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Article History:  Abstract. The design of stud connectors is aided by determining the relationship between shear strength and the in-
put variables (number, diameter, height, tensile strength and elastic modulus of the studs, and compressive strength 
and elastic modulus of the concrete) that influence strength. Since strength is nonlinearly related to the influencing 
variables, which makes the predictions of the relevant empirical equations unreliable, the use of machine learning 
(ML) models is preferred. The prediction results of eight machine learning models were evaluated, including linear 
regression (LR1), ridge regression (RR), lasso regression (LR2), back-propagation artificial neural network (BP ANN), 
genetic algorithm optimized BP ANN (GA-BP ANN), extreme learning machines (ELM), random forests (RF), and sup-
port vector machines (SVM). The results show that the GA-BP ANN model is the most accurate model for prediction 
with a mean absolute percentage error (MAPE) of 6.17% and an R2 of 0.9599. Based on the GA-BP ANN model and 
the global sensitivity analysis (GSA) method, a new parameter importance analysis method was developed to compare 
the magnitude of the effect of different input variables on strength. It was found that stud diameter had the greatest 
effect on shear strength.

 ■ received 3 November 2023 
 ■ accepted 30 January 2024

Keywords: stud connectors, multiple machine-learning model comparisons, global sensitivity analysis, metrics influencing shear strength.

  Corresponding author. E-mail: 19B933012@stu.hit.edu.cn

Symbols:
n – Number of studs for a single connector
d – Diameter of stud (mm)
h – The height of the stud (mm)
fc – Compressive strength of concrete cube (MPa)
ft – The tensile strength of the stud (MPa)
Ec – Elastic modulus of concrete (MPa)
Et – Elastic modulus of stud (MPa)
As – The cross-sectional area of the stud (mm2)
fck – The concrete cylinder compressive strength (MPa)
gv – The stud resistance subfactor which value is 0.85
α – The stud height influence factor

jsc – The resistance factor, equal to 0.85
qu – Predicted shear strength(N)
qe – Experimental values of shear strength (N)
μ – Mean value

SD – Standard Deviation
CV – Coefficient of Variation
g2 – kurtosis
α – regression coefficients

xi – influencing factor
ˆ( )k  – rigid regression estimation

k – ridge parameter
X and Y – the matrix of independent and dependent 

variables respectively
l – non-negative positive regular parameter
f – activation function

wij – the weight of the i-th input and j-th neurons
bj – hidden layer bias
xi – the input for the i-th variable
k – the number of single decision tree
x – input variable

ti(x) – prediction from a single decision tree f(x, ω) – 
target prediction

ω – weight vector
b – the threshold

F(x) – the high-dimensional feature space mapping 
from low-dimensional space x
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c – penalty factor
‖ω‖2 – smoothness or fatness of the function

ε – a non-sensitivity factor
l(y) – loss function

xi and 
ix
∗
 – slack variable

ai and ia∗
 –

Lagrangian multipliers
K(x, xi) – kernel function

σ – variance of radial basis function
ML – Machine learning
LR1 – Linear regression 
RR – Ridge regression

LR2 – Lasso regression
ANN – Artificial neural network

BP – Back Propagation
GA – Genetic algorithm

ELM – Extreme learning machine
RF – Random forests

SVM – Support vector machine
MSE – Mean square error
MAE – Mean absolute error 

MAPE – Mean absolute percentage error 
RMSE – Root mean square Error

NSE – Nash-sutcliffe efficiency
GSA – Global sensitivity analysis
f(xi) – Marginal effect 

V – Total variance
Si – Sobol indices of first-order

STi – Sobol indices of total-order

1. Introduction
Steel-concrete composite structures are widely used in 
building structures due to their ability to make full use 
of the properties of steel and concrete (Ding et al., 2021; 
Vigneri et al., 2021; Yang et al., 2021). Shear connectors 
are the key connection parts between steel beams and 
concrete slabs, and play a huge synergistic role in steel-
concrete composite beams (Gu et al., 2019; Kim et al., 
2020). Headed studs are the most widely used in bridge 
engineering due to its convenience of installation, equal 
shear strength in all directions, satisfactory concrete com-
paction around the studs, and minimal obstruction to the 
slab reinforcement (Tm et al., 2019). In order to ensure the 
safety of the composite structure, it is necessary to inves-
tigate the shear strength of the connectors.

The behavior of stud connectors mainly depends on 
the stud details such as the number of studs, height, diam-
eter and material properties (Wang et al., 2017; Xue et al., 
2008). Xue et al. (2012) investigated the different behavior 
between single and multiple stud connectors by push-out 
tests. The results show that the ultimate strength of single 
stud connectors is about 10% greater than that of multi-
stud connectors. Wang et al. (2020) analyzed the effect of 
stud height on the shear performance of the stud connec-
tors and established the shear bearing capacity equation 
considering the stud height. When the length-diameter 

ratio of the stud is 4.5~13.2, the shear bearing capacity 
of the stud increases with the increase of the length-di-
ameter ratio. Hu et al. (2021) concluded that the ratio of 
stud height to concrete slab thickness has a limited effect 
on the shear strength of the studs but has a greater ef-
fect on the shear stiffness. Currently, small headed studs 
with a diameter smaller than 22 mm are commonly used 
in steel-concrete composite bridges for several types of 
studs whose diameters range from 10 mm to 25 mm are 
provided in the current specifications. The larger the di-
ameter of the stud, the greater the bearing capacity of 
the structure (Shim et al., 2004). Similarly, large diameter 
studs can significantly increase the bearing capacity of the 
structure, and the shear strength of a 30 mm diameter 
stud is about 15% higher than that of a 22 mm diameter 
stud (Wang et al., 2019). The properties of the concrete 
could also influence the behavior of the stud connectors. 
In general, most of the concrete slabs of steel-concrete 
composite beams are made of normal strength concrete, 
and the compressive strength and elastic modulus of con-
crete could affect the shear capacity of the studs embed-
ded in concrete (Wu et al., 2021). 

