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Article History:  Abstract. Subway station fires frequently result in massive casualties, economic losses and even social panic due to the
massive passenger flow, semiconfined space and limited conditions for escape and smoke emissions. The combination
of different states of fire hazard factors increases the uncertainty and complexity of the evolution path of subway sta-
tion fires and causes difficulty in assessing fire risk. Traditional methods cannot describe the development process of
subway station fires, and thus, cannot assess fire risk under different fire scenarios. To realise scenario-based fire risk
assessment, the elements that correspond to each scenario state during fire development in subway stations are identi-
fied in this study to explore the intrinsic driving force of fire evolution. Accordingly, a fire scenario evolution model of
subway stations is constructed. Then, a Bayesian network is adopted to construct a scenario evolution probability cal-
culation model for calculating the occurrence probability of each scenario state during subway station fire development
and identifying critical scenario elements that promote fire evolution. Xi’an subway station system is used as a case to
illustrate the application of Bayesian network-based scenario evolution model, providing a practical management tool
for fire safety managers. The method adopted in this study enables managers to predict fire risk in each scenario and
understand the evolution path of subway station fire, supporting the establishment of fire response strategies based on
“scenario–response” planning.
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1. Introduction
Subway stations have many combustible materials (e.g. 
billboards and decoration materials), electrical and me-
chanical equipment (e.g., elevators, wires and cables) and 
unsafe practices by passengers or staff that may cause 
fire accidents (Zhang et al., 2019). Complete fire safety in 
subway stations is believed to be impossible. Considering 
the massive passenger flow, semiconfined space and lim-
ited conditions for escape and smoke emissions, subway 
station fires exhibit certain characteristics, such as rapid 
increment in ambient temperature, long duration and 
firefighting and emergency rescue difficulties, frequently 
resulting in massive casualties, economic losses and even 
social panic (Ji et al., 2011). For example, London’s massive 
fire disaster in 2005 caused 56 deaths and left more than 

700 people severely injured (Tsukahara et al., 2011). In ac-
cordance with global subway incident statistics, fire hazard 
is the most generic form of accidents and accounts for 
30%–50% of incidents (Li et al., 2021). Therefore, assessing 
the fire risk of subway stations is essential for optimising 
their capacity to respond to fire hazards and minimise eco-
nomic losses and adverse social effects.

Many prior studies have conducted research on the fire 
safety management of subway stations to assist in fire haz-
ard assessment and response. Some scholars have adopted 
different numerical simulation models or software, such as 
computational fluid dynamics models (Weng et al., 2014; 
Roh et al., 2009), fire dynamics simulator (Kim et al., 2008; 
Li et al., 2012), agent-based models (Zou et al., 2021) and 
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Monte Carlo simulation models (Zhang et al., 2017), to 
assess the effectiveness of structural fire protection de-
sign and the evacuation efficiency of facilities and equip-
ment (e.g., escalators and emergency exits) by simulating 
smoke flow and personnel evacuation behaviour during 
fires. However, existing fire simulation models require a 
massive amount of initial data and excessive computation 
time; moreover, they do not reflect the overall fire risk of 
subway stations. Therefore, system analysis and statisti-
cal analysis methods, such as analytic hierarchy process 
(Ju et al., 2022), failure mode and effect analysis (FMEA) 
(Nezhad et al., 2015) and optimised neural network (Yu 
& Zhang, 2016), have been widely adopted to realise the 
rapid assessment of overall fire risk in subway stations. For 
example, Nezhad et al. (2015) adopted the FMEA model 
to assess the fire risk of Zagros subway station and identi-
fied six critical fire risk factors. Yu and Zhang (2016) de-
termined 23 fire risk factors of subway stations and then 
constructed a fire risk assessment model by using a neural 
network. 

Various hazardous factors and emergency response 
activities occur during the development of subway sta-
tion fire. The combination of different states of these fac-
tors can generate a vast number of fire scenarios, making 
the fire evolution path overly complex and uncertain (Wu 
et al., 2018). Brannigan and Kilpatrick (2000) emphasised 
that fire losses are determined by different fire scenarios. 
Traditional methods cannot describe subway station fire 
development, and thus, cannot assess fire risk under dif-
ferent fire scenarios. The “scenario–response” method that 
predicts the evolution path of a fire hazard on the basis of 
its current state can be an effective strategy for assessing 
fire risk under different scenarios and providing effective 
guidance to managers in developing effective fire preven-
tion measures.

