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Article History:  Abstract. Machine learning (ML) presents a promising method for predicting mechanical properties in structural engi-
neering, particularly within complex nonlinear structures under extreme conditions. Despite its potential, research has 
shown a disproportionate focus on concrete structures, leaving steel structures less explored. Furthermore, the prevalent 
combination of metaheuristic optimization (MO) and ML in existing studies is often subjective, pointing to a significant 
gap in identifying and leveraging more effective hybrid models. To bridge these gaps, this study introduces a novel 
system named the Multiple Metaheuristic Optimizers – Multiple Machine Learners (MMOMML) system, designed for 
predicting mechanical strength in steel structures. The MMOMML system amalgamates 17 MO algorithms with 15 ML 
techniques, generating 255 hybrid models, including numerous novel configurations not previously examined. With a 
user-friendly interface, MMOMML enables structural engineers to tackle inference challenges efficiently, regardless of 
their coding proficiency. This capability is convincingly demonstrated through two practical applications: steel beams’ 
shear strength and steel cellular beams’ elastic buckling. By offering a versatile and robust tool, the MMOMML system 
meets construction engineers’ and researchers’ practical and research needs, marking a significant advancement in the 
field.
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1. Introduction
Structural engineering involves the analysis and design of 
load-bearing structures. However, current structural analy-
sis and design approaches require a time-consuming cali-
bration process to handle complex structural systems that 
exhibit highly nonlinear behavior under extreme actions. 
This process is excessively complicated and impractical for 
use in most projects. Machine learning (ML), the most suc-
cessful branch of artificial intelligence (AI), is well suited 
to make structural engineering more predictable because 
of its ability to handle complex nonlinear structural sys-
tems under extreme actions (Salehi & Burgueño, 2018; Sun 
et al., 2021; Zhang et al., 2023). Thai (2022) reviewed 474 
Scopus-indexed studies from 1989 to 2021 on ML applica-
tions in structural engineering, concluding that scholarly 
interest in these applications has been rising, especially 
over the last five years.

Thai (2022) distinguished 474 studies on ML applica-
tions into five distinct areas of study, including (1) Pre-

diction of structural members, (2) Prediction of structural 
fire resistance, (3) Structural health monitoring (SHM) and 
damage detection, (4) Structural analysis and design; and 
(5) Prediction of concrete mechanical properties. The area 
focused on structural members includes studies designed 
to predict member strength (i.e., shear strength, flex-
ural strength, axial strength, torsional strength, buckling 
strength, and bond strength) and member deformation 
(i.e., deflection, drift, and rotation). The area focused on 
mechanical properties includes studies designed to predict 
compressive strength, tensile strength, bending strength, 
and Young’s modulus and to optimize concrete mix de-
signs. The number of published studies on ML applications 
in structural engineering by topic is presented in Table 1.

As shown in Table 1, 373 of the 474 studies (78.7%) 
addressed problems related to concrete and reinforced 
concrete (RC) structural components. Although struc-
tural steel is the preferred material for high-rise building 
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Hybrid machine learning models combining ML tech-
niques with metaheuristic optimization (MO) algorithms 
have demonstrated advantages in terms of increased pre-
diction accuracy and reduced model dependence on user 
expertise (Cao et al., 2021, 2022). However, the MO algo-
rithms and ML techniques used in these hybrid models 
have typically been selected subjectively by researchers. 
For example, Tran-Ngoc et al. (2019) proposed a cuckoo 
search (CS)-tuned artificial neural network (ANN) model 
for detecting damage in bridges and beam-like structures. 
Although the performance of the proposed model was su-
perior to that of the single ML model used as the com-
parison, the decision to use CS and ANN rather than other 
techniques was not explained, leaving the possibility that 
other hybrid AI models may solve related problems even 
more effectively and efficiently.

Table 1. Numbers of studies on ML applications in structural 
engineering, by topic

Area of study No. of 
publications

Prediction 
of structural 
members

Shear 
resistance

Concrete and RC 
structures 71

Steel structures 3
Other types of 
structures 0

Axial 
resistance 

Concrete and RC 
structures 33

Steel structures 2
Other types of 
structures 1

Bond 
strength 

Concrete and RC 
structures 25

Steel structures 0
Other types of 
structures 1

Buckling 
strength

Concrete and RC 
structures 0

Steel structures 23
Other types of 
structures 0

Flexural 
resistances 

Concrete and RC 
structures 7

Steel structures 2
Other types of 
structures 1

Torsion 
resistances

Concrete and RC 
structures 6

Steel structures 0
Other types of 
structures 0

Deflection

Concrete and RC 
structures 8

Steel structures 0
Other types of 
structures 6

Drift and 
rotation 
capacity

Concrete and RC 
structures 1

Steel structures 1
Other types of 
structures 3

Area of study No. of 
publications

Prediction of structural fire 
resistance

Concrete and RC 
structures 13

Steel structures 6
Other types of 
structures 1

SHM and 
damage 
detection

Beams/
columns

Concrete and RC 
structures 11

Steel structures 1
Other types of 
structures 0

Plate/panel 
members

Concrete and RC 
structures 21

Steel structures 3
Other types of 
structures 3

Other 
systems

Concrete and RC 
structures 16

Steel structures 22
Other types of 
structures 0

Structural 
analysis and 
design

Design

Concrete and RC 
structures 7

Steel structures 8
Other types of 
structures 0

Analysis of 
joints and 
frames

Concrete and RC 
structures 32

Steel structures 13
Other types of 
structures 1

Prediction of concrete mechanical properties 122

TOTAL

Studies on concrete 
and RC structures 373

Studies on steel 
structures 84

Studies on other 
types of structures 17

construction in many developed countries (Deng et al., 
2020; Liu et al., 2018), only 84 studies (17.7%) addressed 
problems related to steel structures. This may be attribut-
able to the complex, non-linear nature of the inference 
problems involved in calculating mechanical properties in 
steel structures and to the time-consuming calibrations 
required for related structural analyses and design meth-
ods, which are overly complicated for practical implemen-
tation and generate low-accuracy results (Asif Bin Kabir 
et al., 2021; Truong et al., 2022). The absence of related 
research on steel structures highlights the critical need in 
the construction industry for ML applications that assist 
engineers in addressing prediction/estimation problems in 
steel structures.

End of Table 1
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Furthermore, the programs used in hybrid models have 
rarely been shared publicly, often requiring civil engineers, 
who typically have limited programming knowledge, to 
use unreliable code published on the internet. These draw-
backs mean that the application of ML in steel structures 
remains mainly limited to research settings, leaving a gap 
between research and practical application. Civil engineers 
and construction managers require a user-friendly ML tool 
that may be used without coding knowledge to handle 
forecasting and prediction problems effectively and effi-
ciently.

Therefore, this project was designed to create a novel 
application interface that integrates different advanced AI 
techniques, including ML and MO algorithms, to extract 
usable information hidden in the data and to infer new 
facts. This application interface, the “multiple metaheuristic 
optimizers – multiple machine learners” (MMOMML), is a 
user-friendly, assistive tool that allows users without cod-

ing knowledge to determine the AI model best suited to 
handle a particular dataset. Moreover, the proposed inter-
face provides a reliable benchmark for verifying the reli-
ability of new and existing inference models. The ability of 
MMOMML to resolve numerous prediction and forecast-
ing problems in steel structures fulfills the expectations of 
both users and researchers.

The breakdown percentages of the various ML meth-
ods used in structural engineering from 1990 to 2021, 
shown in Figure 1, support the suitability of using these 
methods to resolve structural engineering problems. Thus, 
these methods were adopted as the core models in the 
proposed MMOMML system. Based on our survey of the 
most prominently used MO metaphors, presented in Fig-
ure 2 (Chou & Nguyen, 2020), integration of these algo-
rithms was proposed to optimize ML technique perfor-
mance and increase the automation level. Therefore, the 
proposed MMOMML system was designed to encompass 

Figure 1. ML methods used in the structural engineering field

Figure 2. Metaphor-based optimization methods from literature and their associated algorithms
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255 powerful and efficient hybrid AI models by integrat-
ing 17 MO algorithms and 15 ML techniques. The system 
was developed to automatically train models to produce 
the performance criteria values for each model and then 
determine the most appropriate value for the targeted 
structure problem.

MMOMML may further enrich the options for improv-
ing model performance by suggesting using novel hybrid 
models that have not previously been used. For example, 
the system may be used to create a hybrid of FBI and 
either XGB or LGBM, neither of which have been investi-
gated in the structural engineering field. Furthermore, the 
MMOMML interface will be updated with emerging MO 
algorithms and AI techniques and will not be limited only 
to the proposed MO and AI techniques. Thus, promising 
hybrid models may be generated progressively to improve 
prediction accuracy in solving structural engineering prob-
lems. 

The proposed MMOMML system is expected to resolve 
numerous prediction and forecasting problems in steel 
structures and fulfill the expectations of both users and re-
searchers. This powerful interface will be user-friendly and 
help structural engineers efficiently resolve steel structure 
inference problems using on-hand data without requiring 
prior coding knowledge. The remainder of this paper is 
organized as follows: Section 2 provides a review of the 
existing literature about machine learning applications in 
the context of steel structures; Section 3 outlines the re-
search methodology employed in this study, encompass-
ing the model evaluation metrics utilized; Section 4 intro-
duces MMOMML framework and implementation; Section 
5 presents the experimental datasets that were obtained in 
this study, discusses the predictions, and compares model 
performances; and the final section presents concluding 
remarks and outlines the research contributions made.