Conducting push out tests is one of the main methods 
for assessing the performance of stud connectors, but it 
requires a lot of time and money. Finite element simula-
tion is widely used for load carrying capacity calculations, 
but it requires a high degree of specialization and the out-
put results are highly variable (Farouk et al., 2022, 2023). 
In order to provide a convenient calculation, a number of 
formulas have been proposed based on the results of ex-
periments and finite element simulations, including calcu-
lations based on test results without considering the effect 
of damage modes (Luo et al., 2016; Zhang et al., 2020; Zhu 
et al., 2020). In addition, there are calculation formulas that 
consider the damage modes of concrete and studs, which 
have been adopted in different design codes. However, 
the existing calculation methods are all based on empirical 
equations obtained by linear regression of experimental 
data, which are limited by experimental conditions and fail 
to comprehensively consider the effects of various factors 
on the bearing capacity. Therefore, there is still a need for 
a more effective method to reduce the need for push-out 
tests and to provide a simpler calculation method.

Machine learning (ML) is able to solve complex en-
gineering problems with higher accuracy than the exist-
ing methods (Allahyari et al., 2018; Chahnasir et al., 2018; 
Garzón-Roca et al., 2013; Khalaf et al., 2021; Safa et al., 
2016; Tzuc et al., 2021). Slater et al. (2012) combined linear 
and non-linear regression to calculate the shear strength 
and found that the former had a smaller error. Hossain 
et al. (2017) used artificial neural networks (ANN) for shear 
strength prediction and then verified the reliability of the 
model using experimental data. Yaseen et al. (2018) found 
that the combined particle swarm optimization of the 
support vector machine (SVM) hybrid model in predict-
ing shear strength with high prediction accuracy. Sedghi 
et al. (2018) used ML model to predict the shear strength 
of different shear connector and investigated the effect of 
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different parameters on the ultimate load. The research-
ers focused on a single ML model and never provided a 
convincing rationale for the chosen algorithm, so the re-
searchers began comparing different ML models to deter-
mine the most suitable one (Setvati & Hicks, 2022; Yosri 
et al., 2023; Zhang et al., 2023). Table 1 compiles some 
recently published ML studies and the accuracy of shear 
strength predictions they have achieved. 

It can be seen that the researchers used different 
ML models to predict the shear strength of the connec-
tors and achieved good results. However, the method of 
determining the input parameters is not discussed. The 
predictive model performance of any ML model depends 
on the input variables used when developing the model. 
Different input variables lead to different prediction accu-
racy of the model, so the researchers’ determination of the 
optimal prediction model is also different. Therefore, it is 
necessary to effectively determine the influencing factors 
of shear strength on the basis of empirical formulas, and 
then determine the input variables. Compared with the 
traditional back-propagation (BP) ANN, Genetic Algorithm 
Optimized BP ANN (GA-BP ANN) model has higher predic-
tion accuracy and practical effect, because the genetic al-
gorithm can search the global optimal solution, and avoid 
the problem that BP neural network is easy to fall into the 
local optimal. Therefore, it is necessary to determine the 
prediction accuracy of the GA-BP model and compare it 
with other ML models to determine the optimal prediction 
model. In addition, various ML algorithms have been used 
for shear strength prediction models, but the effect of sen-
sitive parameters has not been exploited. The majority of 
the present approaches are based on experimental data 
in the analysis of variables, and the influence of variables 
on shear strength cannot be determined due to the limita-
tions of experimental conditions. Global sensitivity analysis 
(GSA) provides a quantitative analysis of the effect of dif-
ferent parameters on the structural load carrying capacity 
(Pianosi et al., 2016; Bernus et al., 2021; Sobol, 1993). So-
roush et al. (2020) analyzed the effect of various factors on 
the performance of concrete slabs by the GSA method and 
the identified the important variables. Guo et al. (2021) 
investigated the damage modes of corroded reinforced 
concrete and the main parameters through global sensi-
tivity analysis. Since GSA method requires a large amount 
of data, it is necessary to combine ML model with GSA 
method to propose a parametric analysis method to ana-
lyze the influence of various variables on shear strength.

As a solution to the above issues, this paper inves-
tigated the shear strength of stud connectors based on 
experimental, ML model and GSA methods. Determine 
design factors of shear strength based on previous em-
pirical formula, and establish a database. Then, different 
ML models are evaluated and their prediction results for 
shear strength were investigated. Finally, a new parametric 
analysis method is proposed using GSA combined with 
ML model to determine the effect of each factor on shear 
strength.

2. Push-out experiment
2.1. Specimens design
Eight sets of push-out tests were designed to investigate 
the effect of stud diameter and height on shear strength, 
as shown in Table 2 and Figure 1. The specimens are num-
bered N13-H80 to N22-H120, where “N13” and “H80” 
denote a stud diameter of 13 mm and a stud height of 
80 mm, respectively. The dimensions of the H-section 
steel are 300×300×10×15 mm and the dimensions of the 
concrete slab are 60×600×150 mm. The yield strength, 
ultimate strength and elastic modulus of H-section steel 
plate are 345 MPa, 470 MPa and 210 GPa, respectively. 
The steel plates are all Q345 type, and the studs are all 
ML15AL type. The reinforcement bar has a yield strength 
of 400 MPa, a modulus of elasticity of 200 GPa, a diameter 
of 8 mm and a type of HRB400.

2.2. Loading setup
The tests were performed by a 5000 kN pressure testing 
machine. The relative slip was measured by means of a dis-
placement gauge, as shown in Figure 2. The push-out test 
is carried out by means of multistep loading. In the early 
stages of loading, the load increment is 20 kN per level.  
When the load is 0.5~0.8 peak load (P), the load increment 
is 10 kN per level. When the load is greater than 0.8P, the 
load increment is 5 kN per level until the specimen is dam-
aged. At the end of the experiment, observe the damaged 
surface of the specimen, then break the concrete slab and 
take out the studs to observe their deformation.

2.3. Analysis of test results
The damage modes are shown in Figure 3. The damage 
mode of all specimens in this test was stud damage. Mean-
while, the studs were deformed only at the root of the 
shank, while the rest of the studs embedded in the concrete 
was basically undeformed. Cracks appeared on the surface 
of the concrete slab as well as at the interface between 
steel plate and concrete. The larger the diameter of the 
stud, the greater the width of the concrete crack. The stud 
height has little effect on the failure mode of specimen.

