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Article History:  Abstract. This paper focuses on the use of vibration measurements for the purpose of cost-effective performance 
evaluation for the safety management and maintenance of Japan’s social infrastructure like bridges. Since modal 
properties are often used to diagnose damage of structures by analysing their changes, various modal identification 
methods have been developed in the past few decades. Among these, the FDD method has still attractive attention 
because of its simplicity and practicality. It is also highly applicable to simultaneous observation at multiple points and 
even complex modes can be identified instantly. On the other hand, the applicability of this method to impact tests 
applied to evaluate the condition of structures has not been sufficiently discussed to date. In this study, we will clarify 
the applicability to impact tests by reconstructing the theoretical background of the FDD method. Furthermore, we 
will show from theory that when there is a correlation between inputs, higher-order singular values, which should be 
noted when applied to impact tests, will be affected. The conclusions obtained from the reconstruction of the theoreti-
cal background will be verified based on numerical experiments and actual observation records.
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1. Introduction
In Japan, social infrastructure, such as road structures 
built after high economic growth, is facing a renewal pe-
riod. According to national statistics, approximately 43% 
of bridges managed by national and local authorities 
(400,000 bridges nationwide, excluding bridges with an 
unknown year of construction) are more than 50 years old. 
On the other hand, the number of engineers responsible 
for the maintenance and management of these structures 
is decreasing, and financial resources are becoming more 
difficult to secure, so it is an urgent issue to maintain and 
manage public structures efficiently. There is a need to 
develop technologies for easy and low-cost estimation of 
the condition of structures.

To estimate the physical state of structures in-service, 
methods focusing on local damage, such as image-based 
crack detection, are commonly used in recent years. On the 
other hand, methods using changes of dynamic param-

eters over time, which reflect global structural soundness, 
is also still useful. Actually, the modal properties estimated 
from vibration data can be utilized to estimate the stiff-
ness reduction through optimization process (Ghannadi 
et al., 2023; Ghannadi & Kourehli, 2022). Qin et al. (2024) 
also employed FE model and applied the several model 
update algorithms to estimate the bridge structure, by 
using information on estimate modal properties. Recent 
development of data-driven model updating technique 
for structural and damage detection is introduced in the 
literature (Noori et al., 2024).

The dynamic property of a structure is identified mainly 
based on the vibration response obtained from microtrem-
or measurements, seismic motion observations or impact 
tests. Among them, as the microtremors and the impact 
forces can be measured “at any time” without knowing 
the input properties, it would be very useful to develop 
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an identification technique that can deal with these in a 
unified manner.

Output-only modal identification based on the mi-
crotremor is mainly classified into time-domain-based 
techniques (Naira et al., 2006; Gul & Catbas, 2011; Mosavi 
et al., 2012; Chen et al., 2021), frequency-domain-based 
ones, and their mixture (Kang et al., 2021), various meth-
ods have been developed for both in recent decades. 
The time-domain based techniques have generally higher 
spectral estimation accuracy; however, their identifica-
tion procedure tends to be more complex than the fre-
quency-domain based ones. A representative method of 
the latter is the frequency domain decomposition (FDD) 
method (Brincker et al., 2000, 2001), followed by updating 
the mathematical processing for mode extraction (Zhang 
et al., 2005), improvement in spectral estimation methods 
(Rodrigues et al., 2004), development of damping iden-
tification technique (Danial et al., 2018), automation of 
identification procedure (Brincker et al., 2007), and so on. 

These development of identification techniques using 
the FDD method has been progressing and its practicality 
has been improving. Bridges (Lee et al., 2006; Rodriguez-
Suesca et al., 2022), building structures (Zhang et al., 2010; 
Van, 2016), and subsurface ground (Ermert et al., 2014; 
Poggi et al., 2014; Suzuki et al., 2022) are often the targets 
of mode identification by the FDD method. This technique 
is particularly attractive for modal identification of bridges 
and buildings because it can easily identify even higher-
order modes by using multiple sensors with appropriate 
sensitivity. In addition, there are several methods to im-
prove the estimation quality of the FDD method using 
stochastic approaches (Hizal, 2020; Hizal & Aktaş, 2021), 
Baysian based approaches (Au, 2011; Yan & Katafygiotis, 
2015; Hizal & Turan, 2020), least squares method (Hizal, 
2023a) or machine learning approaches (Qu et al., 2023). 

Moreover, the input-output methods have also been 
discussed. Baysian approach technique has applied for 
known seismic response (Hizal, 2023b; Ni & Zhang, 2019), 
and quantitative evaluation of estimation accuracy is also 
discussed for known broadband input (Ng et al., 2023). 
The conventional FDD method assumes the white-noise 
input. However, the actual microtremor is not pure white 
noise in most cases. Then it is difficult to accurately sepa-
rate the response characteristics of the target system from 
the characteristics of the input, depending on the target 
(Mostafavian et al., 2019). Pioldi et al. (2015, 2017a, 2017b) 
proposed a refined FDD method and applied it to a high 
damping building system for seismic loading, which are 
non-white inputs, and obtained the modal parameters 
with good accuracy. However, the refined FDD focuses on 
improving the accuracy of spectral estimation from time 
series and does not mention the relationship between in-
put characteristics and identification results in the theory 
of the FDD method. 

