it out 
as there is no fire extinguishing devices equipped with. 
While the fire spreads quickly, which may cause serious 
consequences. Therefore, to control the fire with minimum 
losses, early detection of fire and a timely response (such 
as early warning and firefighting) are of paramount inter-
est and helpful to the onsite safety management.

To address these challenges, mobile robotic systems 
capable of autonomous navigation may provide an alter-
native. In the past years, a variety of integrated robotic 
systems that fuse visual and sensor data have been ap-
plied in the construction industry, including: (1) cleaning 
robot, for instance, combining a façade cleaning robot 
with a floor cleaning robot (Vishaal et al., 2018) and de-
veloping portable and cheap window cleaning robot (Mir-
Nasiri et al., 2018) to improve the façade cleaning robots; 
(2) inspection robot, for example, developing facade in-
spection robot to detect visible cracks (So et al., 1996) or 
assist wall inspection (Tso & Feng, 2003); (3) construction 
waste recycling robot, such as a vision-based robotic sys-
tem for automatic nails and screws recycling (Wang et al., 
2019) or on-site construction and demolition waste sort-
ing and recycling (Wang et al., 2020); (4) robotic welding 
of medium-thickness plate  (Geng et al., 2023); (5) robotic 
navigation for surveillance and security (Di Paola et al., 
2010; Park et al., 2016); (6) robotic tunnel inspection and 
maintenance (Victores et al., 2011), etc. However, comput-
er vision-based robots for fire detection in construction 
field remain poorly explored.

To address this issue, our research presents a proto-
type of firefighting mobile robot (FFMR) based on com-
puter vision technology to detect, warn and handle fire 
accidents, where a YOLOv3-Tiny-S model (YOLO is short 
for You Only Look Once) based on YOLOv3-Tiny model is 
developed for an accurate fire detection. Once a fire is de-
tected, the early warning system will send warning signals 

instantly and the FFMR moves to the right place to fight 
the fire source using the extinguisher. Thus, the FFMR can 
accurately handle the fire accident as early as possible. The 
main contributions of the proposed method are as follows:

(1) A dataset with various scenarios of construction 
fire for the fire detection area is obtained, which 
can be used to learn the important features for 
predicting accurately and over-coming over-fitting 
problems.

(2) A YOLOv3-tiny-based improved fire detection ap-
proach to achieve a real time fire detection on 
construction sites with no obvious decline on de-
tection accuracy, which has successfully optimized 
the YOLOv3-Tiny with the trade-off between com-
putational complexity and performance.

(3) A prototype of firefighting mobile robot (FFMR) 
based on computer vision technology is proposed 
to patrol the desired territory and will constantly 
observe for fire-related events to make sure the 
camera without any occlusions.

(4) The network structure of the proposed YOLOv3-
Tiny model is optimized by introducing a Spatial 
Pyramid Pooling (SPP) module and refining the 
multi-scale anchor mechanism, which has more ac-
curacy for the small fire detection than the other 
detection networks with comparable speed.

The rest of this paper is organized as follows. Section 
2 reviews the current applications of robots on firefight-
ing and computer vision-based fire detection. Section 3 
elucidates the research methodology. Section 4 presents 
the results of a case study to validate the effectiveness and 
feasibility of our proposed approach. Section 5 discusses 
the limitations of the study and potential future work. Sec-
tion 6 gives the conclusions.

2. Literature review
In this section, we first review the applications of mobile 
robots in firefighting. Then, we critically discuss the cur-
rent computer vision-based methods reported in fire de-
tection along with their strengths and weaknesses. During 
the process, we briefly highlight our approach to solving 
the problems of some of the current methods for early fire 
detection and prevention.

2.1. The applications of robots on firefighting
Fire detection and prevention is an important issue in the 
preservation of forests, crops and buildings (Roberto et al. 
2013). At the beginning, many approaches based on sta-
tionary wireless sensor networks (WSN) were proposed 
to detect a fire occurrence (Hefeeda & Bagheri, 2007; Liu 
et al., 2009). But a large number of sensors will be needed 
to monitor a forest or a building, which attracts the use of 
mobile robots due to their mobility and large area cover-
age. Then, a growing number of mobile robots have suc-
cessfully applied on firefighting. One of the future research 
directions is how to make robots more intelligent (Wang 
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et al., 2017). Some studies focused on robot components 
such as designing protectable leg mechanisms of multi-
legged robots for firefighting (Zhang et al., 2018). Moreo-
ver, various studies provided computer vision algorithms 
to support the control of robots, such as localizing the wa-
ter spray in a pair of infrared cameras (McNeil & Lattimer, 
2017), using infrared image feedback for fire horizontal 
position aiming (Zhu et al., 2020a), predicting falling posi-
tion of jet trajectory in fire extinguishing (Zhu et al., 2020b) 
and accurately classifying fire, smoke, and their thermal 
reflections using thermal images (Kim et al., 2016). Besides, 
some studies explored the application of swarm intelli-
gence on multi-robot systems of firefighting (Innocente & 
Grasso, 2019). Owing to the innovations on the hardware 
and software, several intelligent firefighting robots were 
designed in the existing studies. For instance, Madhevan 
et al. (2017) developed a wireless automatic fire fighting 
surveillance robot that could traverse autonomously in the 
hazardous environment and locate the victim. Ando et al. 
(2018) proposed a novel hose type robot, which could fly 
directly into the fire source via a water-jet. Li et al. (2019) 
developed a fire reconnaissance robot to offer important 
fire information to fire fighters. These robots integrated 
technologies such as ZigBee, thermal imaging and aug-
mented reality.