The load-slip curves are shown in Figure 4. Where, qe is 
the experimental value of shear strength. During the initial 
loading, the slip growth is small. After complete debond-
ing, the load is mainly borne by the studs, which is in the 
elastic stage, and the slip is approximately linear with the 
load. Subsequently, the growth rate of slip increases and 
is not linear, which demonstrates that the specimen enters 
the elastic-plastic phase. Finally, the stud shank fails and 
the load on the specimen decreases. The larger the stud 
diameter, the greater the slip at the ultimate load, but the 
stud height has less effect on the slip.

The average shear strength of each set of specimens is 
shown in Figure 5. The larger the stud diameter, the higher 
the strength of stud connector. The higher the stud height, 
the higher the strength, but the height has less impact 
compared to the diameter.
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Table 2. Parameters of the specimen

Specimen n d (mm) h (mm) fc (MPa) ft (MPa) Ec (GPa) Et (GPa) Note

N13-H80 4 13 80 53 530 37.5 210 n – Number of studs for a single connector;
d – Diameter of stud;
h – The height of the stud;
fc – Compressive strength of concrete cube;
ft – The tensile strength of the stud;
Ec – Elastic modulus of concrete;
Et – Elastic modulus of stud.

N13-H120 4 13 120 53 530 37.5 210
N16-H80 4 16 80 53 540 37.5 210
N16-H120 4 16 120 53 540 37.5 210
N19-H80 4 19 80 53 550 37.5 210
N19-H120 4 19 120 53 550 37.5 210
N22-H80 4 22 80 53 560 37.5 210
N22-H120 4 22 120 53 560 37.5 210

Figure 1. The shape and size of the specimens (mm)

Figure 2. Loading setup

Table 1. Application of ML model in stud connectors

Reference ML model Input variables Total dataset R2 RMSE

Setvati and Hicks 
(2022)

Linear Regression Compressive strength of concrete
Modulus of elasticity of concrete
Tensile strength of stud
Diameter of stud
Height of stud
Diameter of weld collar
Height of weld collar

242

0.87 20.18
Decision Tree 0.87 20.59
Bagged Ensemble Trees 0.92 16.5
Super Vector Machine 0.92 16.02
Gaussian Process Regression 0.92 15.74
Artificial Neural Network 0.87 20.6

Yosri et al. (2023)

Extreme learning machine Compressive strength of concrete
Stud ultimate strength
Stud diameter
Stud Height
Number of studs
Stud spacing

232

0.894 28.41

Adaptive neuro-fuzzy inference system 0.935 12.76

Artificial Neural Network 0.906 26.82
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3. Database
3.1. Design parameter selection
For stud connectors, a number of national codes propose 
methods for calculating the shear strength. According to 
Chinese code GB 50017-2017 (Ministry of Housing and 
Urban-Rural Development of the People’s of China, 2017), 
the shear strength of single stud is calculated as follows:

s c c
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where qu is the calculated value of shear strength (N), As is 
cross-sectional area of the stud (mm2), ft is tensile strength 
of stud (MPa), fc is cubic compressive strength of con-
crete (MPa), Ec is elastic modulus of concrete (MPa). Since 
the damage model of the structure is mainly divided into 
stud damage and concrete damage, the method for shear 
strength is mainly divided into two parts, and the mini-
mum value is taken as shear strength of the connectors. 
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Housing and Urban-Rural Development of the People’s of 
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where Et is elastic modulus of stud (MPa), h is stud dis-
count factor, related to the spacing between studs and di-
ameter. In Europe, code Eurocode 4 (European Committee 
for Standardization, 1994) suggests that the shear strength 
should be calculated as follows:
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Figure 4. Load-slip curve: a – the height of the stud is 80 mm; 
b – the height of the stud is 120 mm

Figure 5. The shear strength of the specimens

Figure 3. The failure mode of the specimens

a)

b)
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where α is stud height influence factor, d is the stud di-
ameter (mm), h is the stud height (mm), fck is concrete 
cylinder compressive strength (MPa), gv is stud resistance 
subfactor which value is 0.85. The equation takes into ac-
count the impact of stud height on the shear strength. 
In the United States, the code AASHTO LRFD (American 
Association of State Highway and Transportation Officials, 
2017) provides the following equation to calculate the 
shear strength:

0.5sc s c c

c s ts

u

u

kq
q

A E f
A f
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j

=
=
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
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where jsc is the resistance factor, equal to 0.85. It can be 
seen that the diameter, height, modulus of elasticity and 
tensile strength of the bolt affect the shear strength. In ad-
dition, the modulus of elasticity and compressive strength 
of concrete also affect the shear strength. The equations 
(Xue et al., 2008; Wang et al., 2020) from the references 
are as follows:
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At the same time, the number of studs (n) also influ-
ences the strength. Hence, n, d, h, fc, ft, Ec and Et are chosen 
as the parameters affecting the shear strength. Although 
different empirical equations have different input variables, 
all of them consistently have the diameter of the stud in 
the input variable and the shear strength increases with 
the diameter of the stud.

3.2. Statistical summary of the data
One hundred test data were selected based on experi-
mental data in this paper and references (Ding et al., 2014, 
2017; Shim et al., 2004; Wang & Liu, 2013; Wang et al., 
2017, 2020; Xue et al., 2008; Yu et al., 2014). According to 
the statistical perspective, standard deviation (SD) is usu-
ally applied to denote the accuracy and repeatability of the 
test results. A low SD value indicates that the points are 
very close to the mean of the set, while a high SD value in-
dicates that the points are distributed over a larger range 

of values. The calculation equation is as follows:
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where, μ is mean value, CV is coefficient of variation, g2 is 
kurtosis. As, shown in Table 3, the diameter of the studs 
is mainly distributed between 16 and 22 mm, which is in 
accordance with the codes. In addition, studs larger than 
25 mm in diameter are available to study the effect of 
large diameter studs. For similar reasons, studs with a 
height greater than 200 mm are present. Most of the com-
pressive strengths of the concrete are between 35 MPa 
and 60 MPa, indicating that the specimens in the database 
are mainly normal strength concrete. The tensile strength 
of the studs was concentrated between 350 and 550 MPa. 
The distribution of the data is more concentrated for the 
modulus of elasticity of concrete and studs. The coefficient 
of variation is used to compare the magnitude of disper-
sion of the data, and the comparison reveals that the num-
ber of studs has the greatest degree of dispersion, and the 
modulus of elasticity of the concrete and the studs has a 
lesser degree of dispersion. Kurtosis is the characteristic 
number of peak heights of the distribution curve at the 
mean, which reflects the sharpness of the peaks. A high 
kurtosis means that the increase in variance is caused by 
low frequency of extreme values greater or less than the 
mean. It can be seen that n, h, ft and Ec variables show a 
sharp feature in the probability density distribution be-
cause the kurtosis coefficient is greater than zero. On the 
other hand, since the coefficient of kurtosis is less than 
zero, the other variables exhibit a flat distribution.