In this way, there are a lot of fruitful research to im-
proved or extended modal identification technique. On the 
other hand, a motivation of this study is simple; It is to 
reveal the applicability of the FDD method to impact test-
ing, which is conducted to diagnose the structural sound-

ness. As impact force theoretically has property like white 
noise, their application to the FDD method does not seem 
sensibly problematic, but it is important to demonstrate 
this based on a theoretical background.

This study considers the applicability of the FDD meth-
od to impact testing from the theoretical background. 
Specifically, we reconstruct the theoretical background of 
his previous FDD work (Brincker et al., 2000, 2001), fo-
cusing on the influence of the input characteristics of the 
system, and discuss its effect on identification accuracy. 
Next, paying attention to the fact that mode identification 
uses peak picking, we focus on the case where there is 
a correlation between the inputs, which might be a fac-
tor that unintentionally affects the shapes of high-order 
singular values identified by the FDD method. In the case 
of ground motion input, for example, there is a strong 
correlation between the inputs because acceleration acts 
on the structure in the same phase as inertial force. The 
same applies to wind input. As mentioned above, although 
research has been conducted on methodologies to im-
prove identification accuracy for seismic motion input, 
verification from FDD theory has not been conducted. We 
also discuss the identified singular values for the case that 
inputs have strong correlations, based on the theoretical 
background. Finally, these considerations will be verified 
through numerical experiments and observation records.

2. Theoretical background of frequency 
domain decomposition 
Referring to the theoretical background of the conven-
tional FDD method proposed by Brincker et al. (2000), the 
power spectral density matrix (PSD) of the vibrational sys-
tem, which is a Hermitian matrix, is expressed as the shape 
of the singular value decomposition (SVD).

The relationship between the unknown l number of 
inputs xi(t) (i = 1, …, l) and m measured responses yi(t) 
(i = 1, …, m) can be expressed in the frequency domain 
(Bendat & Piersol, 1993) as:

( ) ( ) ( ) ( )* ,T
yy xxw w w w=G H G H  (1)

where the superscripts * and T respectively represent the 
complex conjugate and transpose, Gyy(w) is the m×m PSD 
matrix of the responses (output), Gxx(w) is the l×l PSD ma-
trix of the inputs, and H(w) is the m×l frequency response 
function (FRF) matrix. The FRF matrix can be expressed as 
a partial fraction, that is, in the pole/residue form as:

( )
=

 
= + 

− −  
∑

*

*
1

,
n

k k

k kk
j j

w
w l w l

R R
H  (2)

where n is the number of modes, j is the imaginary num-
ber, and lk is the pole. Rk is the residue, and is expressed 
as:

= ,T
k k kf gR  (3)

where fk, lk are respectively the mode shape vector and 
modal participation vector. Supposing the input is white 
noise, i.e., ( ) =xx w GG , the following equation can be ob-
tained by substituting Eqn (2) into Eqn (1):
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where Ak is the k-th residue matrix of the output PSD, 
given by

=

  = + 
− − − −  

∑
*

*1

N
s s T

k ks k s k sl l l l
G

R R
A R . (5)

The pole is represented as = − +k k dkjl s w , where wdk 
is the damped circular natural frequency. sk is the scalar, 
which is represented as the product of the k-th modal 
damping factor hk and the circular natural frequency wk 
for the proportional damping system ( =k k khs w ). Then, 
the second term in Eqn (5) becomes extremely dominant 
when s = k for a system with small modal damping, and 
the k-th residual is proportional to the mode-shape vector. 
Replacing *

kf  with fk does not change the essence,

∝ =* ,T H
k k k k k kbG f fA R R  (6)

where superscript H denotes the complex conjugate and

= .H
k k kb g Gg  

At a certain frequency w, only a limited number of 
modes contribute significantly. Let the set of modes be 
denoted as Sub(w). Thus, in the case of a lightly damped 
structure, the response PSD can be written as Eqn (7) by 
using a constant ˆ

kd : 

( )
( )∈

    ≈ +  − −   
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*ˆ
  .

ˆ HH
k kk k k

yy
k kk Sub

dd
j j

w

w
w l w l

f ff f
G k  (7)

The detail of ˆ
kd  will be revealed in Section 3.1, and its 

direct derivation is introduced in Appendix A. On the con-
trary, Gyy(w) can be decomposed through SVD because it 
is a Hermitian matrix:

( ) ( ) ( ) ( )= =∑ ,H
yy l l l

l

sw w w wHG USU u u  (8)

where U is a unitary matrix holding the singular vectors 
ul(w), and S is a diagonal matrix holding the scalar sin-
gular values sl(w) (s1>…>sm). Calculating Gyy(w) for each 
discretized frequency wi, we can plot sl(wi) for all calcu-
lated frequencies, which is so-called the l-th singular val-
ues spectrum (SVS). If only the k-th mode dominates in a 
target system, only one term dominates in Eqn (7) around 
w » wk. In this case, the frequency, which shows the peak 
in the first SVS is an estimate of the k-th modal frequency, 
and the first singular vector u1(wk) is an estimate of the 
k-th mode shape of the system:

( )= 1 .k kwf u  (9)

The modal damping can be estimated from sl(w) 
around the peak, which is regarded as the piece of the 
single-degree-of-freedom (SDOF) density function.