In brief, the above-mentioned studies improved the 
intelligence of robots in several aspects, however, com-
puter vision-based robots for fire detection in construc-
tion field remain poorly explored. Considering the complex 
environment on site (e.g., narrow space, unsafe scaffolds, 
severe occlusions, highly dynamic situations) (Edirisinghe, 
2019), fire inspection and treatment at the initial stage is 
also a difficult task for robots. Therefore, the application 
of robots on construction firefighting should be further 
developed in this research.

2.2. Computer vision-based flame detection
Recent advances in computer vision technology have re-
sulted in a variety of methods for fire detection. Existing 
studies on image/video-based flame detection mainly 
focus on improving accuracy and reducing false alarms. 
Some research used machine learning-based methods 
such as extreme learning machine (Prema et al., 2018) and 
Gaussian mixture model (Han et al., 2017; Li et al., 2021); 
however, the images/videos were pre-processed with 
hand-crafted features (e.g. color, texture) and the compu-
tational requirements were high with the added models. 
Then many studies have turned to convolutional neural 
networks (CNNs)-based deep learning methods since a 
deep CNN won the champion in the famous ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) com-
petition in 2012 (Krizhevsky et al., 2017). CNN not only 
has the ability to perform feature extraction and classifica-
tion within one network (Pincott et al., 2022), but also re-
place the hand-designed features and learn the complete 
characteristics of objects (Wu et al., 2019). Thus, numer-

ous CNN-based video fire detection methods (including 
R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), 
Faster R-CNN (Ren et al., 2016), improved Faster R-CNN 
(Chaoxia et al., 2020), etc.) have been proposed over the 
past years for better detection performance. Despite their 
great success in the fire detection, there are still some limi-
tations during their practical applications. The aforemen-
tioned methods utilized region-based approaches which 
divide the object detection into two stages. At first stage, 
many region proposals are generated, and then each of 
them will be input to a CNN model for the classification 
and prediction of objects (Chen et al., 2022). Therefore, 
the two-stage methods will cost lots of time and comput-
ing resources (Wu et al., 2019). Moreover, these methods 
might lead to false alarms if there were fire-like objects.

To address these limitations, some one-stage meth-
ods including YOLO (You Only Look Once) (Redmon et al., 
2016; Redmon & Farhadi, 2017), SSD (Single Shot Multi-
box Detector) (Liu et al., 2016), etc. for object detection 
are proposed, where the detection task is regarded as 
a regression problem and it achieves end-to-end tar-
get detection without complex pipeline. To name a few, 
Nguyen et al. (2021) developed a real-time fire detection 
and alarm system based on SSD algorithm. Zhan et al. 
(2023) proposed an improved SSD to detect a flame for 
the limited detection distance, delayed reaction and high 
false alarm rate of previous flame detection systems. Shen 
et al. (2018) detected flame by optimizing YOLO network 
model. Sridhar and Sathiya (2021) used YOLOv2 to de-
tect early electrical fire. Zhang et al. (2021) combined the 
attention mechanism with YOLOv3 to improve the accu-
racy of flame detection. The YOLO algorithm has been 
constantly improved and the latest is YOLOv3, which 
uses the K-means clustering method to automatically se-
lect the best initial regression frame for the data set (Yi 
et al., 2019). To improve both speed and accuracy, many 
improved fire classification and detection models based on 
different YOLO network models have been developed (Wu 
et al., 2022; Yar et al., 2023; Chen et al., 2023). For instance, 
Li et al. (2022) proposed an improved YOLOv4-tiny model, 
which obtained a higher average detection accuracy than 
the YOLOv4-tiny, YOLOv5-s, and YOLOv7-tiny ones. Al-
though the accuracies of these one-stage methods are a 
little lower than those of the two-stage methods, they can 
achieve faster detection speed. In general, YOLO achieves 
a higher mean average precision (mAP) than other real-
time systems (Chang et al., 2010).

In summary, YOLOv3 and YOLOv4 stand out for their 
improved accuracy, especially for small objects, making 
them suitable for diverse applications. While YOLOv4 in-
troduces advanced techniques, increasing computational 
requirements. Considering the real-time speed, we se-
lect YOLO method for the fire detection and will make 
improvements based on YOLOv3-Tiny model, then, a YO-
LOv3-Tiny-S model is proposed to meet a real-time fire 
detection with satisfied accuracy.
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3. Research approach
Several techniques were developed to for the improved 
accuracy and speed of fire detection, especially for the 
small fires. Here, a brief overview of the proposed method 
is proposed as presented in Figure 1.

As illustrated in Figure 1, Firstly, the proposed FFMR 
patrolled the desired territory on the construction site 
and captured live video sources from its fixed camera.  
Secondly, the input images were resized to 416×416 pixels 
using the improved YOLOv3-Tiny model for fire detection. 
Meanwhile, the FFMR sent timely early warning and then 
put the fire out with the fire extinguishing if a fire was 
detected. The scopes of this study were (1) to optimize 
the YOLOv3-Tiny model with the trade-off between com-
putational complexity and performance for onsite fire de-
tection and (2) to design a prototype of intelligent FFMR, 
which can accurately detect fire, send early warning and 
put out the fire as soon as possible during its patrol in-
spections. To achieve these two goals, the detailed de-
scriptions of our proposed methodology are given in the 
following subsections.