3.3. Calculation accuracy  
of empirical equations
Based on the database, the experimental values are com-
pared with the results calculated by Eqn (1)~Eqn (6) (see 
Table 4 and Figure 6). When the value of h/d is greater 
than 7, the error of Eqn (5) is larger, so it is not discussed 

Table 3. Test data statistics 

Parameter n d (mm) h (mm) fc (MPa) ft (MPa) Ec (GPa) Et (GPa) qe (kN)

Data 100 100 100 100 100 100 100 100
Max 9.00 30.00 400.00 64.50 675.00 37.50 213.00 330.10
Min 1.00 13.00 50.00 33.10 326.00 29.00 195.00 66.00
μ 2.81 21.16 152.89 46.36 441.76 33.99 206.24 155.27
SD 1.59 4.42 59.96 9.60 60.35 2.10 5.71 54.51
CV 0.57 0.21 0.39 0.21 0.14 0.06 0.03 0.35
g2 3.09 –0.46 2.07 –0.41 1.22 0.06 –0.45 –0.14
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in this paper. The average error of Eqn (1) is 26.5%, and 
the average error of Eqns (2) and (3) is more than 30%. 
Eqn (6) has the smallest average error and better error dis-
tribution than the other formulas, but the average error is 
still greater than 10%. In conclusion, the proposed empiri-
cal equations for shear strength are very conservative, and 
most predicted data are less than experimental values. In 
order to develop a better shear strength prediction model, 
it is necessary to develop a database in this area and to 
continuously expand it. To reduce experimental costs, a 
better model must be developed to calculate the shear 
strength.

4. Calculation method of bearing capacity
4.1. Description of ML models
Machine Learning (ML) systems are flexible and intelligent 
computer algorithms that provide data-driven tools for 
many systems to improve automatic learning and predic-
tion capabilities (Ghorbani et al., 2020). Several ML models 
are developed in this paper, including linear regression 
(LR1), ridge regression (RR), lasso regression (LR2), back-
propagation artificial neural network (BP ANN), genetic 
algorithm optimized BP ANN (GA-BP ANN), extreme learn-
ing machines (ELM), random forests (RF), and support vec-
tor machines (SVM). The software used for this analysis is 
python and the CPU of the computer is Core i9 and the 
GPU is GeForce GTX series.

LR1 model is relatively simple to construct and the 
coefficients of the linear regression model have a clear 
physical meaning. However, LR1 model requires a linear 
relationship between the independent variables and the 
dependent variable and the error term obeys a normal 
distribution, which may not hold true in practical prob-
lems. LR1 regression model is sensitive to outliers, which 
may lead to model instability and inaccurate prediction 
results. The RR model is suitable for cases where there is 
multicollinearity between independent variables or where 
the number of independent variables is greater than the 
sample size, and it can prevent overfitting. However, the 
RR model does not converge to 0 for factors that have a 
very small effect. The LR2 model is capable of completely 
eliminating the weights of the least important features, 
but it is relatively complex to compute, as well as com-
putationally unstable when dealing with highly correlated 
variables.

The BP ANN model has very strong nonlinear map-
ping ability and optimization computation ability, strong 
identification and classification ability for input samples. 
However, the convergence speed is slow, there are lo-
cal minima in the objective function, and it is difficult to 
determine the number of hidden layers and hidden layer 
nodes. The GA algorithm can optimize the weights and 
thresholds of BP ANN to overcome the problem that BP 
neural networks are easy to fall into local minima. Not 
only can it automatically search for the optimal number 
of neurons in the hidden layer of the neural network, but 

Figure 6. Calculation results: a – Eqns (1)~(3); b – Eqns (4) and (6)

Table 4. The absolute error distribution based on national standard codes (%)

Error
Eqn (1) Eqn (2) Eqn (3) Eqn (4) Eqn (6)

Separate Cumulative Separate Cumulative Separate Cumulative Separate Cumulative Separate Cumulative

0–10 16 16 9 9 5 5 34 34 47 47
11–20 18 34 13 22 12 17 30 64 27 64
20–30 24 58 26 48 16 33 20 84 20 94
30–40 27 85 30 78 35 68 12 96 5 99
40–50 12 97 16 94 23 91 3 99 1 100
50–60 3 100 6 100 9 100 0 99 0 100

Average 26.55 30.09 33.57 17.56 13.16

a) b)
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it can also fix the weights and thresholds after GA optimi-
zation so that the final results of the network will remain 
unchanged after many runs.

The ELM model is a feed-forward neuron network 
whose learning process requires only one forward prop-
agation without iterative updating of weights. It should 
be noted that the number of neurons in the hidden lay-
er and the choice of activation function may affect the 
performance of the ELM, and thus need to be adjusted 
experimentally. RF model has better generalization per-
formance and can effectively reduce the variance of the 
model. However, it will overfit in some noisy regression 
problems. SVM is a novel small-sample learning method 
which, unlike existing statistical methods, achieves efficient 
inference from training samples to prediction samples. The 
SVM model utilizes an inner product kernel function in-
stead of a nonlinear mapping into a higher dimensional 
space, and the nonlinear mapping is the theoretical basis 
of the method. SVM models are capable of solving high 
dimensional problems and nonlinear problems, avoiding 
neural network structure selection and local minima. How-
ever, the model requires the selection of appropriate ker-
nel functions and is difficult to implement for large-scale 
training samples.