2. Literature review
As previously noted, only 84 articles indexed in Scopus 
and published between 1990 and 2021 were designed to 
investigate the feasibility of applying ML to steel-struc-

ture-related engineering problems (Thai, 2022). These ar-
ticles cover four areas of study: Prediction of structural 
members (31 articles; 36.9%), Steel structure analysis and 
design (21 articles; 25.0%), Prediction of fire resistance (6 
articles; 7.1%), and SHM and damage detection (26 arti-
cles; 31.0%). As shown in Figure 3, fewer than four studies 
have addressed many categories within these four areas, 
providing insufficient samples to analyze the merits of ap-
plying ML to related problems. 

The techniques used in the 84 ML studies on steel-
structure-related engineering problems are outlined in 
Table 2. Backpropagation method-based ANN was the 
most frequently used technique to predict mechanical 
behavior in steel structures. In terms of other techniques 
considered, Zakir Sarothi et al. (2022) used ANN, SVM, DT, 
RF, kNN, linear regression, lasso regression, ridge regres-
sion, AB, XGB, and CatBoost to predict bearing capacity in 
double shear bolted connections, finding that RF delivered 
the best performance. Also, Ghiasi et al. (2016) conducted 
a comparative study on the performances of ANN, AN-
FIS, LMNN, LS-SVM, MARS, ELM, RF, and GP in classifying 
damage detected in steel structures, finding LS-SVM to be 
the best model with the lowest prediction error.

In light of the limited nature of current studies, the 
potential of other ML techniques to predict mechanical 
behavior in steel structures should be investigated to as-
sess their potential advantages over currently dominant 
ANN techniques. Several scholars have proposed applying 
SVM, LS-SVM, and RF to problems in SHM and damage 
detection (Ghiasi et al., 2016; Zhou et al., 2012) and struc-
tural fire resistance prediction (Hasni et al., 2017). The au-
thors of these studies confirmed the proposed models as 
superior to ANN in reducing prediction error and compu-
tational time. In addition to the above, ANFIS and RBFNN 
(variants of ANN), DT (Fu, 2020), and CNN (a deep learning 
technique) have been used in the literature to predict the 
mechanical behavior of steel structures.

However, most published studies have used conven-
tional ML techniques that require the manual setting of hy-
perparameter values. Thus, a trial-and-error or grid search 
method is typically needed to fine-tune these values.  

Figure 3. ML applications in steel structural engineering
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However, these methods generally do not achieve optimal 
model performance because of the extensive range of po-
tential continuous hyperparameter values. Several scholars 
who investigated using a metaheuristic algorithm instead 
of trial-and-error/grid search methods reported promising 
results (Tran-Ngoc et al., 2019). Tran-Ngoc et al. (2019) 
used the cuckoo search algorithm to optimize the con-
figuration of an ANN model, obtaining better results than 
those generated by the standard ANN model.

In addition, a literature review by Thai (2022) high-
lighted several concerns related to published studies in 
which ML was used to predict problems in steel structures. 
These concerns include: (1) low diversity among the ML 
techniques used, as most studies used and analyzed the 
performance of ANN techniques only; (2) few studies pro-
posed advanced hybrid ML models designed to improve 
prediction accuracy related to steel structure behavior; and 
(3) failure to fully realize the capabilities of ML because 

Table 2. Applications of ML on steel structures

Topic Type ML algorithms

Prediction 
of structural 
members

Shear resistance
Cellular steel beams ANN

Bolted connection joints kNN, ANN, SVM, DT, RF, RA1, RA4, RA5, 
AdaBoost, XGBoost, CatBoost

Axial resistance 
Steel columns with single-angle sections ANN
Steel tube columns strengthened by FRP ANN

Local buckling strength

Steel plates ANN
Steel panels with hat-stiffeners ANN
Thin cylindrical shells ANN
Web crippling of CFS sheeting ANN
Web crippling of CFS C-section ANN
CFS beams with C-sections ANN
Castellated steel beams ANN

Distortional buckling 
strength

CFS beams with C-sections ANN
Steel beams with I-shaped section ANN
Castellated steel beams ANN
Elliptical tubes ANN

Global buckling strength
Slender columns ANN
Beam-columns with various end conditions ANN
Steel columns with tapered I-section ANN

Lateral-torsional buckling Cellular I-beams ANN
Flexural resistances Steel beam with CHS ANN
Rotation capacity Steel I-beams ANN

Prediction of 
structural fire 
resistance

Fire resistance Steel columns ANN

Joints
Semi-rigid steel joints ANN
T-joints with hollow steel sections ANN

Systems
Steel frames ANN, DT, kNN
Steel trusses ANN

SHM and 
damage 
detection

Bridges Steel girder bridges ANN, ANFIS, SVM

Frame/truss systems
Steel frames ANN, RNFNN, CNN, SVM, RF

Steel truss RBFNN, ANN, ANFIS, MARS, LS-SVM, RF, 
RA2, GP

Beams/columns Steel beams ANN

Plate/panel members
Corroded steel plates and bolts CNN
Steel gusset plates CNN

Joints Steel beam-column joints CNN

Structural 
analysis and 
design

Design
Steel beams ANN, ANFIS
Truss systems ANN, RBFNN

Analysis of steel joints
Moment-rotation curve ANN
Hysteresis behavior ANN
Moment and rotation ANN, ANFIS

Analysis of frames Reliability analysis of steel frames ANN



Journal of Civil Engineering and Management, 2024, 30(5), 414–436 419

study authors selected an ML or advanced variant sub-
jectively and then compared it to conventional ML tech-
niques only. To address these concerns, a novel MMOMML 
system designed to help engineers determine the most 
potent advanced hybrid model is proposed in this study 
to facilitate efficient and accurate predictions of problems 
in steel structures. 

3. Research methods

As mentioned previously, the objective of this study was to 
build a user-friendly AI interface that integrates 17 robust 
MO algorithms and 15 powerful ML techniques and gener-
ates 255 hybridization models that are more effective and 
efficient than current inference models. 17 MO algorithms 
included in the proposed MMOMML are ABC (Karaboga 
& Basturk, 2007), FA (Yang, 2010), GA (Goldberg, 1989; 
Holland, 1975), DE (Storn & Price, 1997), WOA (Mirjalili & 
Lewis, 2016), PSO (Kennedy, 2011), CS (Yang & Deb, 2009), 
TLBO (Sahu et al., 2015), FBI (Chou & Nguyen, 2020), FPA 
(Yang, 2012), RRA (Merrikh-Bayat, 2015), WCA (Eskandar 
et al., 2012), GWO (Mirjalili et al., 2014), SOS (Cheng & 
Prayogo, 2014), EFO (Abedinpourshotorban et al., 2016), 
GSA (Rashedi et al., 2009), and equilibrium optimizer (EO) 
(Faramarzi et al., 2020).

The 15 ML models included in the proposed MMOM-
ML are linear regression (Galton, 1886; Pearson, 1904), 
multivariate regression (Kendall, 1957), logistic regression 
(Conolly, 1958), multivariate adaptive regression splines 
(MARS) (Friedman, 1991), classification and regression tree 
(CART) (Gordon et al., 1984), least square support vector re-
gression (LSSVR) (Suykens & Vandewalle, 1999), SVR (Cor-
tes & Vapnik, 1995; Vapnik et al., 1996), ANN (McCulloch  
& Pitts, 1943; Rumelhart et al., 1986), ANFIS (Jang, 1993), 
RBFNN (Moody & Darken, 1989), random forest (RF) (Brei-
man, 2001), LogitBoost (Friedman et al., 2000), XGB (Chen 
& Guestrin, 2016), LightGBM (LGBM) (Ke et al., 2017), and 
AdaBoost (AB) (Freund & Schapire, 1997; Hastie et al., 
2009).

3.1. Single machine learning models
This section focuses on ML algorithms commonly applied 
in structural engineering, categorized into six groups 
based on their prevalent use in the literature concerning 
steel structures.

3.1.1. Regression analysis (RA)

Regression analysis (RA) is a predictive modeling approach 
rooted in statistics, initially designed to explore the intri-
cate relationship between independent (predictor) and 
dependent (target) variables. Over time, RA has been in-
tegrated into Machine Learning (ML), operating within the 
framework of supervised learning algorithms. Its primary 
goal is to predict output values based on corresponding 
input variable values. In the context of ML, regression 
models differ based on three main factors: (i) the number 
of incorporated variables, (ii) the type of variables includ-

ed, and (iii) the geometric configuration of the regression 
line. Commonly used RA models in structural engineer-
ing encompass Linear regression, Multivariate regression, 
Logistic regression, and Multivariate Adaptive Regression 
Splines (MARS) (Cheng & Cao, 2016).

3.1.2. Artificial neural networks (ANNs)

ANN is a versatile machine learning algorithm widely used 
in structural engineering. It mimics biological neurons and 
consists of layers, including an input layer for data recep-
tion and an output layer for result prediction. The Back-
propagation Neural Network (BPNN) is a common variant 
that adjusts weights during training to minimize errors. 
Radial Basis Function Neural Network (RBFNN) uses RBF 
as an activation function, offering fast training with a sin-
gle hidden layer. Adaptive Neuro-Fuzzy Inference System 
(ANFIS) combines fuzzy logic and NN to minimize errors 
between input data and predictions, with an architecture 
featuring fuzzy, product, normalized, de-fuzzy, and overall 
output layers.