3. Consideration of FDD identification
As mentioned in the previous chapter, FDD method is 
generally applied under the assumption that the input 
power-spectral matrix is constant (Gxx(w) = C). If this 
condition does not hold, it is possible to exclude the fre-
quency characteristics when the input is known. However, 
in most cases, the input characteristics are unknown in 
the actual field. Here, we will discuss the applicability of 
the FDD method by reconstructing the theoretical devel-
opment with impact tests as the target. Furthermore, we 
will also show the possibility that the modal identification 
accuracy of the FDD method decreases when the inputs 
have correlations, even if the input power-spectrum matrix 
is constant, based on theoretical development focusing on 
the presence of non-diagonal terms in the input-power 
spectrum matrix.

3.1. Impact-force case
Equation (10) is the approximation equation in the k-th 
mode, derived from Eqns (4) and (5). Appendix A presents 
the detailed derivation process.

( ) ( ) ( ) ( ) ( )= =

 
 ≈ + 

− − − − − − −  
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(10)

Considering gk in Eqn (3) as the k-th modal participa-
tion vector, it can be expressed as: 

= ,x
k k kag f  (11)

where x
kf  is the k-th modal vector, the element of which 

consists of the components subject to input (external 
force) and ak is the modal contribution ratio for the k-th 
mode. Detailed derivations of ak is provided in Appendix 
B. The numerator of the first term on the right side in Eqn 
(10) gives

=* * * ,T T
s xx k s k sk s kca a f fR G R  (12)

where skc  is a scalar:

= * .x T x
sk k xx sc f fG  (13)

Similarly, the denominator part gives

( ) ( ) ( ){ }( )− − − = − − −* ,k k s k k ks dksj j jw l l l s w w s w  

(14)

where dkw  is the k-th modal damped circular frequency 
and

= +ks k ss s s , = − .dks dk dsw w w  (15)

Noting that the second term on the right side of Eqn 
(10) is the complex conjugate and transpose of the first 
one, substituting Eqns (12) and (14) into Eqn (10) gives 
Eqn (16): 
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(16)

where

( ) ( ){ }( )
− =

− − −

1
dk

k dk ks dks

s
j jw w w

s w w s w
 (17)

and

( ) ( )
= =

+ +
*

* * *
1

2 2sk s k
s s s k k kc m c m

a a a
l l

, (18)

where = T
k k kc f fC , = T

k k km f fM  as the symbols M and C 
are respectively the mass and viscous damping matrices of 
the objective system. 

Equation (13) can be expressed as:

= =

= ⋅∑∑ *

1 1

N N

sk sl km l m
l m

c X Xf f , (19)

where fki denotes the element of the mode vector fk 
and symbol < > shows the ensemble average, namely, 

⋅l mX X , the element of matrix Gxx.
When the inputs are mutually independent, the non-

diagonal elements of Gxx are zero; hence, Eqn (19) be-
comes:

= =

=∑∑
2*

1 1

.
N N

sk sl km l
l m

c Xf f  (20)

Furthermore, when the component I is excited at a 
node by an impact force XI in an ideal microtremor system, 
Xl equals a constant scalar Xc, skc  is:

( )

( )
=

=



= 


+


∑

∑
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1
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.

   for impact force

N

c sl km
m

sk N

c sl km I sI kI
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X

c

X X

f f

f f f f

 (21)

Furthermore, when the orthogonality holds between 
the modal vectors, Eqn (21) becomes:

( )
( )
( )

= ≠ = 
+





2
              for microtremor

0  ,   .
   for impact force

c
sk kk

c I kI

X
c k s c

X X f
 

(22)

Then the case of k ¹ s in Eqn (16) can be omitted, and 
Eqns (17) and (18), respectively, give:

( ) ( ){ }
− =

− −

1
2dk

k k dk

s
jw w w

s s w w
 

( )= = 2 0,ks k dkss s w ;                            (23)

=
+

2
1 .

2
kk

k k kc m
a

l
 (24)

Substituting Eqns (22) to (23) into Eqn (16), we obtain 
the output PSD matrix approximation as:

≅
=

≈∑ *

1

|
k

n
T

yy k k k
k

dw w f fG , 

( ){ }
=

− −
.

2
kk kk

k
k k dk

c
d

j
a

s s w w
 (25)

This approximation equation indicates that the SVS: 
≅|

kkks w w  obtained from the FDD identification (Eqn (8)) 
corresponds to ≅|

kkd w w  for the input case of microtremor 
and impact force. The difference between the two input 
cases can be explained using Eqn (22), in other words, 
an impact force enlarges kkc  if the k-th mode amplitude 
at component I (fkI) is not zero. Then the singular value 
increases significantly only when an impact force is ap-
plied to the point (component) with large amplitude in a 
certain mode.

3.2. Effect of cross-correlation  
input on identification
It is clear from Eqn (25) that when a target structure is sub-
jected to an impact force and uncorrelated white noises 
such as ambient vibration, Gyy is decomposed by SVD into 
each mode with high accuracy. Then the first SVS has a 
clear peak at w = wdk and the higher-order SVS leads 
continuously to the first one so that the spectrum shapes 
a continuous modal-power spectrum for each mode, as 
illustrated in Figure 1a. It means that the higher-order SVS 
does not have a peak around w = wdk.