4.2. Linear regression
LR1 is used to assess the linear relationship between the 
independent and dependent parameters (Slater et al., 
2012). The linear relationship is interpreted by assigning 
regression coefficients (α), and the best regression coef-
ficients are selected by gradient descent. The root mean 
squared error (RMSE) is minimized by choosing the value 
of regression coefficients to obtain the best-fit relation-
ship. The independent variables in this paper are the seven 
influencing factors (xi) and the dependent variable is shear 
strength:

LR1
1

7

0 .i
i

iy xa a
=

= +∑
 

(10)

The number of independent variables in multiple linear 
regression is the main factor affecting the performance 
of the model. The training time of LR1 model is 0.01s. In 
this paper, the t-test (Özbayrak et al., 2023) was used to 
screen the variables that have a significant effect on the 
regression model. Table 5 lists the model with the highest 

predictive performance based on the t-test results, which 
has a P-value of less than 0.05 for all independent vari-
ables, indicating that they have a significant effect on the 
regression equation.

4.3. Ridge regression
RR is an improved least squares regression method, which 
is proposed for the case that the least squares regression 
coefficients cannot solve the singularity of the coefficient 
matrix of the regular set of equations (Yang & Wen, 2018). 
It also has the ability to select variables to overcome the 
effects of multicollinearity based on the ridge trace dia-
gram, eliminate independent variables with small or unsta-
ble regression coefficients in ridge regression, and reduce 
errors. To reduce the mean square error (MSE) of the linear 
regression model, the ridge estimate of the model is

( )–1T TYˆ( )k k = X X + I X ,  (11)

where ˆ( )k  is rigid regression estimation, k is a ridge pa-
rameter, taking values from 0 to 10, degenerating to linear 
regression when k = 0, X and Y is the matrix of independ-
ent and dependent variables respectively. The training 
time of RR model is 0.01 s.

4.4. Lasso regression
LR2 is a regularization method that combines variable se-
lection and parameter estimation simultaneously (Yang & 
Wen, 2018). The method minimizes the residual sum of 
squares (RSS) by adding a parametric number as a pen-
alty constraint to the calculation, which enables to produce 
certain regression coefficients equal to zero. The lasso pa-
rameter estimates are defined as follows:

= = =

    − − +     

= ∑ ∑ ∑
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ˆ argmin
t

i ij j j
i j j

y X   l  ,  (12)

where 
=
∑

7

1
j

j

l   is penalty items, l is a non-negative posi-

tive regular parameter. The training time of LR2 model is 
0.01 s.

4.5. BP ANN model
ANN model is one of the most widespread ML algorithms 
for solving nonlinear problems in engineering, although 
they are known as black boxes for their regression-like 
computation of hidden layers. ANN model are complex 
and powerful computational systems composed of a num-
ber of simple neurons connecting to each other in some 
way (Hossain et al., 2017). The signal is adjusted when the 
information flows through the following ANN as follows:

1

,i ij i j
i

y f w x b
=

 
 = +
 
 
∑   (13)

where f is the activation function, wij is the weight of 
the i-th input and j-th neurons, bj is hidden layer bias, 

Table 5. Summary of linear regression models for predicting 
shear strength

Variable Magnitude of coefficient t value P value

Constant –355.478 –10.344 0
n –4.372 –2.906 0.00457
d 8.8 16.717 0
h 0.238 6.562 2.96624E–9
fc –0.634 –2.349 0.02092
ft 0.132 3.599 5.14165E–4
Ec 7.844 6.146 1.9612E–8
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and xi is the input for the i-th variable. As shown in Figure 7,  
the back propagation (BP) ANN model consists of an input 
layer, a hidden layer and an output layer. In this study, the 
number of neurons in the hidden layer was determined 
by a trial-and-error procedure (Guan et al., 2019), which 
compared the accuracy of the ANN with different numbers 
of neurons in the hidden layer, and the optimal number of 
neurons with the largest R2 output was selected for further 
investigation. The S-shaped tangent function “tansig” was 
used for the neuron transfer function in the hidden layer 
and the S-shaped logarithmic function “logsig” was used 
for the neuron transfer function in the output layer. The 
model is trained using the function “trainlm”. The input 
layer is the seven variables identified in this paper, the out-
put layer is the shear strength, and the hidden layers is 1. 
The number of training iterations is 1000, the learning rate 
is set to 0.1, and the minimum error of the training target 
is set to 0.00001. The objective function for the training 

subset is mean squared error (MSE) and the analyze time 
of BP ANN model is 0.72 s.

4.6. GA-BP ANN model
Genetic algorithm is a method that mimics the natural 
mechanism of inheritance and the theory of biological 
evolution. The BP ANN model has the problems of slow 
convergence and the accuracy may not meet the require-
ments. Genetic algorithm has global search capability, 
and can avoid the model from into local minimum (Khalaf 
et al., 2021). The calculation process is shown in Figure 8. 
The behavior of a genetic algorithm is controlled by a set 
of hyperparameters such as population size and mutation 
rate. When the population size is too small, inbreeding 
occurs, generating pathological genes and preventing the 
population from evolving to produce the desired ideal 
population size. When the population size is too large, the 
results are difficult to converge, leading to wasted resourc-
es and reduced robustness. If the mutation probability is 
too small, the population diversity decreases too quickly, 
resulting in rapid loss of effective genes that cannot be 
easily repaired. When the mutation probability is too large, 
the probability of higher-order patterns being destroyed 
increases. Similar to the mutation probability, when the 
crossover probability is too large, it will frequently de-
stroy existing favorable patterns, increase stochasticity, 
and miss optimal individuals. A crossover probability that 
is too small cannot effectively update the population. If 
the number of evolutionary generations is too small, the 
algorithm does not converge easily and the population 
is not yet mature. If the number of evolutionary genera-
tions is too large, the algorithm is already proficient or the 
population has converged prematurely, there is no point in 
continuing to evolve, it will only increase the time expendi-
ture and waste of resources. Hence, the population size is 
set to 100, the number of evolutionary iterations is 50, the 
crossover probability is 0.9, the variation probability is 0.1. 
The analyze time of GA-BP ANN model is 1.65 s.Figure 7. BP ANN model

Figure 8. Calculation process of GA-BP ANN model
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4.7. Extreme learning machine
ELM model is no longer a gradient-based algorithm in the 
training stage, but utilizes random input layer weights and 
biases (Shen et al., 2020). During data training, the ran-
domly generated values do not need to be changed, and 
only the number of neurons in the hidden layer needs to 
be adjusted to arrive at the optimal solution. The calcula-
tion process is as follows: (1) Data preprocessing, using 
normalization; (2) Train the ELM model to find the connec-
tion weights of the hidden layer and the output layer; (3) 
Prediction of data using the obtained output layer weights. 
The analyze time of ELM model is 2.33 s.