3.1. YOLOv3-Tiny-S-based fire detection
YOLOv3 is an improved version of YOLO series, evolved 
from the YOLO (Redmon et al., 2016) and YOLOv2 (Red-
mon & Farhadi, 2017) networks, which is more effective 
for detecting small targets (Redmon &Farhadi, 2018). The 
detection accuracy of YOLOv3 is relatively high, while their 
real-time performance on low performance devices or PCs 
is not ideal due to their complex network structure (Xiao 
et al., 2019). As a simplified model of YOLOv3, YOLOv3-

Tiny reduces the depth of the convolutional layer and oc-
cupies less memory, which greatly improved the running 
speed. Figure 2 illustrates the basic network architecture 
of YOLOv3-Tiny, where its backbone network has only 7 
convolutional layers and 6 pooling layers. As shown in 
Figure 2, a small number of 1×1 and 3×3 convolutional 
layers are used to extract the features, and the step sizes 
of the first 5 pooling layers and the last 1 pooling layer are 
2 and 1 to achieve dimensionality reduction, respectively. 
For instance, the input image is 416×416 pixels and then 
the output one is 13×13 pixels via 5 maximum pooling 
layers. In the prediction part, the feature fusion method 
is adopted, which is detected by two feature maps with 
13×13 pixels and 26×26 pixels, respectively.

We have tested the performance of YOLOv3-Tiny for 
fire detection on our proposed FFMR. Results show that al-
though the simplified network improves the fire detection 
speed, the detection accuracy is much lower. Firstly, the 
feature extraction ability of fire is not ideal. And secondly, 
the detection performance for small fire targets is poor. 
To better deal with the trade-off between the accuracy 
and real-time performance of YOLOv3-Tiny, the following 
improvements are made in the proposed YOLOv3-tiny-S 
model: (1) optimizing the network structure to enhance 
the feature extraction ability of fire; (2) adding the Spa-
tial Pyramid Pooling (SPP) module to improve the detec-
tion accuracy of fire; (3) adopting the multi-scale anchor 
mechanism to increase the detection accuracy of small fire; 
(4) using K-means clustering method to generate suitable 
priori bounding boxes. In this way, the accuracy of the 
proposed model detection will increase.

Figure 1. Overall process of the proposed method
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3.1.1. Network structure optimization

The Max-pooling layer can reduce the image size and ex-
tract key information. However, the pooling window only 
retains the maximum feature of fires, which means some 
fire features are lost. In particularly, the complex back-
ground environment of the construction site may interfere 
with the flame detection. Therefore, the maximum pooling 
layer is replaced by a 3×3 convolutional layer with a step 
size of 2 to retain more fire features. By adding Batch Nor-
malization (BN) on all convolutional layers, the vanishing 
gradient problem can be solved to some extent. Finally, 
BN is applied to the Leaky ReLu activations, as shown in 
Figure 3. Compared with the pooling layers, the convolu-
tional layers can retain more fire features, which helps the 
network to further extract features. While the additional 
convolution layers will increase the scale of layer param-
eters, which may cause greater computation. Based on the 
network structure of ResNet, a 1×1 convolution kernel is 
introduced, which is applied to decrease the number of 
channels, reduce the parameters of convolution kernel, 
and then simplify the network model. In addition, it al-
lowed for increasing the depth of the network and im-
proving the representation ability of the model. Therefore, 
the 11th and the 12th convolutional layers in the network 
structure of YOLOv3-Tiny are respectively resized as 3×3 
and 1×1 with a step size of 1. The output layers are also 
added 3×3 and 1×1 convolutional layers with a step size 
of 1 to improve the detection performance. The optimized 
network structure of YOLOv3-Tiny is shown in Figure 3.

3.1.2. Multi-scale prediction based on feature fusing

Feature fusion is one of the main methods to enhance fea-
ture information, and feature pyramid network is the most 
common one used to realize it. In classification/detection 
tasks, the feature extraction process is divided into differ-
ent levels according to the depth of the network levels. 
Each level will generate feature maps of different scales 
and finally the features of each level are fused together, 
which are combined to form a feature pyramid. FPN (fea-
ture pyramid networks) adopted a top-down structure to 
combine the low-resolution but high-level semantic maps 
with the high-resolution but low-level semantic maps to 
get a feature pyramid that has rich semantics at all levels 
(Tesema et al., 2018) and make independent prediction on 
different levels of feature maps. The maps from different 
layers have features of different semantic levels and loca-
tion information. The FPN-based methods make good use 
of features from different convolutional layers and have 
better ability to adapt to multi-scale object detection. The 
FPN network structure is shown in Figure 4.

In convolution neural network, the shallow network 
layer contains less feature semantic information, which 
makes it easier to locate the target location. The deep 
network layer has rich feature semantic information, but 
the target location information is rough. To make full use 
of feature information in the shallow network layer and 
improve detection performance of small target, this paper 
adopts the multi-scale module idea of FPN structure and 
adds a prediction scale to the 2-scale prediction on the 

Figure 2. Network structure of YOLOv3-Tiny

Layer                Type                     Filters                  Size                           Output

0              Convolutional                16                     3×3/1                      416×416×16

1                  Maxpool                                             2×2/2                      208×208×16

2              Convolutional                32                     3×3/1                      208×208×32

             

3                  Maxpool                                             2×2/2                      104×104×32

             

4              Convolutional                64                     3×3/1                      104×104×64

5                  Maxpool                                             2×2/2                        52×52×64

             

6              Convolutional               128                    3×3/1                       52×52×128

             

7                  Maxpool                                             2×2/2                       26×26×128

             

8              Convolutional               256                    3×3/1                       26×26×256

9                  Maxpool                                             2×2/2                       13×13×256
           

10              Convolutional               512                    3×3/1                       13×13×512
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basis of the original model (as shown in Figure 5). When 
fusing the multi-scale feature maps, the output size needs 
to be consistent with each other. Thus, based on the sec-
ond-branch predictive network, the dimension of the deep 
convolutional neural network is reduced by a 1×1 convo-
lution kernel, twice sampled and then fused with the 6th 
convolutional layer, which will finally form three prediction 
scales of 13×13, 26×26 and 52×52 for detection of large, 
medium and small fire targets, respectively.