On the other hand, if the target structure is subjected 
to inputs from the ground or wind force, all the nodes 
receive strongly correlated inputs. In such cases, the non-
diagonal elements of Gxx have non-zero values. To inves-
tigate its effects on the results of FDD identification, Gyy 
was derived in detail. Although this study only considers 
the case, in which the two dominant modes are at a given 
frequency, this is not a loss of generality. Considering the 
case of k, s £ 2, Eqn (16) gives the below relations which is 
composed of the four combinations; (k, s) = (1, 1), (1, 2), (2, 
1), and (2, 2). This development is similar to the approach 
of Qu et al. (2018), who discussed the separation of closely 
spaced modes. Unlike their approach, we discuss the effect 
of the presence of cross-correlation inputs.

( ) ( ){ }≅
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2 2

1 1
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j jw w w wG g g

where
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For the case of k = s, according to Eqn (23):
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Then Gyy can be represented as Eqn (26):
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Thus, Gyy cannot be perfectly decomposed into the 
eigenmodes if the inputs are correlated. Then, gks can be 
written as:

( )
( )

=
+ −

22

1 ,ks ks
k dk

jw
s w w

g V   (27)

where

( ) ( ) = +  
* * HT T

ks ks k s k ks k s kb  w b  wf f f fV , (28)

( ) ( )= − −k k dkj w s w w ,

 =
−

1
ks sk sk

ks dks
c

j
b a

s w
. (29)

According to Eqn (28), Vks is a Hermitian matrix; thus, 
Eqn (30) can be obtained using SVD as:

( )
( ) ( )

= =
+ − + −

∑2 22 2

ˆ
ˆ ˆ ˆ ˆ1 ˆ ks jH H
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g V S V v v , (30)

where ˆ
ksS  is the singular value matrix consisting of ˆ js  and 

k̂sV  is the left singular vector matrix consisting of ˆks jv . Us-
ing the aforementioned derivations, Eqn (26) gives: 
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(31)

Equation (31) suggests two conclusions. First, the mod-
al parameters may be identified using the FDD method, 
even if the inputs are correlated, because the contribution 
of the first term on the right side is large. However, the 
accuracy of the modal parameter estimation is expected to 
be lower because the approximation becomes less accu-
rate in proportion to the strength of the cross-correlation 
between the inputs. Second, considering the coefficients 
of the second and third terms in Eqn (31), which respec-

tively take the maximum value around w @ wd1 and w @ 
wd2, a pseudo-peak might be seen in the higher-order SVS 
at the same peak as the first SVS, as illustrated in Figure 
1b. Such a peak should be ignored; however, it is possible 
the meaningful peak is hidden in the higher-order singular 
spectrum for the non-correlation input case. Therefore, not 
only the first, but also the higher-order singular vectors 
should be checked when several peaks are found around 
an identified modal frequency.

4. Validation of considerations  
through numerical experiments

In this chapter, a simple numerical experiment is per-
formed to verify the discussion in the previous chapter. 
The goal of the verification is both to confirm that the FDD 
method can accurately identify the natural frequency by 
peak piking from SVS when an impact force is applied, and 
to show that the SVS exhibits the characteristics shown in 
Figure 1b when mutually correlated forces are input, and 
the identification accuracy is reduced.

Here, a simple 3-DOF model is employed. For this 
model, four different analysis cases are prepared as shown 
in Figure 2. Two types of input accelerations are used, one 
is white noise and the other is the waveform shown in 
the following equation, which simulates a pseudo-impact 
(PI) force:

( ) ( )50     0.2  .
0      (  0.2  )PI

t t sx t
t s

 ≤= 
>

  (32)

In Case 1, different white noises are input to each mass 
point (Figure 2a). All inputs are uncorrelated each other. In 
Case 2, pseudo-impact is input to the upper mass (Figure 
2b). In Cases 3 and 4, two and three mass are subjected to 
the same force as Case 2, respectively (Figures 2c and 2d). 
Different from Cases 1 and 2, the inputs have strongly cor-
related each other in these two cases. It should be noted 
that Case 4 is resemble to wind-force input and ground 
motion input cases, because wind force is often uniform 
to the structure, and ground motion produces the same 
inertial force at the mass points.

In the linear response analysis based on Newmark b 
method (b = 0.25), all the masses and springs were set to 
50 ton and 100,000 tf/m, respectively. Rayleigh damping 
was employed as the viscous damping matrix, using first 
and second modal damping factors of 3%. Other analytical 

Figure 1. Schematics of: a – non-correlated input case; b – correlated input case of SVS

1st singular values
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conditions for FDD identification are listed in Table 1. In 
Cases 2 to 4, ensemble averaging was conducted to create 
the output PSD matrix by shifting the sample wave (Eqn 
(32)) with 20 time-steps. Response accelerations were used 
to calculate the output PSD matrix.