4.8. Random forest
RF are the algorithms that combine multiple decision trees 
together (Breiman, 2001). It is a supervised prediction al-
gorithm capable of making regression predictions based 
on data from input and output variables. This approach 
reduces the possibility of over-decision compared to al-
gorithms based on a single decision tree. It also reduces 
the variance and bias of the predictions without compro-
mising the accuracy of the decisions by collectively evalu-
ating the predictions of all decision trees (Barjouei et al., 
2021). During the calculation of RF model, k sample sets 
are extracted from the original sample set, and then the 
corresponding decision trees are formed by training the k 
sample sets respectively. Finally, the output of the k deci-
sion trees is combined with the strategy to get the final 
model output. The input variables are categorized by each 
decision tree. The RF model classification tree is set to 800 
trees with 5 leaves. The objective function is MSE, and the 
example analyze time is 9.45 s. The prediction function for 
the RF algorithm is expressed as:

=

= ∑
1

ˆ ,1( ) ( )
K

K
RF i

k

f x T x
K

  (14)

where K is the number of single decision tree, X is input 
variable and Ti (x) is prediction from a single decision tree. 

4.9. Support vector machine
SVM model achieves classification and prediction by mod-
eling the mapping between the input feature vectors and 
the vectors of the output (Yaseen et al., 2018). That is, 
given an input sample, the relevant output result is avail-
able under the mapping relation. The SVM model requires 
datasets to define its input variables and corresponding 
output variables, and the predictions of the model are 
achieved by fitting the regression function accurately. The 
learning function used by the model to approximate the 
target value is as follows:

( , ) ( )f x x b = + ,  (15)

where f(x, ω) is target prediction, ω is weight vector, b 
is the threshold and F(x) is the high-dimensional feature 
space mapping from low-dimensional space x. The penalty 

risk function is calculated as follows:
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where C is penalty factor, a larger value indicates a higher 
degree of concern for the total error throughout the op-
timization process, which in this paper takes the value of 
100, ‖ω‖2 is smoothness or fatness of the function, ε is a 
non-sensitivity factor which ignores the error within a cer-
tain distance from the true value, and in this paper takes 
the value of 0.1, L(y) is loss function. Introducing the slack 
variable ( ix  and ix

∗), Eqn (16) is changed to:
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After constructing the Lagrangian function through La-
grange multipliers, the functional expression of the SVM 
model is:

( ) ( ) ( )
1

, ,
N

i i i
i

f x K x x ba a∗

=

= − +∑   (18)

where ia  and ia∗  is Lagrangian multipliers and K(x, xi) is 
kernel function. The kernel function affects the prediction 
performance of the SVM model, and in this paper the ra-
dial basis function is used. It is a localized kernel function 
which maps a sample to a higher dimensional space, and 
it is one of the most widely used, with relatively good per-
formance for both large and small samples. The formula 
for radial basis function is expressed as:

( )
 − = − 
 
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, exp
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i
x xK x x


,  (19)

where σ is variance of radial basis function. The analyze 
time of SVM model is 1.43 s.

5. Analysis of prediction results
5.1. Evaluation standards
To determine the gap between the predicted values of the 
model and the true values of the sample, mean absolute 
error (MAE), mean absolute percentage error (MAPE), root 
mean square error (RMSE), R-squared (R2) and nash-sut-
cliffe efficiency (NSE) is introduced:
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where t is quantity of samples, qu(i) is the i-th predicted 
value, qe(i) is the i-th experimental value, uq′ is average of 
all the predicted values and eq′  is average of all the experi-
mental values. Smaller prediction errors do not necessarily 
guarantee better results. Therefore, the MAPE, RMSE, R2 
and NSE need to be considered to guarantee the unique-
ness of solution. The lower values of MAE, MAPE and 
RMSE values and the values of R2 and NSE closer to 1.00 
indicate that the model predicts better results. Among 
them, the evaluation criteria (Bayram & Çıtakoğlu, 2023) 
of MAPE, R2 and NSE are shown in Table 6. 

5.2. Comparison of prediction methods
The division of training set was kept at 80% for all ML 
models and 20% for the testing set. The results of different 
ML models are shown in Table 7. Based on the judgement 
criteria, it can be seen that the value of MAPE for all ML 
models is less than 10, indicating that all ML models have 
“high prediction”. For R2 and NSE, the GA-BP model, BP 
model, RF model, ELM model and SVM model perform 
“very good”. Among them, the GA-BP ANN model has 

the best prediction accuracy, the training set and test set 
have the lowest value of MAE and RMSE. The value of R2 
(0.9629 for the training set and 0.9548 for the test set) and 
NSE (0.9594 for the training set and 0.9523 for the test 
set) are the highest, and the value of MAPE (6.01 for the 
training set and 7.75 for the test set) is only higher than 
that of SVM model. LR1 model, RR model and LR2 model 
have the lowest R2 and NSE values, and the R2 of training 
sets are all below 0.9. Meanwhile, the MAE values, MAPE 
values and RMSE values of LR1, RR and LR2 models are 
higher than the other models. 

The distribution of test results and predicted results 
of different models is shown in Figure 9. The maximum 
error of machine learning models does not exceed 50%, 
among which the maximum error of BP ANN model, GA-
BP model, ELM model, RF model and SVM model is less 
than 40%. The trend of the measured data versus the pre-
dicted data was roughly on a 45° line in each model, and 
each of the machine learning prediction models achieved 
an acceptable level of accuracy. In the case of the GABP-
ANN and SVM models, the gap between predicted and 
experimental values was smaller than for the other ML 
models. As shown in Figure 10, the MAE of all machine 
learning models is less than 10%, and the prediction error 
of most data (over 90%) is less than 20%. For the predic-
tion performance of GA-BP ANN model, the percentage 
of prediction error less than 20% is more than 95%, and 
the percentage of prediction error less than 10% is more 
than 78%. 