3.1.3. Support vector machine (SVM)

The SVM algorithm has gained significant prominence ow-
ing to its efficacy and simplicity, rendering it among the 
most influential and widely employed methodologies. The 
fundamental concept underpinning the SVM algorithm 
entails an initial differentiation of data feature groups, 
succeeded by pursuing an optimal separating hyperplane 
endowed with a maximal margin. To address nonlinearly 
separable data, kernel functions such as the Radial Basis 
Function (RBF) and the sigmoid function are harnessed, 
facilitating the transformation of the original data into a 
novel space wherein linear separation becomes feasible. 
LSSVR is an SVM algorithm and extension of support vec-
tor regression (SVR) that incorporates many advanced 
features, including expedited computation and heightened 
generalizability (Suykens et al., 2002). 

3.1.4. Decision tree (DT)

Alternatively referred to as the Classification and Regres-
sion Tree (CART), DT constitutes a tree-structured para-
digm employed to elucidate and portray the intricacies of 
decision-oriented procedures. The prevalence of DT has 
surged notably, attributed to its intrinsic simplicity and 
adeptness in accommodating diverse data types encom-
passing numerical and categorical attributes. The compo-
sitional makeup of this model comprises four constituent 
elements: a foundational root node, an array of bifurcating 
branches, intermediary decision nodes, and culminating 
leaf nodes, commonly known as terminal nodes.

3.1.5. Random forest (RF)

RF employs an ensemble learning strategy utilizing Deci-
sion Trees (DTs) as weak learners. Multiple DTs are cul-
tivated within a forest framework through bagging with 
parallel training. The stochastic feature selection process, 
earning the name “Random Forest”, involves creating a 



420 N.-M. Nguyen, J.-S. Chou. Forecasting mechanical properties of steel structures through dynamic metaheuristic optimization ...

multitude of individual DTs. The outcome aggregation 
consists of a consensus mechanism, with classification us-
ing a majority vote and regression employing an averaging 
procedure. This approach enhances predictive models in 
various applications, offering robust and accurate results. 

3.1.6. Boosting algorithm (BA)

Boosting Algorithms (BA) enhance predictive models in 
structural engineering by combining multiple models for 
improved effectiveness. Key strategies include AdaBoost, 
employing Decision Trees (DT) and Random Forest (RF) 
algorithms; Gradient Boosting Machine (GBM), which en-
hances AdaBoost with DT weak learners and minimizes the 
loss function using gradient descent; XGBoost, optimizing 
GBM with techniques like parallel processing for efficien-
cy; LightGBM, prioritizing computational efficiency with a 
unique leaf-wise tree expansion strategy; and LogitBoost 
(LB), a binary classification-focused variant using logistic 
regression as its base classifier. Collectively, these tech-
niques contribute to swift and precise model predictions 
in structural engineering applications.

3.2. Metaheuristic optimization algorithms
Optimization problems aim to find optimal solutions with-
in a solution set that maximizes (or minimizes) an objec-
tive function while adhering to constraints. Metaheuristics, 
versatile heuristic algorithms, address large-scale prob-
lems effectively and have gained popularity due to their 
efficiency. They excel in solving engineering problems 
by working efficiently with simple concepts, not requir-
ing gradient information, overcoming local optima issues, 
and being applicable across various disciplines (Gandomi 
& Alavi, 2012; Mirjalili & Lewis, 2016; Wang, 2018). 

3.2.1. Single solution-based metaheuristics (S-MOs)

S-MOs navigate problem spaces iteratively, generating 
candidate solutions from the current solution. In the gen-
eration phase, a set of candidates (C(s)) is created through 
local transformations. In the replacement phase, a new so-
lution (s’) from C(s) is chosen to replace the current solu-

tion. This process repeats until the stopping criterion is 
met. Noteworthy examples of S-MOs, also termed local 
search algorithms, include local search, simulated anneal-
ing (SA), and tabu search (TS). While these algorithms once 
held prominence, recent advancements have diminished 
usage in contemporary research.

3.2.2. Population-based metaheuristics

Population-based metaheuristic optimizers (P-MOs) are 
crucial in iteratively enhancing solution populations. These 
optimizers commence with an initial set (see Figure 4), 
systematically generating new populations and replacing 
existing ones until a predefined stopping criterion is met. 
Notable examples of P-MOs include evolutionary algo-
rithms, ant colony optimization, scatter search, differential 
evolution, particle swarm optimization, bee colony, and 
artificial immune systems. The efficacy of P-MOs lies in 
their ability to balance exploration and exploitation strat-
egies. While early P-MOs such as genetic algorithm (GA) 
and particle swarm optimization (PSO) primarily focus on 
exploitation, which may result in confinement to local 
solutions, contemporary P-MOs like artificial bee colony 
(ABC), forensic-based investigation (FBI), and symbiotic or-
ganisms search (SOS) strategically incorporate both explo-
ration and exploitation. This nuanced approach enhances 
the probability of discovering globally optimal solutions.

3.3. Hybrid machine learning  
and MO algorithms
Although the advantages of using ML models to address 
prediction problems are well established, selecting suit-
able ML models and properly configuring them is daunt-
ing, even for users with rich experience using them. Most 
related algorithms incorporate hyperparameters (HPs), the 
values of which directly influence the bias and, thus, the 
predictive performance of the induced models. Despite the 
increase in the number and popularity of ML tools, users 
still need help to determine the best HP settings. This is 
a complex task and may lead practitioners to choose an 
inferior algorithm over a superior algorithm, as users typi-

Figure 4. General flowchart of MO algorithms: a – general flowchart of a single-phase MO;  
b – general flowchart of a multiple-phase MO

Termination
criteria

Initializing candidate 
solutions

Start

Calculate the objective 
value for each solution

Generating new candidate 
solutions

End

Offering the final solution

Termination
criteria

Initializing candidate 
solutions

Start

Exploitation phase

Exploration phase

End

Offering the final solution
Yes

No

Yes

No

g = 0

g = 0

g 
=

 g
 +

 1

g 
=

 g
 +

 1

a) b)



Journal of Civil Engineering and Management, 2024, 30(5), 414–436 421

cally adjust HP values using a subjective process of trial 
and error.

Ideally, the HP values should be defined separately for 
each problem (Hamdia et al., 2021) using an optimization 
process that works to find the (near) best settings. Sev-
eral tuning techniques have been used for this purpose, 
of which grid search (GS) and random search (RS) are the 
simplest and most common (Yang & Shami, 2020). The 
former is better suited to low-dimensional problems with 
few HPs to set. Due to the large hyperspace, GS cannot 
explore more promising regions for more complex sce-
narios. Conversely, RS can explore all possible solutions in 
hyperspace but cannot perform informed searches, which 
may lead to high computational costs.

Sequential model-based optimization (SMBO) (Hut-
ter et al., 2011) is a more recently developed technique 
that has gained attention due to its probabilistic nature. 
SMBO replaces the target function (ML algorithm) with a 
surrogate model with faster computational speeds. How-
ever, this technique has many HPs and only eliminates the 
shortcoming of requiring the function targeted for opti-
mization to be evaluated iteratively. Meta-heuristics have 
also been used to fine-tune the most suitable HP values 
with an optimization loop, as shown in Figure 5. This 
method considers the number of pre-defined HPs as the 
dimension of the optimization problem, with the HPs used 
as variables for the accuracy objective function. Despite 
their high computation cost, MOs are widely accepted as 
a reasonable alternative to GS and RS due to their obvia-
tion of tedious trial-and-error efforts and ensuring elegant 
performance from ML models.

4. The MMOMML system

4.1. Training the hybrid models
Data instances must be collected and processed to feed 
the training process. The data process first normalizes all 
attributes into a standard range of [0, 1], ensuring the con-
structed model avoids the negative impact of attributes 
with large values by making all attributes equally crucial 
in the initial stage. The normalized dataset is then divid-
ed into learning and validation data, which are used for 
machine learners’ learning and validation processes. To 
compare model generalization, test data are partitioned 
to verify the difference between actual values and the 
predicted values generated by the optimal trained model.

The optimization process starts with initializing tuning 
parameter values, which differ for each ML. For example, 
the most miniature square support vector machine uses 
sigma and gamma. At the same time, the hyperparam-
eters of the radial basis function neural network consist of 
a hidden neuron number and the width of the Gaussian 
function. It should be noted that the initial boundaries of 
the tuning parameters may be extended as the optimal 
values are approached. Information about the optimized 
hyperparameters and their respective ranges for all ma-
chine learning models implemented in the developed 
MMOMML system is provided in Appendix (Table A1).

Each set of hyperparameter values combined with the 
learning data forms a prediction model that may then be 
validated using the validation data. Hence, each iteration 
of the optimization process generates many potential pre-

Figure 5. General procedure for integrating a metaheuristic optimizer using machine learning
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diction models with differing levels of accuracy. An ob-
jective function is established to identify the optimal set 
of tuning parameters by comparing the generalization of 
the corresponding prediction models, as shown in Eqn (1). 
Etrain and Validation may be formed from the mean square 
error (MSE), mean absolute percentage error (MAPE), or 
the coefficient of determination (R2) for the regression 
problem. MSE was used in this study as the estimation 
error because this value equalizes the errors in prediction 
values by severely punishing more significant prediction 
errors. The objective function consists of training and vali-
dation errors that allow a trade-off between model gen-
eralization and complexity.

f = Etrain + Evalidate , 
(1)

where and indicate the average training error and validat-
ing error, respectively.