Scenario analysis can be defined as a description of the 
future evolution path of an event and its potential out-
comes (Kahn & Wiener, 1967). Many prior studies have 
conducted research on the scenario analysis of subway 
station fires to assist in hazard assessment and response. 
The event tree, fault tree, and bow tie methods have been 
widely adopted in conducting scenario analyses of fire 
hazards (Lin et al., 2020; Roshan & Daneshvar, 2015; Xie 
et al., 2021). Moreover, they can qualitatively describe the 
evolution path of a hazard and quantitatively calculate the 
probability of the occurrence of disastrous consequences 
under different fire scenarios. For example, Roshan and 
Daneshvar (2015) constructed an event tree for the fire 
evolution path in a subway station and used it to esti-
mate the probabilities of different scenarios and the cor-
responding economic losses of the Tehran subway station 
fire hazard. However, these methods cannot describe con-
ditional dependencies between scenario elements, leading 
to scenario analysis uncertainties that cannot be resolved. 
In addition, these scenario analysis methods are static and 

cannot achieve probability updating during the analysis of 
actual fire scenarios.

A Bayesian network (BN) is one of the most effective 
tools for realising dynamic scenario analysis in complex 
environments (Chen & Pollino, 2012; Wu et al., 2016; Hu 
et al., 2022). Multistate nodes and conditional probability 
distribution between nodes allow BN to represent various 
uncertain scenarios. In addition, BN exhibits the flexibility 
required to update probability in accordance with newly 
provided evidence during scenario analysis, and thus, it 
can conduct predictive and diagnostic analyses and sup-
port the timely creation of “scenario–response” strategies 
(Cinar & Kayakutlu, 2010; Afenyo et al., 2017; Chang et al., 
2019a). With regard to the scenario analysis of fire haz-
ards, Liu et al. (2010) proposed a BN model for the sce-
nario analysis of a ship engine room fire. The proposed 
method presented the fire evolution path from ignition 
to extinguishment and was used to predict fire losses and 
provide decision-making suggestions for firefighting. Ma-
tellini et al. (2018) quantitatively examined dwelling fire 
losses by using a three-part BN model. The model pro-
vided a scenario-specific analysis of common firefighting 
measures and conditional dependency in fire develop-
ment. Khakzad (2018) applied BN to the modelling and 
hazard assessment of fire evolution in oil terminals and 
identified the best fire prevention and control measures 
under different fire scenarios. Existing studies have shown 
that BN is suitable for dynamic scenario analysis and effi-
ciently supports hazard prediction, diagnosis and decision-
making. However, only a few BN-based scenario analysis 
studies on subway station fires have been conducted. 

To realise scenario-based fire risk assessment, scenario 
elements that correspond to each scenario state in the fire 
development of subway stations are identified in the cur-
rent study to explore the intrinsic driving force of fire evo-
lution, and thus, a fire scenario evolution model of subway 
stations is constructed. Then, BN is adopted to construct a 
scenario evolution probability calculation model for calcu-
lating the probability of occurrence of each scenario state 
during subway station fire development and identifying 
critical scenario elements that promote fire evolution. In 
this study, the scenario evolution model of subway station 
fire is constructed by identifying the elements of a subway 
station fire evolution scenario and their relationships. This 
model can facilitate the understanding of the evolution 
mechanism of subway station fire. Meanwhile, the BN-
based scenario evolution probability calculation method 
can solve the uncertainty and dynamic problems in the 
fire risk assessment of subway stations and improve the 
accuracy and effectiveness of fire risk assessment. Further-
more, the method adopted in this study can help manag-
ers to predict fire risk in each scenario and understand the 
evolution path of subway station fire, providing support 
for the establishment of fire response strategies based on 
“scenario–response” planning.
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2. Literature review
To construct a BN-based scenario deduction network of 
subway station fires, relevant scenario evolution process-
es and scenario elements should be determined (Xin & 
Huang, 2013). This section reviews literature on the two 
significant perspectives.

2.1. Scenario evolution processes  
of subway station fire
Fire development is a chain reaction. Fire accidents in sub-
way stations evolve constantly on the basis of scenarios. 
Fire scenario evolution in subway stations follows general 
building fire development and can be divided into four 
stages: fire ignition, fire growth, personnel evacuation and 
full development to extinguishment. Table 1 provides the 
characteristics of each scenario evolution of a subway sta-
tion fire.

Table 1. Characteristics of each scenario of a subway station fire

Fire scenario Characteristics

Fire ignition

Owing to equipment failure, unsafe behaviour 
of passengers and poor management of a 
subway station, ignition sources come in 
contact with combustible materials, causing 
combustion (Wu et al., 2018).