3.1.3. Spatial pyramid pooling (SPP)

SPP is a flexible solution for handling different scales, sizes, 
and aspect ratios (He et al., 2015). The SPP-net is a feature 
enhancement module, which can pool and concatenate 
feature maps of any size at multiple scales to improve the 

ability of feature expression and the robustness of detec-
tion. Due to the different distances between the cameras 
and the flame targets on construction site, the feature siz-
es of the flame image input into the convolution network 
are not consistent, thus the accuracies of the detections 
are reduced. Moreover, YOLOv3-Tiny connects the global 
features of different convolution networks, which ignores 
the multi-scale local feature interactions in the same con-
volution layer (Zhang et al., 2020). To solve these prob-
lems, we introduce the idea of SPP to replace the 12th 
convolutional layer of the YOLOv3-Tiny network to opti-
mize the network structure. The structure of the SPP mod-
ule is as shown in Figure 6. The input size can be ignored 
in the improved SPP. Three different scales: 5×5, 9×5 and 
13×13 of the max-pooling layers are used to obtain the lo-
cal feature map of fires, and then it is concatenated to the 
input features of SPP to obtain rich features. In this way, 
the local features are fused with the global ones and the 
expression ability of the featured maps is enriched, thus, 
the detection accuracy can be improved.

3.1.4. K-means anchor boxes

Appropriate prior boxes can guarantee the detection ef-
fects and speeds. K-means clustering algorithm in YOLOv3-
tiny obtained 6 prior boxes on the Common Objects in 
Context (COCO) dataset according to the 80 annotated 

Figure 3. Optimization of YOLOv3-Tiny Network structure

Figure 4. Network structure of the FPN
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5             Convolutional                64                     3×3/2                        52×52×64

             

6             Convolutional               128                    3×3/1                       52×52×128

             

7             Convolutional               128                    3×3/2                       26×26×128
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ground truth boxes. However, due to their various target 
categories of the original dataset and generalized anchors, 
it is difficult to obtain accurate target fire information, 
which is not suitable for fire detection scene on construc-
tion sites. Therefore, we run K-means clustering on the 
fire training set to find the most suitable anchor boxes 
and the corresponding coordinates for each bounding box 
(Wu et al., 2019). Generally, the K-means algorithm uses 
the Euclidean distance to calculate the distance between 
data objects and cluster centers. However, if the Euclidean 
distance is calculated by anchors, calculating a large an-
chor box will produce more errors than the small predic-
tion box. Then we adopted Intersection over Union (IOU) 
score to evaluate the clustering result (Yi et al., 2019). The 
purpose of clustering is to obtain greater IOU between the 
prior boxes and ground truth boxes, thus, the clustering 
distance in the K-means algorithm is modified as Eqn (1):

( ) ( )box, centroid 1 IOU box, centroid .d = −                      (1)

In Eqn (1), d (box, centroid) represents the clustering 
distance, centroid represents as the center of mass by the 
algorithm, box represents the other bounding boxes and 
IOU represents the ratio of the intersecting area of the two 
boxes to the combined area. Figure 7 shows the results 

Figure 5. Network structure of YOLOv3-Tiny-S

Figure 6. Structure of the SPP module

           

Layer                Type                    Filters                  Size                           Output

             

0             Convolutional                16                     3×3/1                      416×416×16

1             Convolutional                16                     3×3/2                      208×208×16
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of K-means clustering for various values of k (number of 
anchor boxes) and plots the average (AVG) IOU with clos-
est centroid at k = 9. As illustrated in Figure 7, with the 
increase of k values, AVG IOU is increasing quickly and 
then it gradually levelled off when k is larger than 9. The 
larger value of k could improve the detection accuracy and 
speed, while it will also increase the computational cost of 
the model. Considering the trade-off between computa-
tional complexity and speed, the k value in the K-means 
algorithm is chosen to be 9. Thus, we selected 9 clusters 
and then divided them evenly across 3 different scales.

Since the initial value of the clustering center in the 
K-means algorithm affects the clustering effect, multiple 
clustering operations are carried out when the number 
of clustering centers k is 9, as shown in Figure 7b. When 
obtaining the highest value of the curve, that is, the cor-
responding AVG IOU value is 72.72%, the nine priori boxes 
are selected as shown in Table 1.

Table 1. The corresponding relationship between feature maps 
and prior boxes

Feature map Receptive fields Prior boxes

13´13 Large (82, 88) (89, 169) (190, 240)
26´26 Medium (37, 80) (51, 124) (55 ,60)
52´52 Small (18, 32) (24, 56) (34, 43)

3.2. Prototype of FFMR
The main function of the FFMR is to detect the potential 
fire targets when there is no patrol on the construction 
site and give timely and accurate early warning when the 
fire is detected using video sensors. Meanwhile, the FFMR 
moves to the right location and then puts the fire out 
with the fire extinguishing. When the fire in the fire ex-
tinguishing area cannot be detected, it indicates that the 
flame is extinguished. FFMR can eliminate fire hazards at 
its source, which helps managers to strengthen fire safety 
management on the construction site and avoids second-
ary damage to the working environment. The designed 
and physical pictures of FFMR are presented in Figure 8.

The proposed FFMR consists of two parts: the mobile 
platform control system and robot command system, as 
shown in Figure 9. The hardware and software configura-
tions of the mobile platform control system contain robot 
body, crawler walking mechanism, control module, light-
ing module, rectangular support frame, fire extinguishing 
module, video/image acquisition module, alarm device 
and sensor module, etc. The robot command system in-
cludes user interface (as shown in Figure 9), which can 
realize real-time display, wireless transmission and recep-
tion of information, etc.