The metaheuristic algorithm uses values of the objec-
tive functions to recognize proper solutions (sets of hyper-
parameter values). Based on the operation procedure of 
each MO used in the optimization, solutions are evolved 
to obtain better values at the next iteration. Generally, a 
better solution yielding a smaller objective function value 
will be retained for further calculation, while worse so-
lutions are abandoned. This search loop continues until 
the termination criterion is met. Specifically, the search 
loop concludes when either the maximum iteration limit 
is reached, or there is no improvement in the accuracy 
objective value for a set number of consecutive iterations. 
The optimal set of tuning parameter values is found once 
the optimization process stops and is saved to produce 
the outcome of new instances in the future. These opti-
mal values may be used as test data to compare model 
performance. The operational procedure used to develop 
the hybrid models in the interface is presented in Figure 6.

Figure 6. Operational procedure used to develop hybrid models in the interface
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4.2. The MMOMML interface

The structure of the proposed MMOMML system, pre-
sented in Figure 7, includes four main phases: Data input, 
Modelling, Model saving, and Deployment. The MMOMML 
interface was designed to resolve numerous prediction 
and forecasting problems related to steel structures and 
to meet the needs/expectations of both industry users 
and researchers. This user-friendly, powerful interface can 
assist structural engineers in efficiently solving their steel 
structure inference problems using on-hand data and 
without prior coding knowledge. The steps for using the 
interface to train a hybrid ML model are shown in Figure 8.
 ■ Step 1. When using the interface for the first time, the 
user selects DATA PROCESS to handle and save the data 
in a suitable format that accelerates the training and 
optimization processes. After clicking the DATA PRO-
CESS button, a new “Data Process” window will display 
the data processing options listed in the bullet points 
below. Selecting the “Load Data” button allows the user 
to browse the datasheet, which should be saved in .xls, 
.xlsx, or .csv format.
• Shuffle → randomly changes the sequence of data 

points.
• Export CSV → allows users to record a new sequence 

of data points while the shuffle option is active.
• Standardize → normalizes the original data values to 

a standard range of [0, 1].
• k cross-fold → divides the entire dataset into k exclu-

sive folds (default k = 10).

 ■ Step 2. The user selects an MO algorithm from the list 
for optimization. The user may set desired values for the 
general parameters, including several optimization itera-
tions and population size, and display the optimization 
results for the specified steps. Suppose the selected MO 
has additional tuning parameters. In that case, these will 
appear with the default values suggested by the original 
authors of the MO but may also be adjusted by the user 
if desired. For example, additional tuning parameters as-
sociated with GA include mutation rate, crossover rate, 
and generation gap. 

 ■ Step 3. The user designates the type of inference prob-
lem by selecting classification or regression. 

 ■ Step 4. The MACHINE LEARNERS button is activated, 
allowing the user to select the desired machine learner 
from a list. Other setting options are continuously acti-
vated to allow the user to:
• Perform test folds for k-fold cross-validation runs or 

randomly set portions of train/test data
• Set the lower bounds and upper bounds of the hy-

perparameters 
 ■ Step 5. The user clicks on the OPTIMIZE MODEL but-
ton to start the optimization process, which returns the 
outcome. Upon completion of model performance opti-
mization, the results are displayed in two tables and one 
figure, as follows:
• In the first table, the evaluation index for the regres-

sion problem for training, validation, and testing 
phases are RMSE, MAPE, MAE, and R2, respectively. 
Meanwhile, CAR, PRE, REC, F1_score, NPV, TPR, and 
NPR are chosen to assess the robustness of the model 
for a classification problem.

Figure 7. Structure of the MMOMML system
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• The second table presents the optimal value set of the 
hyperparameters provided by the selected MO.

• The figure exhibits the convergence curve of the MO 
optimization process and the computational time.

 ■ Step 6. After completion of the optimization process, 
the user may save the optimized model by clicking on 
the SAVE MODEL button. The outcome of the optimiza-
tion process may be exported to .xlsx files for further 
analysis by clicking on the EXPORT RESULT button.

 ■ Step 7. The user may load a previously saved optimized 
model to infer outcomes from new data patterns by 
clicking on the PREDICTION button to open a new win-
dow, which facilitates the following tasks: 
• Select the inference type (regression or classification)
• Browse to select a saved model.
• Browse to load new data in Excel format.
• Click on the RUN button to execute the prediction 

task and click on the EXPORT button to save the out-
come to a .xlsx file.

5. Case data and experimental results
Two steel structure datasets were utilized in this research 
to validate the efficiency and reliability of the proposed 

MMOMML system, which included data on shear strength 
in steel beams with flat webs and elastic buckling in steel 
cellular beams.

5.1. Shear strength in steel beams
5.1.1. Data processing

The shear strength of steel beams is a crucial parameter 
influencing the susceptibility of webs to various failure 
modes, making this variable a pivotal factor in structural 
design and safety. Experimental studies on the ultimate 
shear resistance of these girders have revealed that they 
exhibit typical diagonal shear buckling of the web and de-
velop plastic hinges in the flanges at failure loads. Bending 
theory may be employed to analyze how internal forces 
carried by the web and flanges in a plate girder respond 
to minor shear loads (see Figure 9). 

The ultimate shear resistance of steel plate girders 
has been investigated extensively using experimental and 
theoretical methods. Despite the extensive research con-
ducted in this area over the past three decades, current 
methods remain unable to accurately predict the ultimate 
shear resistance of plate girders (Elamary et al., 2023), un-
derscoring the need for more reliable and precise proce-
dures to enhance structural analysis and design. 

Figure 8. Main interfaces of the proposed hybrid ML interface
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In this study, experimental data on the shear strength 
of steel beams with flat webs were collected from various 
articles in the literature. These data were then classified, 
filtered, and organized based on beam characteristics and 
other effective parameters. The systematically processed 
data generated a curated dataset of 90 experimental test 
results derived from 19 published papers (Adorisio, 1982; 
Basler et al., 1960; Carskaddan, 1968; Cooper et al., 1964; 
Evans et al., 1977, 1979; Evans, 1984, 1986; Evans & Tang, 
1983; Kamtekar et al., 1972, 1974; Konishi, 1965; Lee & 
Yoo, 1998; Roberts & Shahabian, 2000; Rockey & Skaloud, 
1972; Rockey et al., 1981; Sakai et al., 1966; Skaloud, 1971; 
Tang & Evans, 1984), which was used to validate the pro-
posed MML system. The complete dataset is provided in 
Appendix (Table A2). A critical overview of the key parame-
ters relevant to the experimental shear load at failure (Vexp) 
of steel plate girders is provided in Table 3. This compre-
hensive dataset facilitates an in-depth understanding of 
the behavior and performance of steel plate girders under 
various loading conditions.

5.1.2. Numerical results

Accurate predictive modeling requires that model perfor-
mance be comprehensively evaluated. The ten-fold cross-
validation technique used in this study is a widely cited, 
robust approach to assessing the predictive capabilities 
of machine learning models. Ten-fold cross-validation in-
volves partitioning a dataset into ten distinct subsets or 

folds. In each iteration, nine folds are utilized for model 
training, while the remaining fold is used for validation. 
This process is iteratively repeated ten times, ensuring that 
each fold serves as a validation set precisely once. Ten-
fold cross-validation is a practical approach to mitigating 
random-selection bias in model evaluations. The outcomes 
of these iterations are aggregated to provide a holistic 
understanding of the generalizability of a model to other 
diverse data subsets.

In this study, a suite of four evaluation metrics, includ-
ing Mean Square Error (MSE), Mean Absolute Percentage 
Error (MAPE), and Coefficient of Determination (R2), was 
used to comprehensively assess model performance in 
terms of predictive accuracy, error distribution, and ex-
planatory power:

1. Mean Squared Error (MSE): MSE calculates the aver-
age of the squared differences between predicted 
and actual values. This metric provides a higher-level 
view of error distribution, facilitating a broader-scale 
model accuracy evaluation.

2. Mean Absolute Percentage Error (MAPE): MAPE com-
putes the average percentage difference between 
predicted and actual values. This metric is valuable 
in scenarios where understanding relative error’s im-
pact is crucial, allowing for an intuitive interpretation 
of predictive accuracy.

3. Coefficient of Determination (R2): R2 assesses the 
proportion of variance in the dependent variable 
that is explainable by the independent variables in 
the model. This metric provides insights into the 
model’s explanatory power and its ability to capture 
the underlying relationships within the data.

The mathematical formulas for those metrics are as 
follows:
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Figure 9. Plate girder responses to minor shear loads

Table 3. Input and output values of shear strength in steel plate girders

Description Sym. Role  Min Max Mean  Std.

Clear distance between web stiffeners b (mm) X1 172.0 3,810.0 889.3 690.5 
Web depth d (mm) X2 121.0 1,270.0 673.8 347.3 
Flange width bf (mm) X3  25.4  459.0  186.9  103.0 
Web thickness tw (mm) X4  1.0  10.0  2.8  2.2 
Flange thickness tf (mm) X5  3.1  51.2  13.6  8.9 
Web yield stress syw (N/mm2) X6  169.0  760.0  260.5  110.1 
Flange yield stress syf (N/mm2) X7  206.0  790.0  315.3  129.7 
Lever arm la (mm) X8  172.0  3,810.0  1,385.8  946.6 
Experimental shear load at failure Vexp (kN2) Y  13.0  5,004.0  344.4  766.7 

Note: The lever arm of a steel beam is the perpendicular distance from the line of action of a force applied to the beam to the point 
about which the beam is expected to rotate.
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This study comprehensively understood the predictive 
models’ performance by combining the robust ten-fold 
cross-validation with the multidimensional, four-metric 
evaluation. In line with the objectives of this study, inte-
grating these methodologies facilitates informed decision-
making on model selection and refinement as well as real-
world applicability.