Taylor diagrams are given in Figure 11 for evaluating 
and comparing the test results of the models. Taylor dia-
grams compare the predictive performance of different 
models based on standard deviation, center root mean 
square error (CRMSE) and correlation with test values 
(Citakoglu & Demir, 2023; Coşkun & Citakoglu, 2023).  

Table 6. Range of values for MAPE, R2 and NSE performance standards

Range of MAPE Performance Range of R2 Performance Range of NSE Performance

MAPE ≤ 10 High prediction R2 ≤ 0.6 Unsatisfactory NSE ≤ 0.4 Unsatisfactory
10 < MAPE ≤ 20 Good prediction 0.6 < R2 ≤ 0.75 Regular 0.4 < NSE ≤ 0.5 Acceptable
20 < MAPE ≤ 40 Reasonable prediction 0.75 < R2 ≤ 0.9 Good 0.5 < NSE ≤ 0.6 Satisfactory

40 < MAPE Inaccurate prediction 0.9 < R2 ≤ 1.0 Very good 0.6 < NSE ≤ 0.7 Good
– – – – 0.7 < NSE ≤ 1.0 Very good

Table 7. Predicted results of ML model

Model
Training data Test data

MAE MAPE RMSE R2 NSE MAE MAPE RMSE R2 NSE

LR1 12.12 9.04 15.93 0.9241 0.8922 13.44 9.39 19.30 0.8866 0.8647
RR 12.09 8.90 15.56 0.9188 0.8933 12.98 9.18 18.90 0.8819 0.8729
LR2 12.29 9.20 15.45 0.9195 0.8912 12.97 9.18 18.87 0.8821 0.8799
BP 12.02 8.33 14.19 0.9331 0.9312 12.19 9.20 16.13 0.9230 0.9123
GA-BP 8.02 6.01 11.25 0.9629 0.9594 10.30 7.75 12.91 0.9548 0.9523
ELM 10.88 7.80 15.06 0.9347 0.9212 13.23 9.35 15.19 0.9204 0.9123
RF 11.85 8.68 15.64 0.9250 0.9112 12.47 8.21 16.96 0.9132 0.9024
SVM 8.44 5.70 13.74 0.9436 0.9387 11.50 7.77 13.82 0.9414 0.9311
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Figure 9. Distribution of experimental results and predicted results

Figure 10. Prediction errors of different ML models
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The proximity to the observations indicates better predic-
tive performance of the model. It can be seen that the cor-
relation coefficients and CRSME values of the GA-BP ANN 
model are very close to the observation point. Therefore, 
the prediction performance of GA-BP ANN model is bet-
ter than other models. According to the criteria of CRMSE, 
the BP model, ELM model and SVM model have similar 
distances from the observation point, indicating that the 
predictive performance of these models is similar. The LR1 
model, RR model and LR2 model have similar distances 
from the observation point and these models are furthest 
away from the observation point, indicating that the pre-
dictive performance of these models is poorer than the 
other ML models.

As shown in Figure 12, 10-fold cross-validation was 
performed on all models. The error rates for the individual 
cross-validation training ranged between 4.1% and 12.3%. 
The average error for the training set ranged from 6.05% 
to 9.82%, and the average error for the test set ranged 
from 5.96% to 9.62%. Therefore, cross-validation shows 

that all ML models have good prediction results. The GA-
BP ANN model has the best performance, followed by the 
SVM model. The LR1, RR and LR2 models display the least 
accuracy. 

The Kruskal-Wallis test is used to analyze the predic-
tions of all ML models to determine if there is a significant 
difference between the predicted and experimental values. 
This test has been previously used to compare the distri-
bution of ML model predictions to measurements (Zouzou 
& Citakoglu, 2023). The Kruskal-Wallis test is a nonpara-
metric alternative to the traditional one-way ANOVA that 
tests whether the data in all groups are from the same 
population by comparing the medians of the data sets. 
In the Kruskal-Wallis test, the values in each group are 
ranked and the rank is used to calculate the test statistic 
rather than the actual value. The significance level of this 
test is 0.05 and the hypothesis of H0 is that the predicted 
and test values are from the same group. As shown in 
Table 8, all ML models passed the Kruskal-Wallis test, in-
dicating that the predicted and experimental values of the 
ML models are not significantly different.

The prediction results of the GA-BP ANN model were 
compared with the calculation results of the empirical 
equations, as shown in Table 9 and Figure 13. The results 
of the dataset for the GA-BP ANN model show less disper-
sion compared to the empirical formulations. Specifically, 
Eqn (6) shows an underestimation at lower shear strengths 
(<130 kN) and an overestimation at higher shear strengths 
(>150 kN). There is no overall trend of overestimation or 
underestimation for the prediction results of the GA-BP 
ANN model. The prediction results of the machine learn-
ing models are more accurate compared to the empirical 
formulas. The comparison with other machine models and 
formulas demonstrates the superiority of the developed 
GA-BP ANN model. 

Figure 11. Taylor diagram for ML models

Figure 12. Error of cross validation: a – training data; b – test data

a) b)

Table 8. Kruskal-Wallis test results

Model LR1 RR LR2 BP GA-BP ELM RF SVM

P value 0.8912 0.8604 0.8989 0.4006 0.9805 0.9435 0.845 0.8989
H0 Accept Accept Accept Accept Accept Accept Accept Accept
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6. Parameter analysis
6.1. Global sensitivity analysis based  
on Machine learning
The purpose of global sensitivity analysis (GSA) is to inves-
tigate the corresponding relationship between the model 
output response and the input parameters, and to provide 
guidance for choosing a more reasonable and effective 
solution to reduce the uncertainty of the model output 
response. The frequently used global sensitivity analysis 
index is the variance-based Sobol global sensitivity index, 
and it has been widely used in practical engineering prob-
lems. Sobol’s method aims to identify important param-
eters and to assess the extent to which they affect the 
response of interest. Since the global sensitivity analysis 
method requires a large amount of data, this paper com-
bines the GA-BP ANN model with GSA method to propose 
a new parametric analysis method, as shown in Figure 14.