Fire growth

After fire ignition, the untimely response 
of the fire detection system and human 
firefighters in the subway station leads to 
further growth of the fire (Chen et al., 2018a).

Personnel 
evacuation

The rapid development of fire with high 
temperature and copious amounts of toxic 
smoke forces personnel evacuation (Chen 
et al., 2021).

Full 
development 
to 
extinguishment

As temperature increases accompanied by the 
release of copious amounts of toxic smoke, 
fire will break through fire compartments and 
develop in full scale in subway stations until it 
is extinguished (Matellini et al., 2018).

2.2. Scenario elements in a  
subway station fire
During subway station fire, scenario elements refer to 
factors that determine the evolution path of the incident 
(Postma & Liebl, 2005). Clearly defined scenario elements 
are the basis for establishing an incident’s evolution mod-
el. In accordance with the triangular framework of pub-
lic safety science and technology proposed by Fan et al. 
(2013), an academician from China Engineering Academy, 
the scenario elements of a subway station fire are divided 
into three types: (1) scenario state, which refers to the 
state of scenario evolution processes, as explained in Sec-
tion 2.1; (2) hazardous factor, i.e., the external environ-
mental factor that leads to the continuous development of 
the fire; and (3) emergency response activity, i.e., measures 
taken by rescuers based on the scenario state of the fire. 
The evolution path of a fire from one scenario state to the 

next is determined by the corresponding hazardous fac-
tors and emergency response activities (Bjelland & Borg, 
2013). If emergency rescuers are effective in firefighting, 
then the fire will evolve in an optimistic direction, indicat-
ing that the fire can be extinguished; conversely, it will 
develop in a pessimistic direction that requires further res-
cue measures. A fire continuously evolves until it is extin-
guished. In this section, hazardous factors and emergency 
response activities that drive scenario evolution in each 
scenario of subway station fire are reviewed.

2.2.1. Scenario elements in the fire ignition stage

Various ignition sources exist within subway stations. Some 
scholars have proposed that passenger unsafe behaviour, 
equipment unsafe state and poor environmental condition 
are the major hazardous factors of fire ignition in subway 
stations (Wu et al., 2018). Passenger unsafe behaviour, 
which typically occurs suddenly, includes smoking, car-
rying flammable and explosive materials and intentional 
arson (Chen et al., 2019). Device failure includes the mal-
function of electrical and mechanical equipment (due to 
inferior quality and improper maintenance), equipment 
overload and aging of lines (Lin et al., 2020). In addition, 
poor environmental condition refers to elevated temper-
ature and humidity (Lin et al., 2020). With the deepen-
ing of research on fire causes in subway stations, poor 
fire prevention management measures, such as untimely 
equipment monitoring, inappropriate application of se-
curity screening system and ineffective human fire safety 
training, are considered the root causes of fires in subway 
stations (Yan et al., 2016).

To monitor fires in a timely manner, an equipped fire 
alarm system is required in a subway station. The fire 
alarm system can detect flame and smoke in the early 
stage of fire and generates alarms in a timely manner for 
people in a subway station (Matellini et al., 2018). There-
after, personnel (subway staff and passengers) take timely 
and effective measures to extinguish the fire, such as using 
fire extinguishers to suppress fire development in its early 
stage (Li et al., 2016).

2.2.2. Scenario elements in the fire growth stage

Subway station fires enter the growth stage if they are not 
extinguished during the ignition stage. Fire development 
in the growth stage is related to combustible load (Zhang 
et al., 2019). Therefore, using decorative materials with 
flame retardant properties in subway stations and avoiding 
stacking combustible materials can reduce fire spread rate. 
In addition, effective emergency response measures, in-
cluding operational sprinkler systems, trained subway staff 
and firefighters, should be adopted to prevent a fire from 
entering the full development stage (Wang et al., 2021a). 
Once a fire ignites in a subway station, it grows rapidly. 
Sprinkler systems and human firefighting are critical emer-
gency response measures before professional firefighters 
arrive, reflecting fire resistance in a subway station (Wu 
et al., 2018). Timely firefighting actions can decrease fire 
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severity and reduce the possibility of a fire evolving in a 
pessimistic direction. In general, the time from fire igni-
tion to flashover and outward spreading is 15 min. Thus, 
after receiving a fire call, firefighters should arrive at the 
fire scene immediately to conduct professional firefighting 
and avoid the spread of fire (Chen et al., 2018b). Therefore, 
fire stations should be set up at reasonable locations near 
subway stations to minimise the fire brigade’s arrival time 
and the likelihood of fire flashover and severity during the 
growth stage.