Across all of the hybrid models in the MMOMML sys-
tem, many generated outcomes indicate suboptimal per-
formance, as indicated by unsatisfactory evaluation metric 
(MSE, MAPE, and R2) values. The results demonstrate the 
complexities involved in accurately predicting the outcomes 
within the given dataset, reflecting the inherent challenges 
in modeling the behavior of steel structures. Considering 
MAPE as the primary assessment criterion, MAPE ≤ 20% 
values were presumed to indicate good prediction accu-
racy, and values > 20% were assumed to indicate nor-
mal to bad prediction accuracy (Kumar & Kaur, 2016). 
The performance of models achieving MAPE value less 
than 20% (good prediction accuracy) is shown in Table 4,  
offering insights into models with comparatively favorable 
performance. 

As shown in Table 4, XGB, LSSVR, and RBFNN were 
quite productive and suitable for the given dataset. FBI_
LSSVR emerged as the most promising candidate by out-
performing its counterparts across all evaluation metrics, 
underscoring its potential for enhanced predictive accu-
racy. Specifically, FBI_LSSVR exhibits the lowest MAPE value 
(14.13%) and the highest R2 value (R2 = 0.970, approxi-
mately 1). SOS_XGB gave the second-best performance 
with a MAPE = 14.23%. Some of the other models ex-
hibited a trade-off between accuracy and correlation. For 
example, GWO_XGB achieved a low MAPE (15.6%) and a 
relatively low R2 (0.875). 

Two important insights may be taken from Table 4. 
First, ML models must be carefully selected to match the 
specific characteristics of each dataset. Suppose XGB, 
LSSVR, or RBFNN is chosen appropriately and hybridized 
with an MO algorithm for parameter optimization. In that 
case, the resulting hybrid model can be expected to yield 
predictions with relatively high accuracy. Conversely, when 
selecting ML models beyond those in Table 4 (e.g., MARS), 
predictive performance can be expected to be subopti-
mal (with a MAPE exceeding 20%) even after hybridization 
with an MO algorithm. Second, MO algorithms must be 
carefully selected for parameter optimization based on the 
ML context. When used with ML algorithms compatible 
with the provided dataset (XGB, LSSVR, or RBFNN), the 
appropriate MO algorithms for parameter optimization 
achieve MAPE values from 14.13% to 18.83%. However, 
using a metaheuristic algorithm not listed in Table 4 (e.g., 
GA_LSSVR) can be expected to result in suboptimal model 
performance, with MAPE values >20%. 

Notably, FBI is the only candidate algorithm capable 
of seamless hybridization with XGB, LSSVR, and RBFNN 
models, optimizing parameter values to enhance predic-
tive accuracy. By contrast, the other MO algorithms in 
the proposed system exhibit limitations in either their 
hybridization potential with these models or their ability 
to identify optimal parameter values, resulting in compro-
mised accuracy and the MAPE values of the hybrid models 
surpassing 20%. These findings underscore the superior 
efficacy of the FBI algorithm as a versatile multi-objective 
optimization technique adept at finely adjusting param-
eters across a diverse array of ML models.

For enhanced visual analysis, the contrast between 
actual and predicted outputs for the two models is plot-
ted graphically in Figure 10, with FBI_LSSVR shown to be 
more accurate overall than GA_LSSVR. For FBI_LSSVR, the 

Table 4. Performance of models with MAPE < 20% in the MMOMML system

Model
Learning Test

MAPE 
%

MSE 
(kN2) R2 MAPE 

%
MSE 
(kN2) R2

ABC-LSSVR 16.25 45.67 0.972 18.43 49.28 0.946 
EO-LSSVR 11.83 37.45 0.960 16.15 45.31 0.960 
FBI-LSSVR 10.96 38.76 0.948 14.13 47.91 0.970 
SOS-LSSVR 12.00 42.40 0.959 17.33 59.08 0.945 
TLBO-LSSVR 13.19 34.18 0.973 17.72 53.33 0.936 
WCA-LSSVR 12.93 74.71 0.860 17.84 64.10 0.943 
FA-RBFNN 11.17 37.46 0.962 17.03 45.65 0.969 
FBI-RBFNN  9.00 38.46 0.964 15.22 50.63 0.962 
FPA-RBFNN 10.23 41.65 0.956 14.71 56.09 0.941 
SOS-RBFNN  8.19 44.02 0.970 17.22 56.23 0.951 
FBI-XGB  7.94 25.82 0.981 14.47 55.35 0.945 
SOS-XGB  8.41 56.66 0.963 14.23 55.15 0.937 
EO-XGB  9.87 48.83 0.956 15.77 62.99 0.896 
RRA-XGB 10.33 35.89 0.974 18.83 62.33 0.892 
GWO-XGB  8.36 77.18 0.904 15.60 76.83 0.875 
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visualization reveals a remarkable alignment and even co-
incidence between the predicted and actual data points. 
Conversely, for GA_LSSVR, the disparity between the ex-
pected and actual results is more prominent, indicating the 
model’s relative inaccuracy and the broader differences 
between predicted and exact outcomes.

5.2. Elastic buckling of steel cellular beams
5.2.1. Description of the data

The elastic buckling behavior of perforated steel beams, 
specifically cellular beams with repeating web openings, 
has been studied for over a century (Degtyarev & Tsavda-
ridis, 2022; Sweedan, 2011). The advantages of these beams 
over solid-web steel beams include reduced weight, higher 
strength-to-weight ratio, integration of utilities, and im-
proved aesthetics. The critical geometrical parameters of 
perforated steel beams are provided in Figure 11 (Rajana 
et al., 2020). The presence of multiple large openings in 
cellular beams considerably reduces beam shear strength 
and introduces various possible failure modes that in-

crease the complexity of their flexural behavior and design. 
Prior investigations have examined the specific as-

pects of cellular beams and beams with different web-
opening shapes (Grilo et al., 2018; Panedpojaman et al., 
2014; Tsavdaridis & D’Mello, 2011). Rajana et al. (2020) 
performed an extensive numerical parametric study in-
vestigating elastic and inelastic buckling in cellular beams 
subjected to strong axis bending. The effects of the initial 
geometric imperfection, material nonlinearity, manufac-
ture-introduced residual stresses, web opening diameter, 
web-post width, web height, flange width, web and flange 
thickness, end web-post width, and span of the beams, 
as well as their combinations, were examined thoroughly.

Rajana et al. (2020) investigated the impact of differ-
ent parameters on elastic buckling loads and generated 
an extensive database of finite element simulation results 
comprising 3645 samples. This comprehensive dataset was 
used in this study to validate the effectiveness and reliabil-
ity of the proposed MMOMML system in predicting elastic 
buckling behavior in steel cellular beams. The statistical 
characteristics of this dataset are shown in Table 5.

Figure 10. Actual-versus-predictive values of FBI_LSSVR and GA_LSSVR

Figure 11. Important dimensional parameters of cellular beams (Rajana et al., 2020)
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Table 5. Input and output values of elastic buckling loads in steel cellular beams

Parameter Sym. Role Min Max Average Std.
Length of beams L (mm) X1 4000 8000 6,000.0 1414.4
Section height HW (mm) X2 420 700 560.0 114.3
Perforation diameter Do (mm) X3 247 560 383.6 93.0
Width of web post WP (mm) X4 24.7 274.4 112.5 68.5
Width of flange FW (mm) X5 162 270 216.0 44.1
End web-post distance (end perforation to support) LEd (mm) X6 12 718 265.4 157.5
Flange thickness Tf (mm) X7 15 25 20.0 4.1
Web thickness TW (mm) X8 9 15 12.0 2.4
Elastic buckle load ϒcr (kN/m)2 Y 26.4 1,361.7 225.7 182.5
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5.2.2. Numerical results

Due to the substantial size (3645 samples) of the dataset 
in this case study, the following approach was used to se-
lect a subset of the hybrid ML models in the MMO-MML 
system for testing:

Step 1: The dataset was used first to train all ML mod-
els in the MMOMML system. The parameters of these 
ML models were optimized using the FBI algorithm due 
to its demonstrated superiority over the other optimiza-
tion algorithms across a wide range of scenarios (Chou 
& Nguyen, 2020) and due to its validation in Subsection 
5.1.2 as a powerful and effective MO algorithm for fine-
tuning parameters across a wide range of ML models. The 
two most suitable ML models for the given dataset were 
identified based on the results.

Step 2: The two most appropriate ML models were 
combined with each optimization algorithm available in 
the system to identify the most effective hybrid ML model 
for the specific characteristics of the case study. This pro-
cess aimed to enhance model performance and achieve 
the best possible results.

In this case study, 10-fold cross-validation was also 
deployed to enhance model generalizability and mitigate 
overfitting concerns. As previously mentioned, in the first 
step, the FBI algorithm was deployed to optimize the pa-
rameters of the machine-learning models in the MMOM-
ML system. The results in Table 6 showcase the predictive 
powers of the five most accurate hybrid models. These 
results encompass the mean values obtained through the 
10-fold cross-validation procedure and the standard devi-
ation values for the four performance metrics, which sepa-
rately address each model’s learning and testing phases. 