Figure 3 shows the singular value spectra for each case 
obtained using the FDD method, where sk represents the 
k-th order singular value. In Case 1, the three singular val-
ues are in contact with each other, and each mode power 
spectrum can be reproduced by connecting the singular 
values of different orders. This indicates that the three 
modes could be perfectly decomposed. In Case 2 (Fig-
ure 3b), although the first singular value is extremely high 
because of the contribution of the impact force, and each 
singular value is separated from the other, the feature 
shows the same three features as in Figure 3a. 

On the other hand, in Cases 3 and 4 (Figures 3c and 
3d), there are two peaks in the second SVS around the 
same frequencies as the first SVS, unlike in the other two 
cases. Equation (31) is only an approximation; however, 
such peaks can appear if the inputs are correlated.

The eigenfrequencies identified using peak picking (PP) 
from each first SVS are listed in Table 2, and the corre-

Figure 2. Numerical models: a – Case 1: white noise inputs to all masses (uncorrelated); b – Case 2: pseudo-impact force applied to m3 (uncorrelated); 
c – Case 3: pseudo-impact forces applied to m3 and m2 (correlated); d – Case 4: pseudo-impact forces applied to all masses (correlated)
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Figure 3. Identified singular value spectra: a – Case 1: white noise inputs to all masses (uncorrelated); b – Case 2: pseudo-impact force 
applied to m3 (uncorrelated); c – Case 3: pseudo-impact forces applied to m3 and m2 (correlated); d – Case 4: pseudo-impact forces 

applied to all masses (correlated)

Table 1. Analytical conditions for numerical analysis and FDD 
for each case

Case 1 Case 2 Case 3 Case 4

Time increment dt [s] 0.01 0.01 0.01 0.01
Number of data of a 
sample wave 4096 4096 1024 1024

Number of ensembles 32 128 512 512
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sponding first singular vectors are shown in Figure 4 as 
the identified mode shapes and their comparison with the 
theoretical values. According to Table 2 and Figure 4, the 
eigenfrequencies and corresponding mode shapes appear 
to be estimated with high accuracy regardless of the case, 
whereas the third eigenfrequency for Case 4 has an error 
of around 5% from the theoretical value, and the corre-
sponding mode shape slightly differs from the theoretical 
mode. These results indicate that the FDD method can be 
applied to impact the force inputs and can identify the ei-
genfrequencies and eigenmodes of the correlated inputs.

5. Application to microtremor observation 
and impact tests
This chapter describes the application of the FDD meth-
od to an actual impact-test field not only to verify our 
considerations but also validate the numerical simulation 
for pseudo-impact force described in Chapter 4. Field 

observations were conducted at an under-construction 
multi-spanned elevated railway bridge. Figure 5 shows a 
schematic of the entire bridge after the construction was 
completed, where five observations were made at differ-
ent construction stages. Among these, we focused on the 
observation of the one-span bridge, represented as “R2” 
in Figure 5, owing to its simplicity. Because the adjacent 
girders “Ct2” and “Ct3” were not completed during the 
observation period, “R2” was disconnected from the ad-
jacent bridges R1 and R3 at that time. A microtremor ob-
servation and three impact tests were conducted. Figure 
6 shows the sensor positions and the impact direction in 
the impact tests.

The microtremor observations were conducted for 20 
min per day when the influence of the wind was low, and 
the impact tests were performed 10 times per position 
for three different impact positions. Seven velocity sen-
sors were used for the observations, and the data were 
recorded using 200 Hz sampling. Velocity records for 14 

Table 2. Comparison of eigenfrequency between theory and each case

Mode
order

Theory Numerical study

Freq.
[Hz]

Mode
amp.

Case 1 Case 2 Case 3 Case 4

Freq. [Hz]
(Ratio) MAC Freq. [Hz]

(Ratio) MAC Freq. [Hz]
(Ratio) MAC Freq. [Hz]

(Ratio) MAC

1st 3.168 0.737
0.591
0.327

3.174
(1.002)

1.000 3.149
(0.994)

1.000 3.125
(0.986)

1.000 3.125
(0.986)

1.000

2nd 8.876 0.591
–0.328
–0.737

8.740
(0.976)

1.000 8.642
(0.973)

0.996 8.691
(0.979)

0.940 8.691
(0.979)

0.972

3rd 12.826 0.328
–0.737
0.591

12.231
(0.954)

1.000 12.207
(0.952)

0.954 12.207
(0.952)

0.964 12.207
(0.952)

0.763

Note: *( ) shows the Ratio of the theoretical value.

Figure 4. Comparison of mode shapes for each case: a – first mode; b – second mode; c – third mode
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components (two horizontal components for seven sen-
sors) were used for the FDD analysis. For microtremor 
observations, 32 portions of 4096 steps with less noise 
were cut from the records. For the impact tests, the same 
number of portions was obtained by shifting 50 steps from 
the free-vibration waveform for a single impact. The 32 
waveforms were used as an ensemble average to generate 
a power spectrum matrix.

We also constructed a simple numerical model of “R2” 
based on its design document and performed both eigen-
value analysis and numerical response analysis to corrob-
orate the validation using the observed records. The 3D 
shape of the numerical model and the obtained dominant 
mode shapes are shown in Figure 7. The first and second 
modes showed respectively the translational modes for 
Y- and X-directions. These are clearly the closely-spaced 
modes. The third one is the tortional mode. Each eigen 
frequency of the translational modes are close. Using this 
model, numerical response analyses were performed both 
for a white-noise input same as Figure 2a and pseudo-
impact tests same as Figure 2b. The impact points for the 
pseudo-impact test are the same as Figure 6. 