2.2.3. Scenario elements in the personnel  
evacuation stage

Personnel evacuation is related to the number of fire casu-
alties. During the preliminary stages of fire development, 
ambient temperature and toxic gas concentration are low 
and do not threaten human lives (Cai et al., 2016). Thus, 
timely personnel evacuation can increase the likelihood of 
evacuating people to safe areas and decrease the number 
of casualties. The vertical structure of subway stations in-
cludes three types: single floor, double floor and complex. 
The complicated vertical structure of subway stations in-
creases the difficulty for personnel to escape aboveground 
(Wu et al., 2018). The three major types of subway station 
platforms are the island, side and combined types. The 
subway station area and changes in passenger flow are 
different for the three platform types, significantly affect-
ing personnel evacuation (Long et al., 2020). Furthermore, 
passenger escape skill is considered a crucial factor that 
affects evacuation (Wang et al., 2021a).

Evacuation systems should be activated immediately 
after fire ignition. They include evacuation passages, evac-
uation ports, direction indicators, emergency lighting and 
broadcasted audio cues. Effective evacuation systems al-
low personnel to choose evacuation passages accurately 
and rapidly, decreasing the number of casualties (Tsukaha-
ra et al., 2011). In addition, the state of the smoke extrac-
tion system determines whether toxic smoke generated by 
a fire can be discharged in time. The timely discharge of 
smoke during fire development has an important effect on 
increasing evacuation time (Ji et al., 2011).

2.2.4. Scenario elements in the full development  
to extinguishment stage

In the full development stage, fire will spread throughout 
the subway station. Fireproof endurance rating and zon-
ing are considered the major hazardous factors during the 
full development stage. Fireproof endurance rating is a 
graded scale that measures the degree of fire resistance 
of a building (Matellini et al., 2018). A subway station with 
a high fireproof endurance rating can reduce the rate of 
fire spread. Fire zoning can prevent the fire from spread-
ing to other areas, controlling fire development (Wu et al., 
2018). During the full development stage, a subway station 
should activate active emergency response equipment, in-
cluding fire shutters, fire doors and fans, to control the 
spread of fire and reduce property damage (Jeon & Hong, 

2009). Moreover, firefighting decision-making capability, 
such as resource allocation and strategies, is significant for 
controlling fire spread (Tang et al., 2022). Firefighters with 
high emergency decision-making capability can reduce the 
combustion time of fire, and consequently, the damages 
caused by fire.

3. Research framework and methodology
This research adopts BN to construct a scenario evolu-
tion probability calculation model that can assess the risk 
of subway station fires during each development stage 
and predict the evolution path of subway station fires. 
The constructed BN can also rank hazardous factors and 
emergency response activities that influence fire evolution 
direction to provide decision-making support for the risk 
prevention, control and emergency management of sub-
way station fires. A three-phase framework is proposed 
as shown in Figure 1. Phase I aims to construct a scenario 
evolution model of subway station fires, including the 
identification of scenario elements and their causalities. In 
Phase II, a survey questionnaire is designed to gather ex-
perts’ opinions on the probability distribution of each sce-
nario element (Step 3). Thereafter, Dempster–Shafer (D–S) 
evidence theory is used to combine all expert opinions and 
generate an aggregated probability distribution for each 
scenario element (Step 4). In Phase III, the constructed 
scenario evolution model and the aggregated probability 
distribution for each scenario element are inputted into 
GeNIe 3.0 software to build a BN-based scenario evolution 
model (Step 5). Finally, reasoning and sensitivity analysis 
are conducted to realise risk assessment, critical hazard-
ous factors and emergency response activity identification 
(Step 6).

3.1. Phase I: Construction of the scenario 
evolution model of a subway station fire
Step 1: Identify scenario elements

Firstly, on the basis of the triangular framework of pub-
lic safety science and technology, 25 scenario elements 
grouped into 3 types (i.e., scenario state, hazardous fac-
tor and emergency response activity) were identified to 
represent subway station fire evolution from the existing 
literature, as indicated in Table 2. Notably, several collec-
tive concepts are developed for integrating details of fire 
protection specifications, such as S3H8 (the complexity of 
a subway station), S3E7 (the reliability of evacuation facili-
ties) and S3E8 (the reliability of a smoke extraction system). 