The results in Table 6 identify FBI_XGB as the most ef-
fective hybrid model. FBI_XGB exhibited the best perfor-
mance across all four metrics, earning a MAPE of 1.54%, 
MSE of 3.77 (kN/m)2, and R2 of 0.997. FBI_LSSVR was the 
second-best hybrid model in terms of accuracy (MAPE = 
2.68%, and R2 = 0.996). Alternatively, FBI_MARS earned 
higher average MSE and MAPE values, indicating lower 
prediction accuracy. The standard deviations provide in-

sights into the variability in these metrics across different 
evaluations, with lower values generally indicating more 
consistent model performance. Overall, the results high-
light the efficacy of FBI_XGB and FBI_LSSVR in achieving 
reliably accurate predictions, as well as the other mod-
els’ lower reliability and higher variability in achieving the 
same.

Next, XGB and LSSVR, the two most productive mod-
els, were integrated with each optimization algorithm into 
the MMOMML system to identify the optimal hybrid ML 
model for the unique demands of the current case study. 
The comprehensive evaluation metrics on the hybrid MO_
XGB and MO_LSSVR models are presented in Tables 7 and 
8, respectively.

The results of the MSE, MAPE, and R2 metrics shown 
in Table 7 shed light on the predictive efficacy of the top-
ten MO_XGB models across both learning and test phases. 
Notably, FBI_XGB stands out as a strong performer, with 
consistently low average MSE values of 3.67 and 3.77 for 
the learning and test phases, respectively, and minimal 
MAPE values of 1.44% and 1.54%, respectively. The rela-
tively narrow standard deviations accompanying these val-
ues underscore this model’s reliability and ability to gener-
ate accurate predictions consistently.

Further analysis of Table 7 reveals intriguing patterns 
among the models. ABC_XGB, EO_XGB, SOS_XGB, TLBO_
XGB, WCA_XGB, and GWO_XGB exhibited similar average 
MAPE values of less than 2%, indicating their robust pre-
dictive capabilities. However, WCA_XGB exhibited slightly 
higher standard deviations, implying varying degrees of 
performance across different evaluation instances. In addi-
tion, both FBI_XGB and GWO_XGB stand out for their nota-
ble average R2 values of 0.997 and above in both learning 
and test phases, implying their strong explanatory powers 
in representing observed variances in the dataset.

The results of the MSE, MAPE, and R2 metrics shown in 
Table 8 shed light on the predictive efficacy of the top-ten 
MO_LSSVR models across both the learning and test phas-
es. Notably, EO_LSSVR showcased consistent predictive 
strength, with average MAPE values of 2.58% and 2.68%, 

Table 6. Performances of the top-five hybrid models

Model
Learning Test

MSE 
(kN/m)2

MAPE 
% R2 MSE 

(kN/m)2
MAPE 

% R2

FBI-LSSVR
Avg. 4.88 2.58 0.995 5.08 2.68 0.996
Std. 0.57 0.25 0.004 0.76 0.20 0.003

FBI-LGBM
Avg. 5.97 2.80 0.995 5.74 2.75 0.996
Std. 0.54 0.44 0.003 0.76 0.44 0.001

FBI-MARS
Avg. 16.58 9.67 0.981 16.76 9.84 0.979
Std. 1.58 1.01 0.004 1.43 0.93 0.007

FBI-RBFNN
Avg. 11.10 6.64 0.987 11.53 6.93 0.987
Std. 0.88 0.40 0.007 0.93 0.84 0.009

FBI-XGB
Avg. 3.67 1.44 0.998 3.77 1.54 0.997
Std. 0.58 0.19 0.001 0.45 0.13 0.002
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Table 7. Performances of the top-ten MO_XGB models

Model
Learning Test

MSE 
(kN/m)2

MAPE 
% R2 MSE 

(kN/m)2
MAPE 

% R2

FBI-XGB
Avg. 1.44 3.67 0.998 1.54 3.77 0.997
Std. 0.19 0.58 0.001 0.13 0.45 0.002

ABC-XGB
Avg. 1.88 4.50 0.996 1.91 4.57 0.996
Std. 0.13 0.28 0.002 0.18 0.67 0.003

EO-XGB
Avg. 1.84 4.46 0.996 1.88 4.47 0.996
Std. 0.24 0.52 0.003 0.26 0.70 0.002

TLBO-XGB
Avg. 2.06 4.95 0.994 1.96 4.82 0.995
Std. 0.26 0.52 0.005 0.24 0.58 0.003

SOS-XGB
Avg. 1.76 4.26 0.996 1.74 4.27 0.996
Std. 0.23 0.46 0.005 0.27 0.44 0.003

FPA-XGB
Avg. 2.16 5.11 0.995 2.20 5.12 0.995
Std. 0.41 1.00 0.003 0.34 0.82 0.004

WCA-XGB
Avg. 1.95 4.68 0.995 1.95 4.66 0.995
Std. 0.15 0.26 0.003 0.27 0.85 0.004

RRA-XGB
Avg. 2.54 5.65 0.995 2.62 5.84 0.995
Std. 0.29 0.79 0.002 0.34 1.03 0.003

GWO-XGB
Avg. 1.65 4.10 0.997 1.70 4.12 0.997
Std. 0.07 0.43 0.001 0.22 0.64 0.002

WOA-XGB
Avg. 2.11 4.81 0.997 2.10 4.84 0.996
Std. 0.33 0.61 0.001 0.28 0.54 0.00

Table 8. Performances of the top-ten MO_LSSVR models

Model
Learning Test

MSE 
(kN/m)2

MAPE 
% R2 MSE 

(kN/m)2
MAPE 

% R2

ABC-LSSVR
Avg. 2.61 4.97 0.995 2.77 5.17 0.995
Std. 0.25 0.57 0.003 0.30 0.71 0.003

FBI-LSSVR
Avg. 2.58 4.88 0.995 2.68 5.08 0.996
Std. 0.25 0.57 0.004 0.20 0.76 0.003

DE-LSSVR
Avg. 2.72 5.14 0.995 2.85 5.20 0.994
Std. 0.11 0.28 0.002 0.29 0.66 0.007

GWO-LSSVR 
Avg. 2.67 5.33 0.995 2.74 5.29 0.994
Std. 0.17 0.61 0.003 0.28 0.80 0.005

FA-LSSVR
Avg. 2.86 5.44 0.993 2.74 5.00 0.996
Std. 0.14 0.57 0.005 0.22 0.35 0.002

EO-LSSVR
Avg. 2.72 5.21 0.995 2.64 5.02 0.996
Std. 0.22 0.52 0.002 0.20 0.62 0.003

SOS-LSSVR
Avg. 2.72 5.11 0.996 2.78 5.30 0.995
Std. 0.15 0.23 0.001 0.26 0.70 0.003

TLBO-LSSVR
Avg. 2.65 5.12 0.995 2.82 5.46 0.993
Std. 0.13 0.44 0.003 0.32 1.05 0.008

WOA-LSSVR
Avg. 2.69 5.15 0.995 2.82 5.41 0.995
Std. 0.21 0.56 0.003 0.28 0.83 0.003

WCA-LSSVR
Avg. 2.67 4.94 0.996 2.80 5.22 0.993
Std. 0.30 0.55 0.005 0.23 0.70 0.009

respectively, in the learning and test phases. Although the 
standard deviations indicate some variability, the model 
demonstrated reliable performance across both phases. 

A similar trend was exhibited by FBI-LSSVR, with closely 
aligned average metrics and a balanced standard deviation 
underlining its stability.
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The comprehensive assessment of the models in Table 8  
reveals consistently high R2 values from 0.993 to 0.996, 
indicating diverse performance levels across distinct evalu-
ation instances. This variability in R2 values underscores 
the adeptness of these models in capturing data variance. 
Concurrently, the low MAPE values observed (2.64% to 
2.85%) underscore the high prediction accuracy of these 
models, substantiating their reliability and suitability for 
practical applications requiring both robust explanatory 
and precise forecasting capabilities.

Interpreting the interplay between average values and 
standard deviations is crucial to comprehensively under-
standing model performance consistency. While average 
values provide a measure of central tendency, standard 
deviations elucidate the dispersion of results, highlighting 
the stability of a model across different iterations. The data 
in Tables 7 and 8 permits the predictive aptitudes of the 
various learning models to be compared and contrasted, 
allowing the most reliable contenders to be identified and 
highlighting those models that may exhibit varied out-
comes under differing conditions.

6. Conclusions
In this research, an innovative application interface called 
the multiple metaheuristic optimizers – multiple machine 
learners (MMOMML) system was developed and used to 
address the predictive and estimation challenges encoun-
tered in steel structures. Despite the current prevalence 
of using machine learning (ML) to predict mechanical 
strength in structural engineering, much of the related 
work in the literature has focused on concrete and re-
inforced concrete structural components. Furthermore, 
many of these studies have relied on subjectively selected 
metaheuristic optimization (MO) algorithms and ML mod-
els to construct their hybrid ML models, leaving open the 
possibility that other, unexamined hybrid models may per-
form even better. 

To bridge these gaps, we harnessed two specific data-
sets related to distinct steel structure properties, in con-
junction with advanced algorithms and models, to develop 
the novel MMOMML system. Advanced artificial intelli-
gence (AI) techniques encompassing 17 MO algorithms 
and 15 ML techniques were integrated into this system to 
generate a comprehensive suite of 255 hybrid AI models 
that expose unexplored, potentially lucrative avenues for 
novel hybrid model development. Moreover, by automat-
ing the training of models using historical real-world data, 
the MMOMML system bridges the gap in the literature 
regarding predicting structural behavior in steel structural 
components. The user-friendly system interface empow-
ers structural engineers to navigate inference challenges 
related to steel structures, leveraging existing data without 
requiring coding knowledge. Furthermore, the potential of 
this system to address a wide range of practical challenges 
affecting steel structures recommends MMOMML as a de-
pendable tool for structural engineers that meets the ex-
pectations of both practitioners and researchers.