The SVS identified from response accelerations ob-
tained through numerical analysis are shown in upper of 
Figure 8. In white-noise input (Figure 8a), all peaks for the 
three modes are visible along the first SVS (s1) although 
the second peak is not clear. On the other hand, only one 
or two peaks are appeared along “s1” for impact input 
cases (Figures 8b–8d). In these cases, second or third SVS 
(s2, s3) have peaks instead of s1. 

The identified singular vectors are also shown in low-
er of Figure 8. Here, we showed the vectors correspond 
not only to s1 but also to s2 and s3 if they have a peak. 
Each color is identical to SVS, so the red-, green-, and 
blue-colored vectors (u1, u2, and u3) respectively show the 
amplitude of the first, second, and third singular vectors. 
Focusing on the characteristic of u1 (red-colored mode) in 
the case of white-noise input, the shapes correspond to 
the first, second, and third peaks are almost identical to 
each mode shape of Figure 7. The closely spaced modes 

can be separated to each mode by using MACs for u1 and 
u2 correspond to discretized frequencies around the peak 
frequency (e.g., Qu et al. 2018). On the other hand, in the 
case of Impact 1, u1 at three different peaks show only 
the translational mode for Y-direction and u2 and u3 show 
the X-direction translational or the tortional modes. Like-
wise, in Impact 3, all u1 show only the translational mode 
for X-direction and u2 and u3 show other modes. In the 
case of impact 2, u1 is apparently the translational mode 
for Y-direction for the first and second peaks and is the 
tortional mode for the third peak. Considering the location 
and direction of the impact force, these characteristics are 
reasonable. These results clearly indicate the high-order 
singular vectors should be focused on when FDD is ap-
plied to impact tests.

Similarly, the SVS and singular vectors identified from 
observation records are shown in Figure 9. Although the 
peak frequencies and the damping seem to a little dif-
ferent, the outlines of SVS are like those for Figure 8. It 
indicates the validity of the numerical response simulation 
to the pseudo-impact force. Based on the observation re-
cords, the actual bridge has almost the same frequencies 
at the first and the second modes. The identified singular 
vectors are also shown in lower of Figure 9. Different from 
the numerical study shown in Figure 8, the translational 
modes seem to be a kind of mixture of Y- and X-transla-
tional modes for all the input cases. However, the overall 
characteristics are accordance with Figure 8. That is, some 
of eigenfrequencies are often hidden in the second or the 
third singular values. These results simply demonstrated 
the importance of the peaks of higher-order singular val-
ues.

Figure 6. Sensor positions on slab, and impact points and 
directions of the three impact tests

Figure 7. Numerical model of R2 and the mode shapes based on eigenvalue analysis: a – 3D shape of model; b – first mode shape; 
c – second mode shape; d – third mode shape
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Figure 8. SVS and singular vectors identified from response accelerations obtained through numerical analysis: a – White-noise input 
(Microtremor-like); b – Impact 1; c – Impact 2; d – Impact 3
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Figure 9. SVS and singular vectors identified from observation records: a – Microtremor; b – Impact 1; c – Impact 2; d – Impact 3
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6. Conclusions
In order to clarify the applicability of the FDD method to 
impact testing, the theoretical background of the original 
FDD by Brincker et al. (2000) was restructured with a focus 
on the effects of system inputs. Based on the theoretical 
development focusing on the characteristics of the power 
spectrum matrix of the inputs, it was found that the FDD 
method can be applied to impact tests with good accu-
racy. Normally, modal identification techniques are used to 
estimate only the intended modes for impact testing, since 
the modes are strongly excited depending on the location 
and direction of the impact force. However, through FDD 
from microtremor observation and impact test using mul-
tiple sensors, clear peaks representing the actual vibration 
modes appear not only in the peaks based on the first 
singular value spectrum, but also in the higher singular 
value spectra. This also suggests the effectiveness of the 
FDD method, which can focus on higher-order singular 
values and singular vectors at the same time.

On the other hand, there are cases where the higher-
order peaks do not adequately suggest the eigenmode 
of the targeted system, one of which is the case where 
the inputs are correlated with each other, as shown in re-
construction of the FDD theory by explicitly representing 
the effect of the non-diagonal terms of the input-power 
spectrum matrix. When the system of interest has closely 
spaced modes, the peaks of the singular values of each 
order might be close together, and the peaks of the higher 
order singular values may overlap with the first singular 
values, in which case the peaks of the higher order sin-
gular values may still be visible. This is not a problem in 
the case of impact testing but considering that the FDD 
method is affected by weak ground motion and wind dur-
ing microtremor observations, identification that takes the 
input conditions into account will be necessary when ap-
plying the FDD method to vibration response recordings.
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APPENDIX