Step 2: Validate the identified scenario elements and 
construct the scenario evolution model

Subsequently, the identified scenario elements were 
further validated through interviews with experienced 
subway station fire management professionals to ensure 
that the listed scenario elements are real and practical. The 
experts personally confirmed the validity of the prelimi-
narily identified scenario elements. Moreover, the experts 
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Figure 1. Research framework
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Table 2. Summary of the scenario elements of subway station fire evolution

Scenario state, corresponding hazardous factors and emergency response activities. Coding and contents References

Fire ignition stage (S1)

Hazardous factor (S1H)
S1H1 Passenger behaviour Chen et al. (2019)
S1H2 Equipment and environment state Lin et al. (2020)
S1H3 Reliability of security screening system Yan et al. (2016)
S1H4 Regular equipment and environment inspection Yan et al. (2016)

Emergency response activity (S1E)
S1E1 Reliability of fire alarm system Matellini et al. (2018)
S1E2 Reliability of fire hydrants Li et al. (2016)
S1E3 Effective response of human firefighting Li et al. (2016)

Fire growth stage (S2)

Hazardous factor (S2H)
S2H5 Large amount of combustible materials Zhang et al. (2019)
S2H6 Firefighters will arrive at the fire scene within 15 min Chen et al. (2018a)
S2H7 Good firefighting skill Chen et al. (2018a)

Emergency response activity (S2E)
S2E4 Effective response of fire and rescue services Wang et al. (2021b)
S2E5 Reliability of sprinkler system Wu et al. (2018)
S2E6 Effective emergency response of subway station staff Wu et al. (2018)

Personnel evacuation stage (S3)

Hazardous factor (S3H)
S3H8 Complexity of subway station Long et al. (2020)
S3H9 Good passenger escape skill Wang et al. (2021b)

Emergency response activity (S3E)
S3E7 Reliability of evacuation facilities Tsukahara et al. (2011)
S3E8 Reliability of smoke extraction system Ji et al. (2011)

Full development to extinguishment stage (S4)

Hazardous factor (S4H)
S4H10 High fireproof endurance rating Matellini et al. (2018)
S4H11 Effective fire zoning Wu et al. (2018)

Emergency response activity (S4E) S4E9 Reliability of active emergency response equipment Jeon and Hong (2009)
S4E10 Good firefighting decision-making capability Tang et al. (2022)
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proposed that the incident result should be considered 
to represent the end state of each stage of fire evolution 
and reflect fire severity. Economic loss and casualty are 
the most important indicators for measuring fire severity 
in subway stations. They were proposed to represent the 
incident results of a subway station fire. The supplemented 
two incident result elements were finally adopted upon 
the consensus of the four experts. Thereafter, the scenario 
evolution model was constructed in accordance with the 
scenario evolution processes of a subway station fire and 
the identified scenario elements of each scenario state, as 
illustrated in Figure 2. 

3.2. Phase II: Obtaining a probability 
distribution table of each scenario element
BN-combined probability analysis and graphical theory are 
used as inferential models to represent uncertain knowl-
edge and address the randomness and uncertainty of 
event development in scenario deduction analysis (Uusi-
talo, 2007; Leu & Chang, 2015; Hu et al., 2022). BN is a 
directed acyclic graph (DAG) that describes the causality 
between nodes through directed edges. Conditional prob-
abilities are used to reflect the strength of causality be-
tween nodes (Zhou et al., 2020; Qiu et al., 2020). Figure 3 
shows a simple BN model, where N1 and N2 are the root 
nodes or ‘parent’ nodes, and N is an intermediate node or 
a “child” node. The arcs between nodes represent the cor-
responding causality. The probability distribution table of 
each node is also presented, and those of the parent and 
child nodes are called prior probability and conditional 
probability, respectively.

Thus, the network structures and probability distribu-
tions of each node form a complete BN. In this study, the 
constructed model in Phase I can be used as the network 
structure of the BN-based scenario evolution model of 
subway station fires. In addition, data learning, expert 
knowledge leveraging and the combination of the two 

methods are the three techniques used to obtain the 
probability distribution of each node (Chen & Wang, 
2017; Huang et al., 2019). Previous studies have shown 
that expert knowledge is a necessary and reliable tool for 
developing node probabilities in the absence of sufficient 
historical data (Zhou et al., 2020; Zhao et al., 2012). Given 
the limited records of subway station fire incidents, ques-
tionnaire surveys were used in the current study to utilise 
expert experience for determining the probability distribu-
tion of each scenario element (i.e., BN node). Thereafter, 
D–S evidence theory was adopted to further process the 
data collected from the questionnaires, and thus, reduce 
the limitations and subjectivity of expert judgment (Tian 
& Yang, 2014).