Two datasets addressed the shear strength of steel 
beams and elastic buckling in steel cellular beams were 
used to validate the proposed MMOMML system. The 
former comprised 90 experimental results curated from 
19 published papers, and the latter comprised a compre-
hensive database of 3645 finite element simulation results. 
The system performance evaluation used the ten-fold 
cross-validation technique augmented by four evaluation 
metrics, including MSE, MAPE, and R2. The ten-fold cross-
validation technique and metrics provide comprehensive 
insights into the proposed system’s predictive accuracy, er-
ror distribution, and explanatory power. To support trans-
parency and reproducibility, all information about the 10-
fold cross-validation dataset and the optimal values of all 
hyperparameters in hybrid models within the MMOMML 
system is provided at https://drive.google.com/drive/fold
ers/1jt2966noFuHkterKaUIFTkhFENNyXsGi?usp=sharing.

The rigorous analysis in this study highlights two key 
observations. The first is the pivotal role of selecting the 
most appropriate ML model for a given dataset. Appropri-
ate models combined with MO algorithms yield substan-
tial predictive accuracy. The second is that judicious MO 
algorithm selection significantly impacts ML parameter op-
timization, influencing performance accuracy. This research 
contributes to enhancing the accuracy and reliability of 
predictive modeling in steel structures by providing the 
most effective hybrid ML models for each specific data-
set, highlighting the potential of the MMOMML system 
as a valuable tool for engineers to address structural chal-
lenges in these structures.

The MMOMML system is expected to enhance the ac-
curacy and reliability of predictive modeling in steel struc-
tures. Its potential for advancement is clear, with plans to 
expand MMOMML system capabilities by incorporating 
broader spectrums of advanced ML models and novel MO 
algorithms. Further diversification of ML models and MO 
algorithms will provide the MMOMML system with an even 
more comprehensive array of data related to steel struc-
tures, enabling structural engineers to glean invaluable 
insights into their projects. The ability of the MMOMML 
system to adapt and evolve ensures its relevance across 
a myriad of construction industry applications, providing 
a robust foundation for continued exploration and inno-
vation. The next step is to make the MMOMML system 
publicly available via a dedicated online platform or web-
site to facilitate broader access and verification. This will 
empower readers and researchers to utilize the system, 
train it with their datasets, and validate its performance.

In conclusion, the MMOMML system, a pioneering 
amalgamation of data-driven insights and advanced AI 
techniques, marks a significant stride toward transform-
ing how engineers approach challenges in steel structures. 
The ability of this system to generate accurate predictions, 
optimize parameters, and foster interdisciplinary collabo-
ration between AI and engineering offers the opportunity 
to redefine the landscape of structural analysis and design. 
The MMOMML system is well situated to facilitate cata-

https://drive.google.com/drive/folders/1jt2966noFuHkterKaUIFTkhFENNyXsGi?usp=sharing
https://drive.google.com/drive/folders/1jt2966noFuHkterKaUIFTkhFENNyXsGi?usp=sharing
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lyzing advancements in both the theoretical and practical 
realms of steel-structure engineering by providing a dy-
namic, adaptable, and efficient predictive tool for related 
engineers and researchers. While this study focused on 
validating the system’s performance within the context of 
steel structures, it is anticipated that the system’s appli-
cability can extend to address estimation and prediction 
challenges in diverse domains, including but not limited to 
concrete structures and construction engineering manage-
ment. This demonstrates the versatility of the MMOMML 
system in addressing a broader spectrum of predictive 
modeling challenges across various construction-related 
domains. 
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APPENDIX

Table A1. Information about the optimized hyperparameters and their respective ranges for all machine learning models implemented 
in the developed MMOMML system

No. Models Hyperparameters Type Range

1 LSSVR
Gamma Float 10e–6 ~ 10e6
Sigma Float 10e–6 ~ 10e6

2 SVR
Regularization parameter Float 10e–3 ~ 10
Gamma Float 10e–3 ~ 10
Epsilon (For regression problem) Float 10e–4 ~ 1

3 ANN
Number of hidden layers Integer 1 ~ 5
Number of neurons in one layer Integer 5 ~ 30
Learning rate Float 10e–3 ~ 1

4 RBFNN
Number of hidden neurons Integer 5 ~ 100
Spread of kernel Float 10e–3 ~ 1

5 MARS
Maximum number of basis functions Integer 10 ~ 50
Penalty coefficient Float 0.01 ~ 10
Maximum interaction Integer 1 ~ 10

6 LogitBoost

Learning cycle number Integer 10 ~ 100
Learning rate Float 10e–3 ~ 1
Minimum leaf size Integer 1 ~ 100
Maximum number of splits Integer 1 ~ 100

7 ADABOOST
Maximum depth Integer 1 ~ 20
Number of estimators Integer 5 ~ 100
Learning rate Float 10e–3 ~ 1

8 LGBM

Number of leaves Integer 1 ~40
Learning rate Float 10e–3 ~ 1
Feature fraction Float 0.6 ~ 1
Maximum depth Integer 2 ~ 10
Minimum sample number in a leaf Integer 5 ~ 10

9 XGB

Maximum depth Integer 1 ~ 10
Number of estimators Integer 5 ~ 100
Learning rate Float 10e–3 ~ 1
Minimum sample number in a leaf Integer 1 ~ 10

10 RF
Minimum sample number to split Integer 2 ~ 10
Number of estimators Integer 5 ~ 100

11 Decision Tree
Minimum sample number to split Integer 2 ~ 10
Complexity parameter Float 0 ~ 10
Minimum sample number in a leaf Integer 1 ~ 10

12 Linear Regression Learning rate Float 10e–3 ~ 1
13 Logistic Regression Learning rate Float 10e–3 ~ 1

14 ANFIS

Gaussian function center Float –5 ~ 5
Number of Gaussian functions Integer 1 ~ 10
Width of Gaussian functions Float 0.1 ~ 2
Learning rate Float 10e–3 ~ 1

15 Multivariate Regression
Regularization parameter Float 10e–3 ~ 10
Learning rate Float 10e–3 ~ 1



Journal of Civil Engineering and Management, 2024, 30(5), 414–436 435

Table A2. The collected dataset of shear strength for steel beams with flat webs

Specimen b
mm

d
mm

bf
mm tw mm tf 

mm
σyw 

N/mm2
σyf 

N/mm2
la

mm
Vexp
kN2 Ref.