Figure 7. Results of K-means clustering: a – the relationship 
between k and Avg IOU; b – fluctuation trend of Avg IOU  

under k = 9

Figure 8. The designed and physical pictures of FFMR

a)

b)
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The proposed FFMR system consist of four key steps: 
(1) YOLOv3-Tiny-S-based fire detection; (2) early fire warn-
ing; (3) distance measurement; and (4) fire extinguishing. 
Then the procedure of implementation of our proposed 
FFMR system is as illustrated in Figure 10. Firstly, the vid-
eo/image acquisition module of FFMR system initializes 
the spherical camera mounted on the firefighting robot, 
which is used to collect the onsite video/image in real 
time. Meanwhile, the collected video/image is transmit-
ted to the module of FFMR system through digital signal 
and detected using the proposed YOLOv3-Tiny-S model 
in this paper. Afterwards the detected results are returned 
to the mobile platform control system. Secondly, the con-
trol module analyzes the results, and sends both light and 
sound alarms once a fire is detected. At the same time, 
the firefighting robot stops moving forward. Thirdly, the 
distance between the fire and the firefighting robot is 
measured by the ultrasonic sensors mounted in front of 

the firefighting robot, which subtracts the range of fire 
extinguisher to obtain the distance that the firefighting 
robot should move forward. Finally, when the firefighting 
robot moves in the range of the fire extinguisher, it stops 
moving forward and the safety manager remotely control 
the firefighting robot to open the fire extinguisher to put 
out the fire.

4. Experiments & results
4.1. Fire detection model training
4.1.1. Data collection

The image data used in this paper was collected from: (1) 
videos and images of fire accidents on the construction 
sites and (2) simulated fire scenes on construction sites. 
3880 images of fires were initially collected according to 
the same time interval. In addition, 925 fire-like images 
were also collected, such as sunlight and night lights at 
the construction site. CNNs usually require a lot of data for 
training due to the large number of parameters needed to 
properly tune these networks. Insufficient training images 
can increase the risk of overfitting in the last fully connect-
ed layers, resulting in the performance degradation of the 
model in fire detection. Thus, these images were then ex-
panded to 9567 images using data augmentation methods 
like flipping, mirroring, and adding noise, etc. as shown 
in Figure 11. Among them, 7653 images (about 80% of 
the total number) were randomly selected for training, the 
other 957 ones (10%) for verification and the rest 957 ones 
(10%) for testing, where the weights were saved after the 
training of the detection model.

4.1.2. Experimental platform

The experiments in this study were performed on the 
Ubuntu18.04 LTS. The video training environment was 
deployed on the Intel(R) Xeon(R) E5-2678 CPU, 32 GB of 
memory and TITAN X GPU, 12 GB of memory. The test-
ing environment was deployed on the Intel Core i7-9750 
CPU, 8 GB of memory and GTX1650 GPU, 4 GB of memory. 
CUDA10.2 and CUDNN7.6.5 were used to accelerate train-
ing. Under the Darknet deep learning framework, the pro-
gram was written in Python 3.7.

4.1.3. Evaluation metrics

To verify the effectiveness of the improved model, Pre-
cision (P), Recall (R), Mean Average Precision (mAP) and 
F1 scores are used as evaluation parameters for detection 
accuracy and Frame Per Second (FPS) is adopted as evalu-
ation parameters for detection speed (He et al., 2019). The 
“Precision” is the ratio of the number of correctly detected 
fires to the total number of detected ones, which is calcu-
lated as shown in Eqn (2). The “Recall” (recall rate) is the 
ratio of the number of correctly detected fires to the total 
number of fires in the data set and its calculation method 
is shown in Eqn (3). The “mAP” is the Mean Average Preci-
sion of all clusters, which is calculated as shown in Eqn (4).  

Figure 9. The general structure block diagram of FFMR

Figure 10. Workflow of FFMR
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The “F1 score” is adopted as a trade-off between the recall 
and precision, and its definition is shown in Eqn (5).

Precision ;TP
TP FP

=
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                                                                 (2)

Recall ;TP
TP FN
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                                                                                       (3)
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where TP (true positive) is the number of fires which have 
been correctly detected; FP (false positive) is the number 
of some other objects but detected as fires; FN (false neg-
ative) is the number of fires which are failed to be detected 
in the image; AP refers to the value of Average Precision; 
and N is the number of predicted target categories.

4.1.4. Training

The detailed network training parameters are set as fol-
lows: (1) the batch size is 64; (2) the number of subdi-
visions is 8; (3) the width and height are both 416; (4) 
the initial learning rate is 0.001; (5) the momentum coef-
ficient is 0.9; and (6) the maximum iteration is 30000. In 
24000~27000 iterations, the initial learning rate is mul-
tiplied by 0.1 times; and in 27000~30000 iterations, 0.1 
times the current learning rate. During the training pro-
cess, the input size of the model is adjusted every 10 it-
erations to ensure that the model has a good detection 
performance on images of different sizes.

The loss of YOLOV3-Tiny and YOLOV3-Tiny-S during 
training is shown in Figure 12. As illustrated in Figure 12, 
with the increase of training steps, the losses for both 
models show a decreasing trend. While YOLOv3-Tiny-S 
has faster convergence speed and better convergence re-

sults than YOLOv3-Tiny during training. The loss curve for 
YOLOv3-Tiny-S began to saturate after 5000 training steps 
and the final loss is around 0.3, which is lower than the 
YOLOv3-Tiny model. This shows that the performance of 
the proposed model is improved.