Step 3: Conduct a questionnaire survey to obtain the 
probability distribution of each scenario element

After the identified scenario elements and their cau-
salities are validated through expert interviews, the prior 
probabilities of parent nodes and conditional probability 
distributions of child nodes of the BN-based scenario evo-
lution model were obtained from the questionnaire sur-
veys. Notably, when the data source used for the probabil-
ity distribution of each BN node is obtained through ques-
tionnaire surveys, the node state with binary parameters 
should be set (Musharraf et al., 2016; Zhang et al., 2018).  

Figure 3. Simple BN model
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This state is in line with the characteristics of participants’ 
understanding and memory of causalities of historical 
events, enabling experts to recall their related work expe-
rience correctly when filling questionnaires. Therefore, BN 
nodes that represented hazardous factors and emergency 
response activities were set with two state parameters: 
“Failure” and “Not Failure”, in which the former indicates 
the current node failure, and vice versa. The states of BN 
nodes that represented the scenario state were set as “Yes” 
and “No”, in which “Yes” indicates that the current node is 
occurring, and vice versa. In addition, two states, i.e., “Yes” 
and “No”, of economic loss and casualty cannot represent 
the differences in the accident results caused by the dis-
tinct stages of fire development. In accordance with the 
Production Safety Accident Report of China and fire in-
cident cases, economic loss was divided into four states: 
no economic loss, burning proportions of main fire body 
parts were ≤30%, burning proportions of main fire body 
parts were 30%–70% and burning proportions of main fire 
body parts were ≥70%. Casualty loss was also divided into 
four states: no casualty, ≤50 injuries or ≤10 deaths, 50–100 
injuries or 10–30 deaths and ≥ 100 injuries or ≥ 30 deaths.

Xi’an subway has served about 2.59 million passengers 
daily since it started operations in 2011. Interviews with 
the safety managers of Xi’an subway’s operating company 
indicated that Xi’an subway’s station system has suffered 
from several fire incidents during its 10 years of opera-
tion caused by various factors, such as equipment system 
failure, wire deterioration, and electric welding work for 
interchange channel construction etc. These fire incidents 
have provided the operational staff of Xi’an subway’s op-
erating company with experience in dealing with fires and 
knowledge regarding conditional dependencies amongst 
different fire scenario elements. Thus, the Xi’an subway 
system was selected as a case study to explain the con-
struction of a BN-based scenario evolution model and how 
this model can help operational staff and decision makers 
assess and respond to subway station fire risks at the city 
level. At the time of this study, all Xi’an subway stations 

are operating in accordance with the same fire protection 
specifications. Thus, inviting its operational staff to assess 
fire risks at the city level on the basis of the overall design 
scheme and operating conditions of the Xi’an subway sta-
tion system is suitable. Moreover, considering that most 
cities in China started operating subways in the past 10 
years, the city-level fire risk analyses of subway stations 
exhibit a slight difference because of the similar fire pro-
tection specifications of various subway stations within a 
city. Banuls et al. (2013) adopted the Delphi expert evalu-
ation method and suggested obtaining the opinion of 3–5 
experts if 10–20 elements are present. Accordingly, the 
current study sought the judgements of eight experts to 
evaluate the probability distributions of the 27 identified 
scenario elements in the constructed BN-based scenario 
evolution model of subway station fires. Table 3 provides 
the demographic information of the eight interviewees. 
The eight invited experts included frontline operational 
safety management staff, safety designers and company 
safety managers from Xi’an subway’s operating company. 
All the experts had over 6 years of working experience 
in subway operations and considerable exposure to the 
fire safety management of subway stations. Therefore, the 
interviewed experts are considered valid data sources for 
our research.

In the questionnaire survey, interviewees were required 
to judge the probability distribution of two types of nodes 
(parent and child nodes) individually. For the parent node, 
the interviewee was asked to assign probabilities to the 
node in the “Yes/Failure” and “No/Not Failure” states, and 
the sum of the probabilities of the two states for a node 
should be 100%. For example, one of the interviewees as-
signed the probability distribution of “regular equipment 
and environment inspection” (S1H6) as 45% Failure and 
55% Not Failure. The probability distribution of the child 
node depends on its parent node. Therefore, the inter-
viewee should assign probabilities to the child node in 
the “Yes/Failure” and “No/Not Failure” states under the 
different state combinations of each of its parent node. 