Appendix A
In this study, we have not used the expression Gyy(jw) = 
C; we introduce a symbol different from the original paper 
by Brincker et al. Although the derivation of Eqn (10) is 
traceable, the detailed derivations of Eqns (4) to (31) are 
explained here. For simplicity, symbols such as “(jw)” and 
“(w)” are omitted here. The PSD matrix is:

= =* * .T T
yy xxG Y Y H G H  (A.1)

The transfer function of a multi-degree-of-freedom vi-
bration system is represented as

=

  = + 
− −  

∑
*

*1

N
k k

k k kj jw l w l

R R
H  (A.2)

and Eqn (4) can be obtained by substituting Eqn (A.2) into 
Eqn (A.1):

=

= + + +
− − −− − −∑

* *

* *
1

,
n T T

k k k k
yy

k kk kk
j jj jw l w lw l w l

A A A A
G

 (A.3)

where Ak is the k-th residue matrix given by the following 
equation, which is the same as Eqn (5) (Gxx(w) = G):

=

  = + 
− − − −  

∑
*

*1
.

N
s s T

k xx ks k s k sl l l l

R R
A G R  (A.4)

Considering the pole = − +k k dkjl s w , the denomina-
tors of Eqn (A.3) give:

( )± − = ± k k dkj jw l s w w ,

 ( )± − = ± ±* .k k dkj jw l s w w  (A.5)

When  kw w  with the modal damping is small enough 
( )≈k dkw w , the two terms of Eqn (A.3) including w – wk 
become extremely large and the other two terms become 
negligible:

( )
=

  = + + 
− − −  

∑

*

*1
| .

dk

TN
k k

yy k k k
o j

j jw w w
w l w l

A A
G  (A.6)

Furthermore, considering

− − − −


*
1 1

k s k sl l l l
, (A.7)

the first term of Eqn (A.4) can also be negligible, and Ak 
can be approximated as:

( )
=

= + ∈
− −∑

*

*1

TN
s xx k

k s k s
jw

l l

R G R
A . (A.8)

Substituting Eqn (A.8), the approximation equation can 
be obtained as Eqn (A.9), around the k-th mode:

( ) ( ) ( ) ( )= =

 
 ≈ + 

− − − − − − −  
∑∑

* *

* * *
1 1

| .
dk

n n T T
s xx k k xx s

yy
k k s k k sk s j jw w

w l l l w l l l

R G R R G R
G  

( ) ( ) ( ) ( )= =

 
 ≈ + 

− − − − − − −  
∑∑

* *

* * *
1 1

| .
dk

n n T T
s xx k k xx s

yy
k k s k k sk s j jw w

w l l l w l l l

R G R R G R
G

  

(A.9)

If = H
xx xxG G , Eqn (A.9) can be represented as: 

( ) ( ) ( ) ( )= =

     ≈ +  − − − − − −     

∑∑

* *

* *
1 1

| .
dk

H
n n T T

s xx k s xx k
yy

k k s k k sk s j jw w
w l l l w l l l

R G R R G R
G  

( ) ( ) ( ) ( )= =

     ≈ +  − − − − − −     

∑∑

* *

* *
1 1

| .
dk

H
n n T T

s xx k s xx k
yy

k k s k k sk s j jw w
w l l l w l l l

R G R R G R
G

  

(A.10)

Furthermore, Eqn (14) indicates the denominators of 
the right side of Eqn (A.10) are relatively smaller for k = 
s than for k ¹ s, when  kw w . When k = s, Eqn (A.11) is 
obtained:

( )− − =* 2 .k k kl l s  (A.11)

According to Eqn (12), the numerator of the right side 
of Eqn (A.10) can be represented as Eqn (A.12), using the 
symbol kka  in Eqn (18):

=* * .T T
k xx k k kkk kkca f fR G R  (A.12)

Just replacing the complex mode with the normal 
mode =* T H

k k k kf f y y , Eqn (A.10) becomes:

( ) ( )
=

    ≈ +  − −   
∑

1

| .
2 2dk

Hn H H
k k k kkk kk kk kk

yy
k k k kk

c c
j jw w

a a

s w l s w l

y y y y
G

 (A.13)
Rewriting Eqn (7) here:

( )∈

    ≈ +  − −   
∑

*

| .
ˆ ˆ

dk

H H
k k k k k k

yy k Sub k k

d d
j jw w w w l w l

f f f f
G

Comparing Eqn (7) with Eqn (A.13), we can obtain the 
following representation:

=ˆ
2
kk kk

k
k

c
d

a

s
. (A.14)

Appendix B
Although the physical equations for a multi-degree of 
freedom vibration system have been presented in some 
references, e.g., the study by Nagamatsu (1993), the 
process to derivate the transfer function from the basic 
equation is complex. To clarify the physical meaning of 
the symbols used in this study, the derivation process is 
explicitly presented in here.