4.2. Analysis of experimental data
4.2.1. Results of fire detection

To validate the performance of the improved YOLOv3-Tiny 
model, other different modifications based on YOLOv3-
Tiny models were evaluated for comparison. For conveni-
ence, incorporation of only the network architecture modi-
fication is called method “A”; while incorporation of the 
network architecture modification, three-scale prediction 
and K-means clustering is called method “B”. The test set 
consisted of 957 images. Table 2 shows the Recall, Preci-
sion, F1 score, and AP of different methods, where “A” and 
“B” denote two different optimized models.

Table 2 shows that incorporation of network architec-
ture modification in method “A” brought a slight rise of 
the Precision, Recall and mAP, consequently resulting in 

Figure 11. Data augmentation methods: a – original image; b – flipping; c – mirroring; d – brightening; e – adding noise; f – splicing

a) b) c)

d) e) f)

Figure 12. Loss curves of the two YOLO models
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an improvement of the F1 score from 0.85 to 0.86 and 
a 12.68% decrease of the weight. This demonstrates the 
replacement of the maximum pooling layer with the con-
volution layer and the adding a small number of 1×1 
convolutional layer with the step size of 1 played a role. 
Compared with method “A”, further incorporation of 
three-scale prediction and K-means clustering increased 
the mAP to 89.12% and the weight enhanced with 4.29%. 
This is because the increase of multiple convolution lay-
ers leads to the increase of computation cost. When add-
ing SPP module in YOLOv3-Tiny-S model, the local and 
global fire features were fused, resulting in the smallest 
weight with only 27.4 MB and better accuracy. The Preci-
sion, mAP, F1 score, and weight were improved with each 
modification. The results illustrate that the YOLOv3-Tiny-S 
model had better performance than YOLOv3-Tiny and the 
other YOLOv3-Tiny based models as listed in Table 2. Com-
pared with the original YOLOv3-tiny, YOLOv3-Tiny-S had 
advantages on model performance and complexity, which 
improved Precision, Recall, mAP and F1 score by 2.22%, 
2.50%, 2.78% and 2.35%, respectively, while decreasing the 
number of model parameters by 21.04%. Figure 13 shows 
the P-R curves of the original YOLOv3-tiny and YOLOv3-
Tiny-S models on the test set. This demonstrates that the 
improved YOLOv3-tiny-s model is effective and better than 
the original YOLOv3-tiny model.

To further validate the performance of the improved 
YOLOv3-tiny model, other detection models using one-
stage method were evaluated for comparison, as listed 
in Table 3. As shown in Table 3, the calculated Precision, 
Recall, mAP and F1 score of YOLOv3-Tiny-S model were 
second only to those of YOLOv3 model. However, the YO-
LOv3 model uses a deeper convolutional model and three 
size layers to predict the detection object, which requires 
a powerful GPU with more than 4 GB memory so that 
their real-time performance on low performance devices 
or PCs is not ideal. The YOLOv2-Tiny, YOLOv3-Tiny and 
YOLOv4-Tiny models had a slightly higher speed than the 
YOLOv3-Tiny-S model, but their detection accuracies are 
reduced. YOLOv2-Tiny scored the lowest Precision, mAP 
and F1 score, followed by SSD model. And SSD model 
presented the next lowest FPS, which is only second to 
that of YOLOv3 model. Generally speaking, the proposed 
YOLOv3-Tiny-S model has better detection performance.

Table 3. A comparison of different fire detection methods

Methods Precision Recall mAP (%) F1 score FPS

YOLOv2-Tiny 0.72 0.84 83.61 0.77 45.33
YOLOv3-Tiny 0.90 0.80 87.32 0.85 46.90
YOLOv3 0.93 0.86 90.17 0.89 7.60
YOLOv4-Tiny 0.91 0.82 89.93 0.86 40.15
YOLOv3-Tiny-S 0.92 0.82 90.10 0.87 34.55
SSD 0.87 0.80 84.03 0.83 22.15

Image frame examples are presented in Figures 14–17. 
First, the K-means clustering is used on the training set 
bounding boxes to automatically find the best prior an-
chors boxes in the YOLOv3-Tiny-S model, which can bet-
ter locate the fire’s position as displayed in Figure 14d. 
As shown in Figure 14, the four YOLOv models scored 
higher accuracies than the SSD model. We observed from 
Figure 15 that all the five models can detect the outdoor 
fire with 99% accuracy. Secondly, dataset with fire and 
without fire is selected for testing. This is because there 
are many fire-like objects and situations (such as sun-
shine), which may be predicted as fire, making the clas-
sification more difficult. As shown in Figure 16, all the 
five models can differentiate between real fire and scenes 
with sunshine. YOLOv2-Tiny ranked highest in detection 
with 99% accuracy. YOLOv4-Tiny achieved 96%, followed 
by YOLOv3-Tiny-S, YOLOv3-Tiny and SSD. Finally, data-
set with small fire under occlusion is selected for testing.  

Table 2. The detection results of different optimized models

Methods YOLOv3-Tiny A B YOLOv3-Tiny-S

Network architecture modification – √ √ √
Three-scale prediction + K-means clustering – – √ √
Adding SPP module – – – √
Precision 0.90 0.91 0.92 0.92
Recall 0.80 0.82 0.81 0.82
mAP (%) 87.32 88.17 89.12 90.10
F1 score 0.85 0.86 0.86 0.87
Weight (MB) 34.7 30.3 31.6 27.4

Note: “–” denotes “without such modification”; “√” denotes “with such modification”.