Table 3. Demographic information of the eight interviewees

No. Section Working 
experience Professional experience

1 Equipment and environment 
inspection 6 years 3 years as an equipment and environment inspector and 3 years as an equipment 

and environment inspection consultant

2 Equipment and environment 
inspection 8 years 5 years as an equipment and environment inspector and 3 years as an equipment 

and environment inspection manager

3 Passenger service 
management 6 years 1 year as a safety screening officer and 5 years as a passenger safety training staff

4 Passenger service 
management 7 years 1 year as a safety screening officer, 3 years as a passenger safety training staff 

and 3 years as a passenger service management manager
5 Subway station design 7 years 2 years as an electromechanical designer and 5 years as a subway safety designer
6 Subway station design 8 years 8 years as a subway safety designer

7 Emergency response 6 years 4 years as an emergency response staff and 2 years as a firefighting equipment 
management team manager

8 Emergency response 9 years 2 years as an emergency response staff and 7 years as a personnel evacuation 
team manager
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For example, the probability distribution of “effective re-
sponse of fire and rescue service” (S2E4) relies on its parent 
nodes, i.e. “firefighters arrive at the fire scene within 15 
min” (S2H6) and “good firefighting skill” (S2H7), as shown 
in Figure 2. Each interviewee made their estimations from 
the questionnaires, as indicated in Table 4. m1 (1, 2) refers 
to the probability distribution of “effective response of fire 
and rescue service” provided by one interviewee, wherein 
the digits in parentheses (1, 2) refer to (Failure, Not Fail-
ure), respectively. On the first line where the combined 
conditions are “effective emergency response plan: Failure” 
and “good firefighting skill: Failure,” m1 (1, 2) = (0.9, 0.1) 
indicates that the first expert believes that “effective re-
sponse of fire and rescue service” is in a Failure state with 
a probability of 90% (“Not Failure” with 10%) when “fire-
fighters arrive at the fire scene within 15 min” and “good 
firefighting skill” are both in a Failure state.

Table 4. Probability distribution of “effective response of fire 
and rescue service” (S2E4)

BN nodes Expert opinions

Firefighters arrive at the 
fire scene within 15 min

Good firefighting 
skill m1 (1, 2)

s1 Failure s1 Failure (0.9, 0.1)
s1 Failure s2 Not Failure (0.75, 0.25)
s2 Not Failure s1 Failure (0.45, 0.55)
s2 Not Failure s2 Not Failure (0.2, 0.8)

Step 4: Collecting all experts’ opinions and generating 
an aggregated probability distribution for each 
scenario element

After the answered questionnaires were obtained from 
the eight interviewees, D–S evidence theory was adopted 
to further process the data collected from the question-
naires and reduce the limitations and subjectivity of expert 
judgement. D–S evidence theory, which was proposed by 
Dempster (1967) and Shafer (1976), can synthesise data 
from diverse sources and redistribute uncertain informa-
tion to new evidence. It has been widely adopted in in-
formation fusion (Tian & Yang, 2014; Li & Wei, 2019). D–S 
evidence theory provides a frame of discernment Q and a 
mass function m. m must be subject to the following rule 
(Tian & Yang, 2014):
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Equation (2) shows the information fusion rule of D–S 
evidence theory, in which: m1; m2; ... mn refer to mass func-

tions generated on the basis of information in the frame 
of discernment Q (Tian & Yang, 2014). A represents the 
event state, and K reflects the inconsistency level amongst 
m1; m2; ... mn. The calculation principle of K is shown in 
Eqn (3) (Tian & Yang, 2014). For example, the eight ex-
perts made their estimation of the probability distribution 
of ‘Reliability of security screening system’ (S1H4) in the 
questionnaires, as indicated in Table 5. m1 (1, 2) to m8 (1, 
2) are the probability distributions of ‘Reliability of security 
screening system’ (S1H4) provided by the eight experts. 
From Eqns (2) and (3), the D–S evidence theory method 
was adopted to integrate the obtained data from the eight 
experts, as indicated in the last column of Table 6. Through 
the aforementioned method, the probability distributions 
of all the nodes in the BN-based scenario evolution model 
of subway station fire can be determined.
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3.3. Phase III: Constructing BN  
and conducting risk analysis
Bayesian theory provides the mathematical foundations 
for BN to conduct scenario deduction analysis, in which 
conditional probability equation P(xi|y) and joint probabil-
ity equation P(x1, x2, x3, ..., xn) play critical roles (Uusitalo, 
2007). As shown in Eqns (4) and (5), x and y represent the 
sets of parent and child nodes in BN, respectively (Wu 
et al., 2016). n denotes the number of nodes in the set of 
parent nodes, and P is the probability value. From Eqns (4) 
and (5), the probability distribution of all the nodes in the 
network can be calculated on the basis of the nodes’ prior 
probabilities, causalities and their conditional probabilities, 
enabling BN to perform scenario deduction analysis. 
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In addition, sensitivity analysis is a critical part of the 
BN model for quantifying the influence of each parent 
node on target nodes (Christopher Frey & Patil, 2002). 