The model is 1 2( ), [ , , , ]kY f x x x x x= =  . x is the data-
set, and the range of values for each parameter is deter-

mined in Table 2. f(x) is as follows: 
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of all interactions. In addition, the equation must satisfy 
the features listed below:
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The equation can be decomposed as follows:
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Table 9. Predicted results

Model MAE MAPE RMSE R2 NSE Equation MAE MAPE RMSE R2 NSE

BP 12.06 8.50 15.76 0.9283 0.9164 Eqn (1) 38.48 26.55 44.94 0.7581 0.3203
GA-BP 8.47 6.17 11.60 0.9599 0.9546 Eqn (2) 43.98 30.09 50.30 0.7725 0.1484
ELM 11.35 8.11 15.09 0.9239 0.9234 Eqn (3) 49.44 33.57 56.16 0.7297 0.1123
RF 11.98 8.59 16.90 0.9111 0.9039 Eqn (4) 25.45 17.56 32.39 0.7455 0.6469
SVM 9.05 5.96 13.76 0.9404 0.9363 Eqn (6) 17.63 13.16 22.40 0.9077 0.8311

Figure 13. Comparison of GA-BP ANN model and Eqn (6)

Figure 14. Calculation process of parametric analysis method
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The estimation of the Sobol indices including first-
order (Si) and total-order (STi) is:
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where ~iV  represents the variance of all input parameters 
except i-th, ix∼  is all but the i-th input factor. Si is the main 
effect. STi is all contributions of the input variable to the 
output variance. 

6.2. Analysis of significance
Because of the superior predictive performance of GA-BP 
ANN model, the model was used to generate the 4000 
data needed for the global sensitivity analysis. Si and STi 
of the factors were normalized to study the contribution 
of each variable, as shown in Figure 15. The stud diameter 
has the greatest influence on bearing capacity. The ten-
sile strength, height of studs and the strength of concrete 
have similar effects on shear strength. The strength of the 
concrete has a higher impact on the shear performance of 
the structure than the strength of the studs. It should be 
noted that the number of studs has a relatively small effect 
on the shear strength since the shear strength of a single 
stud is calculated in this paper.

The bearing capacity under each parameter is predict-
ed by GA-BP ANN model, as shown in Figure 16. As the 
stud diameter increases, the shear strength improves. The 
higher the concrete strength, the more pronounced the ef-
fect of stud diameter on strength. At constant stud diam-
eter, the higher the stud, the higher the shear strength. As 
the stud diameter increases, the effect of stud height on 
shear strength decreases. When the stud diameter is small, 
the tensile strength of the stud affects the shear strength. 
Due to group shear effect, the number of studs has differ-
ent effects on shear strength. The number of studs affects 
the shear strength differently for different stud diameters. 
Comparing the stud diameter with other variables, it can 
be seen that the effect of stud diameter on shear strength 
is greater than other variables. 

Figure 15. Analysis results of GSA method

Figure 16. Prediction results with different input parameters: a – height of the stud; b – number of studs;  
c – compressive strength of concrete; d – tensile strength of the stud

a) b)

c) d)
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7. Conclusions
In this paper, the prediction method of shear strength of 
stud connectors is established by machine learning (ML) 
model and global sensitivity analysis (GSA) method. The 
influencing factors of shear strength were determined 
based on empirical formulas and the prediction accura-
cies of different ML models were compared. Finally, the ML 
model was combined with the GSA method to investigate 
the influence of each parameter on shear strength. The 
main conclusions are as follows:
(1) Based on empirical equations, it is known that the 

number, height, diameter, tensile strength and elas-
tic modulus of the studs affect the shear strength. In 
addition, the compressive strength and modulus of 
elasticity of concrete also affect the shear strength. 
Although different empirical equations have different 
input variables, all of them have stud diameters in 
their input variables and the shear strength increases 
with increasing stud diameter. The traditional empiri-
cal equations have mean errors greater than 10% and 
most of the calculated values are smaller than the ex-
perimental values.

(2) The prediction performance of different ML models 
including linear regression (LR1), ridge regression (RR), 
lasso regression (LR2), back-propagation artificial neu-
ral network (BP ANN), genetic algorithm optimized BP 
ANN (GA-BP ANN), extreme learning machines (ELM), 
random forests (RF), and support vector machines 
(SVM) model were evaluated. According to the judge-
ment criteria, it can be seen that the MAPE values of 
all ML models are less than 10, indicating that all ML 
models have high prediction performance. In terms of 
R2 and NSE, the GA-BP model, BP model, RF model, 
ELM model and SVM model all have values greater 
than 0.9, which is a very good performance.

(3) The GA-BP ANN model has the best prediction per-
formance, with NSE and R2 values closest to 1, and 
MAE and RMSE values lowest among ML models. The 
SVM model also has excellent prediction performance, 
with MAPE values lowest among all models, NSE and 
R2 values only lower than the GA-BP ANN model, 
and MAE and RMSE values only higher than the GA-
BP ANN model. The traditional empirical equations 
have higher MAE, RMSE and MAPE values than the 
ML model, and lower NSE and R2 values than the ML 
model, so the prediction performance is much lower 
than the ML model.

(4) Based on the GA-BP ANN model and the global sensi-
tivity analysis (GSA) method, a new parameter impor-
tance analysis method was developed to quantify the 
extent of each variable’s effect on shear strength. The 
results show that stud diameter has the greatest influ-
ence on shear strength. The strength of the concrete 
has a higher impact on the shear performance of the 
structure than the strength of the studs. It should be 
noted that the number of studs has a relatively small 
effect on the shear strength since the shear strength 
of a single stud is calculated in this paper.

(5) The limitation of this study is that only the compres-
sive strength and modulus of elasticity of normal 
strength concrete were used to predict the strength 
of the connectors. With the continuous development 
of technology, materials such as ultra-high perfor-
mance concrete are being used more and more widely 
in construction projects, so future research will need 
to expand the database to investigate the effect of 
the type of concrete on the strength. In addition, this 
paper did not consider combining input variables to 
establish new input variables and did not determine 
the effect of the combined variables on strength.
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