Figure 13. P-R curves of fire detection of original YOLOv3-tiny 
and YOLOv3-Tiny-S models
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Figure 14. Fire detection results of the five models in indoor environment: a – YOLOv2-Tiny; b – YOLOv3-Tiny;  
c – YOLOv4-Tiny; d – YOLOv3-Tiny-S; e – SSD

Figure 15. Fire detection results of the five models in outdoor environment: a – YOLOv2-Tiny; b – YOLOv3-Tiny;  
c – YOLOv4-Tiny; d – YOLOv3-Tiny-S; e – SSD

Figure 16. Detection results of the five models for real fires and fire-like objects: a – YOLOv2-Tiny; b – YOLOv3-Tiny;  
c – YOLOv4-Tiny; d – YOLOv3-Tiny-S; e – SSD

a)

a)

b)

b)

c)

c)

d)

d)

e)

e)

a) b)

c) d)

e)



732 L. Kong et al. Computer vision based early fire-detection and firefighting mobile robots oriented for onsite construction

As illustrated in Figure 17, both YOLOv3-Tiny-S model and 
YOLOv3-Tiny model can effectively detect the small fire 
under certain occlusion, while the accuracy of the former 
is higher than that of the latter. YOLOv2-Tiny can detect 
the small fire under certain occlusion, but its positioning 
accuracy is poor. Neither YOLOv4-Tiny nor SSD models 
can effectively detect the small fire. This indicates that YO-
LOv3-Tiny-S model has the best detection performance for 
small fires under occlusion.

4.2.2. Application of FFMR

To test the real-time fire detection and early warning per-
formance of the proposed FFMR, a video of fires under a 
safe environment on the construction site was tested with 
the proposed YOLOv3-Tiny-S model, which is integrated 
into the software end of the camera module. According 
to the hot work approval system of the construction site 

in China, the relevant personnel must apply for approval 
and hold the hot work certificate before hot work. Due to 
the strict management of hot work on the construction 
site, it is difficult for the robot to capture the fire in the 
test process. In addition, it is safer to carry out the experi-
ment in the area outside safe working distance than in the 
operation area. Therefore, a safe environment away from 
the safe operation area on the construction site is selected 
to simulate the scene of fire. The video stream was col-
lected with a resolution of 1280×720. The implementation 
process was presented in Figure 18.

As shown in Figure 18a, in the human-computer inter-
action interface of the robot command system for the real-
time fire detection, the small target is detected as fire with 
accuracy of 93% and framed by a red box. The early fire 
warning is shown in Figure 18b. When the FFMR detects 
the fire, the alarm light (as displayed in the yellow circle) 

Figure 17. Fire detection results of the five models under outdoor occlusion: a – YOLOv2-Tiny; b – YOLOv3-Tiny;  
c – YOLOv4-Tiny; d – YOLOv3-Tiny-S; e – SSD

a) b)

c) d)

e)
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flashes and rings. Figure 18c shows the place where the 
robot starts the micro fire extinguisher to extinguish the 
flame; Figure 18d shows that the fire was out (as shown in 
the red circle), then the fire extinguishing and the alarm 
device system stopped working (as framed in the yellow 
circle). The results show that the proposed YOLOv3-Tiny-S 
has good detection performance of fires, and meets the 
requirement of real-time, which can be used in FFMR. Be-
side this, through the FFMR to view the patrol situation of 
the construction site in real time, the early-warning sys-
tem will send light and sound signals once the targets are 
detected as fire, and then the fire extinguishing device is 
remotely controlled to deal with the fire at its early stage. 
Therefore, the proposed FFMR can be helpful to disaster 
management systems, avoiding huge ecological and eco-
nomic losses, as well as saving a lot of human lives.

5. Discussions
Fire detection and its early warning are an important part 
in the fire safety management of the construction site. 
However, the traditional fire detection and early warning 
equipment on the construction site are difficult to meet 
the requirements of the new social environment. For ex-
ample, the sensor equipment is easy to be affected by 
the detection distance and installation position, resulting 
in the poor accuracy of early warning. The fixed camera 
has problems such as large monitoring blind area, long 
early warning distance and inability to carry out early fire 

extinguishing. To overcome the above shortcomings, the 
increasing maturity of computer vision technology and 
the continuous emergence of multi-functional firefighting 
robots provide new solutions. Therefore, this paper pro-
posed a FFMR system by combining the computer vision 
technology and the firefighting robot, which can realize 
the functions of onsite inspection by robot, fire detection, 
early warning and early fire extinguishing. The proposed 
FFMR can help prevent the frequent occurrence of fire 
accidents on construction sites and assist managers to 
strengthen onsite fire management. The main contribu-
tions of this study are as follows:

(1) This research proposed a YOLOv3-Tiny-S model 
for onsite fire detection due to the limitations of 
the YOLOv3 series, which can detect the fire with 
higher accuracy in varying indoor and outdoor en-
vironments with occlusion. Firstly, because of the 
lack of open data sets of fire videos and images 
on the construction site, this paper constructs the 
fire dataset through online acquisition and field 
simulation, and uses a variety of data enhance-
ment technologies to expand its number to meet 
the requirements of network training. Based on 
YOLOv3-Tiny model, by optimizing the network 
structure, multi-scale prediction, adding the SPP 
module and K-means clustering, the mAP of fire 
detection by YOLOv3-Tiny-S reached 90.10%, 
and the model scale decreased by 21.04%. This 
indicates the improved model is effective. Finally, 

Figure 18. The fire detection and early warning performance of the proposed FFMR: a – fire detection;  
b – early warning of fire; c – fire fighting; d – fire out

a) b)

c) d)
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compared with other models, the calculated Preci-
sion, mAP and F1 score of YOLOv3-Tiny-S model 
were second only to those of YOLOv3 model, while 
the detection speed of the former was much su-
perior to that of the latter, which reached 34.55 
FPS. In addition, compared with the YOLOv2-Tiny, 
YOLOv3-Tiny and YOLOv4-Tiny models, although 
the detection speed of YOLOv3-Tiny-S is reduced, 
the accuracy of fire detection is improved. This 
demonstrates that our proposed YOLOv3-Tiny-S 
can better deal with the trade-off between the ac-
curacy and real-time performance of fire detection.