In a non-proportional damping system subjected to 
harmonic external force, the equation of motion can be 
represented as:

( )+ + =  ,j t
e e e d e ww wMy Cy Ky X  (B.1)

where ye is the relative displacement vector for the har-
monic component, and ( )dw wX  is the amplitude of the 
input for each harmonic component. Introducing = z y  
and rewriting →ey y  and ( ) →wX X , Eqn (B.1) can be 
rewritten as:

+ + + = ⋅ 

j td e ww0Cy Mz Ky z X . (B.2)
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Introducing the following trivial formulation, which is 
given from = Mz My ,

+ + + =  .0 0 0My z y Mz  (B.3)

The common representation can be obtained using 
{ }= :

T
w yz

+ = ⋅   j td e wwDw Ew F , (B.4)

where
     

= = =     −     
,   ,0

0 0 0
C M K XD E
M M

F . (B.5)

The solution can be defined by = telw W  without the 
loss of generality and the solution can be expressed using 
a coordinate transformation form as:

( )
=

=∑
2

1
,

N
k kk

tw   (B.6)

where k  is the k-th mode vector, ( )k t  is the k-th modal 
displacement whereas w represents the physical displace-
ment. Substituting Eqn (B.6) into Eqn (B.4) and multiplying 

T from left side: 

+ = ⋅   ,T T T j td e wwh hD E F      (B.7)
where

( ) ( ) ( ) ( )+
 = … … 1 1 2          

T
N N Nt t t t   h ;

+

 … … = … … =    … …  
1 1

1 1 2 * *
1 1 1 1

                              
 

N N
N N N

N N N Nl l l l
f f f f
f f f f

* *

* *    

+

 … … = … … =    … …  
1 1

1 1 2 * *
1 1 1 1

                              
 

N N
N N N

N N N Nl l l l
f f f f
f f f f

* *

* *     .

The matrices D and E have the orthogonality and one 
can describe it as:

 
=  
 

0
0

T qD
q*  , 

 
  = =   
   



1 0
0,

00
T

N

q

q

eq E
e* 

 
  = =   
   



1 0
0,

00
T

N

q

q

eq E
e*  , 

 
 =  
  



1 0
.

0 N

e

e
e

Clearly,
= + 2k k k kq c ml . (B.8)

Then Eqn (B.7) can be divided into each mode using 
the orthogonality:

+ +

 + = ⋅


+ = ⋅





* * * .
T j t

k k k k k
T j t

k N k k N k k

q e d e
q e d e

w

w
  w

  w
F

F



 (B.9)

Since the lower half of the vector F is zero vector (see 
Eqn (B.5)), the above equation is the same as:

+ +

 + = ⋅


+ = ⋅





* * * .
T j t

k k k k k
T j t

k N k k N k k

q e d e
q e d e

w

w
  w

  w
f

f
X

X
 

When the modal displacement = k kj w , the above 
equation is described as:

( )+ = ⋅ .T j t
k k k kj q e d e ww  wf X  

Therefore,

⋅
=

+

T j t
k

k
k k

d e
j q e

ww


w
f X

, +
⋅

=
+

*

* *
.

T j t
k

N k
N k

d e
j q e

ww


w

f X
  (B.10)

Substituting Eqn (B.10) into Eqn (B.6) considering 
{ }=

T
w y z , the response can be obtained as the following:

=

 
= + ⋅ 

+ +  
∑

*
*

* *1
.

T TN
k k j t

k kk k k N k
d e

j q e j q e
wf f w

w w

f fX X
y  

Now using the relationships of

= − = − +,   .k k k k k dkqd e jl l s w  

The denominators of the right side of Eqn (B.10) are 
rewritten as:

( ) ( )
( ) ( )

 + = + − = −


+ = + − = −
* * * * * .k k k dk k k k

k k k dk k k k

j q e j q j q
j q e j q j q
w s w w w l

w s w w w l
 

Then Eqn (B.10) can be described as:

=

 
= + ⋅ 

− −  
∑

* *
*

*1
.

/ /T TN
k k k k j t
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q q
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 (B.11)

Considering that the matrix part of the numerators of 
Eqn (B.11) can be described by the commutative expres-
sion as:

= .T T
k kf f f fX Xk k  

Thereby Eqn (B.11) gives:

=

 
= + ⋅ 

− −  
∑

* * * *

*1
.

/ /T TN
k k k k k k j t

k k k

q q
d e

j j
ww

w l w l

f f f f
y X

Representing the response y in frequency domain, the 
above can be:

=

 
= + 

− −  
∑

* * * *

*1

/ /
.

T TN
k k k k k k

k k k

q q
j jw l w l

f f f f
Y X  

Therefore, the transfer function is given as Eqn (B.12): 

=

  = + 
− −  

∑
* * *

*1

/ /
.

T TN
k k k k k k
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Introducing the scalar ak as:

=
1

k
kq

a ,  (B.13)

Eqn (B.12) is given by Eqn (B.14).

=

  = + 
− −  

∑
* * *

*1
.

T TN
k k k k k k

k k kj j
a a
w l w l
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H  (B.14)

Equation (2) is rewritten here,

=

  = + 
− −  

∑ *1
,

N
k k

k k kj jw l w l

R R
H  (2)

and comparing Eqn (B.13) with Eqn (2), the following 
equation holds, which is shown in Eqns (3) and (11):

( )== = .T T T
k k k k k k k k ka af f f f f gR

From Eqns (B.8) and (B.13): 

=
+

1
2k

k k kc m
a

l
. (B.12)

Therefore ska  can be given by Eqn (18).

( ) ( )
= =

+ +
*

* * *
1 .

2 2sk s k
s s s k k kc m c m

a a a
l l

 (18)