A1 172 133 25.4 1.42 6.35 258 287 172 29.0 Sung and Yoo (1998)
A4 254 121 34.9 1.42 6.35 258 287 254 26.0 Sung and Yoo (1998)
C4 254 356 41.3 1.47 6.35 258 287 508 41.0 Sung and Yoo (1998)
G6-T1 1,905 1,270 308.0 4.90 19.80 253 261 1,905 516.0 Basler et al. (1960)
G6-T2 953 1,270 308.0 4.90 19.80 253 261 1,905 662.0 Basler et al. (1960)
G6-T3 635.0 1,270.0 308.0 4.90 19.8 253.0 261.0 1,905.0 787.0 Basler et al. (1960)
G7-T1 1,270.0 1,270.0 310.0 4.98 19.5 253.0 259.0 1,905.0 623.0 Basler et al. (1960)
G7-T2 1,270.0 1,270.0 310.0 4.98 19.5 253.0 259.0 1,905.0 645.0 Basler et al. (1960)
G8-T1 3,810.0 1,270.0 305.0 5.08 19.1 263.0 284.0 3,810.0 375.0 Basler et al. (1960)
G8-T2 1,905.0 1,270.0 305.0 5.08 19.1 263.0 284.0 1,905.0 445.0 Basler et al. (1960)
G8-T3 1,905.0 1,270.0 305.0 5.08 19.1 263.0 284.0 3,810.0 516.0 Basler et al. (1960)
G9-T1 3,810.0 1,270.0 305.0 3.33 19.1 307.0 288.0 3,810.0 213.0 Basler et al. (1960)
G9-T2 1,905.0 1,270.0 305.0 3.33 19.1 307.0 288.0 1,905.0 334.0 Basler et al. (1960)
G9-T3 1,905.0 1,270.0 305.0 3.33 19.1 307.0 288.0 3,810.0 352.0 Basler et al. (1960)
H1T2 1,905.0 1,270.0 459.0 9.98 24.8 745.0 703.0 1,905.0 3,450.0 Cooper et al. (1964)
H2T1 1,270.0 1,270.0 459.0 9.91 51.2 760.0 750.0 3,810.0 4,079.0 Cooper et al. (1964)
H2T2 635.0 1,270.0 459.0 9.91 51.2 760.0 750.0 3,810.0 5,004.0 Cooper et al. (1964)
B 1,200.0 1,200.0 240.0 4.50 12.0 490.0 491.0 1,200.0 745.0 Konishi (1965)
G2 1,150.0 440.0 200.0 8.00 30.0 431.0 412.0 1,150.0 824.0 Sakai et al. (1966)
G5 1,500.0 560.0 250.0 8.00 30.0 431.0 412.0 1,500.0 1,049.0 Sakai et al. (1966)
G6 687.0 560.0 250.0 8.00 30.0 431.0 412.0 687.0 1,176.0 Sakai et al. (1966)
G7 1,500.0 560.0 250.0 8.00 30.0 431.0 412.0 1,500.0 1,049.0 Sakai et al. (1966)
S3 577.0 477.0 101.0 3.20 10.5 317.0 272.0 577.0 198.0 Sakai et al. (1966)
US2/5 788.0 359.0 96.6 3.17 12.0 230.0 422.0 1,220.0 135.0 Kamtekar et al. (1972)
US3/5 788.0 359.0 96.1 2.70 12.0 257.0 422.0 1,620.0 90.0 Kamtekar et al. (1972)
TG14 305.0 305.0 76.2 0.97 3.1 219.0 305.0 610.0 25.4 Rockey and Skaloud (1972)
TG15 305.0 305.0 76.2 0.97 5.0 219.0 286.0 610.0 29.4 Rockey and Skaloud (1972)
TG16 305.0 305.0 76.2 0.97 6.5 219.0 337.0 610.0 31.8 Rockey and Skaloud (1972)
TG17 305.0 305.0 76.2 0.97 9.3 219.0 308.0 610.0 39.0 Rockey and Skaloud (1972)
TG18 305.0 305.0 76.2 0.97 13.0 219.0 304.0 610.0 50.5 Rockey and Skaloud (1972)
TG19 305.0 305.0 76.2 0.97 15.5 219.0 268.0 610.0 54.5 Rockey and Skaloud (1972)
TG22 305.0 305.0 76.2 2.03 6.5 229.0 337.0 610.0 78.5 Rockey and Skaloud (1972)
TG23 305.0 305.0 76.2 2.03 9.2 229.0 308.0 610.0 81.0 Rockey and Skaloud (1972)
TG24 305.0 305.0 76.2 2.03 13.0 229.0 307.0 610.0 96.0 Rockey and Skaloud (1972)
TG25 305.0 305.0 76.2 2.03 15.5 229.0 268.0 610.0 104.0 Rockey and Skaloud (1972)
STG1 551.0 279.0 127.0 2.00 7.9 255.0 275.0 551.0 60.0 Rockey and Skaloud (1972)
STG2 502.0 253.0 127.0 1.60 6.4 272.0 275.0 502.0 40.0 Rockey and Skaloud (1972)
STG4 498.0 251.0 102.0 1.25 6.4 246.0 275.0 498.0 35.0 Rockey and Skaloud (1972)
RTG1 305.0 305.0 76.0 1.27 4.5 244.0 275.0 610.0 40.0 Rockey and Skaloud (1972)
RTG2 305.0 305.0 76.0 1.27 4.7 244.0 275.0 610.0 41.0 Rockey and Skaloud (1972)
RTG4 254.0 254.0 76.0 0.95 4.7 259.0 275.0 508.0 24.0 Rockey and Skaloud (1972)
TS1/4 700.0 813.0 212.0 4.06 12.0 265.0 429.0 1,397.0 387.0 Kamtekar et al. (1974)
MSO 947.0 608.0 102.0 2.01 10.1 261.0 269.0 947.0 93.5 Evans et al. (1977)
SD1 594.0 594.0 250.0 2.00 12.0 276.0 212.0 2,670.0 129.0 Evans et al. (1979)
SD3 594.0 594.0 250.0 2.00 12.0 276.0 212.0 1,070.0 156.0 Evans et al. (1979)
TGV1-1 1,200.0 600.0 200.0 2.07 10.0 211.0 247.0 1,200.0 83.0 Rockey et al. (1981)
TGV1-2 600.0 600.0 200.0 2.07 10.0 211.0 247.0 1,200.0 111.0 Rockey et al. (1981)
TGV2-2 600.0 600.0 200.0 2.08 10.0 211.0 247.0 1,200.0 115.0 Rockey et al. (1981)
TGV3-2 600.0 600.0 200.0 2.01 10.0 211.0 247.0 1,200.0 113.0 Rockey et al. (1981)
TGV4 597.0 598.0 201.0 1.97 10.1 224.0 255.0 1,193.0 102.0 Rockey et al. (1981)



436 N.-M. Nguyen, J.-S. Chou. Forecasting mechanical properties of steel structures through dynamic metaheuristic optimization ...

Specimen b
mm

d
mm

bf
mm tw mm tf 

mm
σyw 

N/mm2
σyf 

N/mm2
la

mm
Vexp
kN2 Ref.

TGV5 595.0 598.0 201.0 1.98 10.0 232.0 252.0 1,189.0 105.0 Rockey et al. (1981)
TGV7-2 596.0 599.0 201.0 1.98 10.1 221.0 250.0 1,191.0 106.0 Rockey et al. (1981)
TGV10-1 595.0 599.0 200.0 1.91 10.0 219.0 284.0 1,189.0 102.0 Rockey et al. (1981)
TGV10-2 595.0 599.0 200.0 1.91 10.0 219.0 284.0 1,191.0 106.0 Rockey et al. (1981)
TGV11-2 597.0 599.0 200.0 1.91 10.0 220.0 211.0 1,194.0 102.0 Rockey et al. (1981)
S3/1 300.0 300.0 35.0 1.03 3.2 169.0 295.0 300.0 19.0 Adorisio (1982)
S4/1 345.0 351.0 39.5 1.07 3.2 169.0 295.0 345.0 21.0 Adorisio (1982)
S5/1 400.0 399.0 39.0 1.09 3.2 169.0 295.0 400.0 23.0 Adorisio (1982)
S2/1.5 375.0 249.0 39.5 1.05 3.2 169.0 295.0 375.0 15.5 Adorisio (1982)
S3/1.5 450.0 301.0 39.0 1.03 3.2 169.0 295.0 450.0 16.0 Adorisio (1982)
S4/1.5 522.0 352.0 39.1 1.10 3.3 169.0 295.0 522.0 13.0 Adorisio (1982)
LS1-PA 942.0 608.0 100.0 2.10 10.0 183.0 269.0 942.0 75.5 Evans and Tang (1983)
LS3-PA 947.0 608.0 100.0 2.46 10.1 201.0 283.0 947.0 103.0 Evans and Tang (1983)
MCS1-PB3 732.0 1,000.0 300.0 4.40 15.1 170.0 227.0 1,464.0 388.0 Evans (1984)
PA1 600.0 800.0 249.0 1.00 12.0 216.0 206.0 3,000.0 81.0 Tang and Evans (1984)
PA2 600.0 800.0 249.0 1.00 12.0 216.0 206.0 2,400.0 83.5 Tang and Evans (1984)
PA3 600.0 800.0 249.0 1.00 12.0 216.0 206.0 1,800.0 85.0 Tang and Evans (1984)
PB1 500.0 800.0 249.0 1.00 12.0 216.0 206.0 3,000.0 90.0 Tang and Evans (1984)
PB2 500.0 800.0 249.0 1.00 12.0 216.0 206.0 2,500.0 91.0 Tang and Evans (1984)
PC1 1,000.0 800.0 250.0 1.00 10.0 216.0 262.0 2,750.0 53.5 Tang and Evans (1984)
PC2 1,000.0 800.0 250.0 1.00 10.0 216.0 262.0 1,750.0 53.5 Tang and Evans (1984)
PD1 750.0 800.0 250.0 1.00 10.0 216.0 262.0 2,750.0 65.0 Tang and Evans (1984)
PD2 750.0 800.0 250.0 1.00 10.0 216.0 262.0 2,000.0 65.0 Tang and Evans (1984)
PD3 750.0 800.0 250.0 1.00 10.0 216.0 262.0 1,250.0 75.0 Tang and Evans (1984)
PC3 750.0 800.0 250.0 1.00 10.0 216.0 262.0 750.0 78.7 Tang and Evans (1984)
PB3 732.0 1,000.0 300.0 4.40 15.1 169.7 226.6 1,464.0 388.0 Evans (1986)
C-AC2 2,490.0 457.0 102.0 3.10 9.7 215.0 755.0 2,490.0 120.0 Carskaddan (1968)
C-AC4 2,515.0 457.0 127.0 4.30 16.3 236.0 783.0 2,515.0 245.0 Carskaddan (1968)
C-AC5 2,515.0 457.0 127.0 4.30 19.1 236.0 790.0 2,515.0 232.0 Carskaddan (1968)
TG3 1,000.0 1,000.0 200.0 2.50 16.4 200.0 281.0 1,000.0 190.0 Skaloud (1971)
TG3-1 1,000.0 1,000.0 200.0 2.50 16.4 200.0 281.0 1,000.0 190.0 Skaloud (1971)
TG4 1,000.0 1,000.0 200.0 2.50 20.2 200.0 281.0 1,000.0 219.0 Skaloud (1971)
TG4-1 1,000.0 1,000.0 200.0 2.50 20.1 200.0 281.0 1,000.0 207.0 Skaloud (1971)
TG5 1,000.0 1,000.0 200.0 2.50 29.7 200.0 281.0 1,000.0 308.0 Skaloud (1971)
TG5-1 1,000.0 1,000.0 200.0 2.50 29.7 200.0 281.0 1,000.0 300.0 Skaloud (1971)
PG1-1 600.0 600.0 200.0 4.10 12.5 343.0 257.0 600.0 373.0 Roberts and Shahabian (2000)
PG2-1 900.0 900.0 300.0 3.10 10.2 285.0 254.0 900.0 271.0 Roberts and Shahabian (2000)
PG3-1 900.0 600.0 200.0 3.20 10.1 282.0 264.0 900.0 202.0 Roberts and Shahabian (2000)
PG4-1 1,000.0 500.0 200.0 1.90 9.9 250.0 293.0 1,000.0 87.0 Roberts and Shahabian (2000)
CP1 747.0 500.0 100.0 2.04 8.0 246.0 256.0 747.0 168.0 Basler et al. (1960)

End of Table A2