(2) A FFMR suitable for fire detection and early warn-
ing in construction site is proposed. Due to the 
complexity of the construction site and the limi-
tations of the traditional fire early detection and 
early warning equipment, this study proposed the 
FFMR to do site safety patrol, fire detection, early 
warning and firefighting, which are realized by the 
mobile platform control system and command 
system of FFMR. In the process of patrolling the 
construction site, the firefighting robot is equipped 
with a camera to collect the video images in the 
route in real time. Once a fire is detected, an early 
warning is sent. At the same time, the operator can 
remotely control the firefighting robot to go to the 
fire until the fire is in the range of fire extinguisher 
(approximately 1.5 m) according to the distance 
measured by the ultrasonic sensors equipped in 
front of the robot. Then, open the micro fire extin-
guisher for early fire extinguishing, which improves 
the efficiency of emergency response. As the cam-
era used in this FFMR can rotate horizontally and 
vertically, then, it can detect fire in other floors. 
The FFMR using the crawler-type walking mecha-
nism is better applicable to the uneven site condi-
tions on the construction site, which also can eas-
ily fit in the tight spaces (greater than 500 mm × 
300 mm × 500 mm). In addition, the micro fire ex-
tinguisher has the advantages of light weight and 
small volume. When it is equipped on the mobile 
firefighting robot, it can enhance the flexibility of 
movement in a narrow space (such as the scaffold 
area), improve the cruise ability and increase the 
patrol time. This is because there are two lithium 
batteries of 12 V used in the FFMR, where the less 
the battery consumption for the firefighting, the 
longer the patrol time. One lithium battery at over-
charged can support about half an hour of patrol 
time, then one hour of patrol time can be obtained 
if no fire is detected. The proposed FFMR has the 
slightly cost-effective nature by incorporating of 
a mobile robotic system capable of autonomous 
navigation (20000 yuan RMB) and several low-cost 
embedded devices (around 1000 yuan RMB), such 
as three sensors (99 yuan RMB), two early warning 
lights (50 yuan RMB), a camera (300 yuan RMB), a 

micro fire extinguisher (200 yuan RMB), two lights 
(20 yuan RMB), a remote control (300 yuan RMB), 
which enables it to be adopted practically on sites.

Although the proposed FFRM has achieved some 
success in the computer vision-based fire detection and 
firefighting robot, it has some limitations. For example, in 
terms of dataset, this study mainly obtains the fire video 
images of multiple construction scenes downloaded from 
the Internet and simulated from construction sites. How-
ever, due to the variety of construction sites, it is necessary 
to build a highly targeted dataset in a specific environment 
to increase the robustness of detection. Moreover, when a 
fire is detected, it needs the operator to remotely control 
the robot to open the micro fire extinguisher to put out 
the fire, which cannot be opened automatically. Therefore, 
the firefighting robot needs to be more intelligent to au-
tomatically turn on the fire extinguisher to extinguish the 
fire once the occurrence of fire is detected. Finally, the 
fire detection range of the proposed FFRM should be no 
more than 10 m considering the camera and the train-
ing algorithm used in this research. If a greater distance 
is needed, then many factors should be considered as a 
whole, such as: (1) the resolution of the camera, where the 
higher the resolution, the longer distance can be detected; 
(2) the training effect of the algorithm used, where the 
higher the detection rate, the easier the fire target can be 
detected; (3) the external environment, where the relatively 
poor light, the far distance of fire can be detected.

6. Conclusions
The occurrence of fire accidents on the construction site 
can cause huge ecological and economic losses, as well 
as a lot of human lives. Therefore, this study proposed 
a FFMR combining computer vision-based fire detection 
methods and firefighting robot to overcome the short-
comings of traditional fire detection and its early warn-
ing on construction sites. Incorporating YOLOv3-Tiny-S 
model in the camera mounted on the firefighting robot, 
we showed that a small fire target can be detected with 
higher accuracy and faster speed under the occlusion by 
outdoor environment. Through optimizing the network 
structure, adding the SPP module, adopting the multi-
scale anchor mechanism etc. the proposed YOLOv3-Tiny-
S model achieved good detection performance, which can 
help perfecting the research of CNN models. Then, the 
autonomous response of light and sound early warning 
is made once a fire is detected. In addition, the reliable 
communication between the operator and the firefight-
ing robot is ensured by the human-computer interaction 
interface of the robot command system, where the opera-
tor can remotely control the firefighting robot to put out 
the fire at its early stage. On the other hand, the reliability 
of accurate fire detection and early response to the fire 
accident management is helpful to establish a systematic 
mechanism of fire detection and early warning response 
on the construction sites.
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The proposed FFMR can assist the manager to pa-
trol constantly the desired territory on construction sites, 
which reduces the detection blind area by fixed cameras 
and improves the overall effect of fire safety management. 
In the process of manual inspection, managers are prone 
to delay emergency response or make wrong response 
strategies due to negligence or lack of experience. The 
use of firefighting robot instead of managers to patrol 
the potential fire area of the construction site can give 
real-time early warning and timely response to fire safety 
management when the fire is detected. Therefore, the pro-
posed FFMR can detect and deal with fire at its early stage, 
which is helpful to effectively prevent the spread of fire, 
reduce the occurrence of fire accidents, and realize fire 
safety management. Furthermore, this research can be ex-
tended to other high-risk industries, such as petrochemical 
industry and coal mine, so as to promote the applicability 
of the research.
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