Table 5. Aggregating all expert opinions based on D–S evidence theory

BN nodes Expert opinions on the probability distribution of S1H4
Result

m (1, 2)

Reliability of 
security screening 
system

m1 (1, 2) m2 (1, 2) m3 (1, 2) m4 (1, 2) m5 (1, 2) m6 (1, 2) m7 (1, 2) m8 (1, 2)
(0.07, 0.93)

(0.4, 0.6) (0.45,0.55) (0.35, 0.65) (0.45, 0.55) (0.4, 0.6) (0.45, 0.55) (0.4, 0.6) (0.45, 0.55)
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Identifying which parent nodes exert the most influence 
on the target nodes can assist in optimising management 
strategies. Sensitivity analysis can provide assurance that 
the model is built correctly and performs as expected (Ma-
tellini et al., 2018). 

GeNIe 3.0 software contains various BN reasoning al-
gorithms and can represent changes in each node’s prob-
ability distributions through a straightforward visual inter-
face. Thus, GeNIe 3.0 software was adopted in this study 
to construct the BN-based scenario evolution model of 
subway station fires based on the identified network struc-
tures and node probability distributions. The risk analysis 
results of the Xi’an subway station fire through BN are 
discussed in Section 4.

4. Case study results and discussion
4.1. Forward deduction analysis
From Eqns (4) and (5), the developed BN-based fire sce-
nario evolution model of Xi’an subway station can perform 
deduction analysis. Forward deduction analysis is a cause-
to-effect analysis, in which the probability of the target 
node is predicted on the basis of the probability of the 
cause nodes and the causal relationship amongst them; it 
is an appropriate method for assessing fire risk in differ-
ent scenario states (Zhang et al., 2013). From the forward 
deduction analysis results presented in Figure 4, the occur-
rence probabilities of the fire ignition, growth and full de-
velopment to extinguishment stages of the Xi’an subway 
station system are 70%, 72% and 23%, respectively. In ad-
dition, the successful probability of personnel evacuation 
once fire ignites is 65%. 

From Figure 4, S2E6 (effective emergency response of 
subway station staff), S2E4 (effective response of fire and 
rescue services), S2H5 (large amount of combustible ma-
terials), S1H1 (passenger behaviour) and S3H9 (good pas-
senger escape skill) have frequent failure probabilities of 
72%, 71%, 65%, 62% and 61%, respectively, ranking as the 
top five amongst all influential factors. Specific to each 
stage of fire evolution, S1H1 (passenger behaviour) is the 
most critical hazardous factor that causes fire ignition in 
the Xi’an subway station system. Moreover, the failure 
probability of S1E3 (effective response of human firefight-
ing) is up to 58%. For the fire growth stage, S2H5 (large 
amount of combustible materials) is a significant factor 
that leads to fire spread. In addition, untimely fire rescue, 
including S2E4 (effective response of fire and rescue ser-
vices) and S2E6 (effective emergency response of subway 
station staff) further contributes to fire spread. Given the 
more active fire resistance capability of the Xi’an subway 
station system, including S4H10 (high fireproof endurance 
rating), S4H11 (effective fire zone) and S4H9 (reliability of 
active emergency response equipment), the probability of 
a fire entering the fully developed stage is lower. For the 
personnel evacuation stage, S3H9 (passenger escape skill) 
has the highest failure probability. 

From the perspective of resilience capacity, the Xi’an 
subway station system evidently has low capacity to pre-

vent fire ignition and resist fire growth. In addition, the 
aforementioned failure probability results show that the 
Xi’an subway station system has not been operating for 
a long time, and thus, the influential factors of prevent-
ing fire evolution in physical equipment dimensions, such 
as S1H2 (equipment and environment state), S2E5 (reliabil-
ity of sprinkler system) and S3E7 (reliability of evacuation 
facilities), are highly robust. However, organisational and 
management factors, such as S1H3 (reliability of secu-
rity screening system), S1E3 (effective response of human 
firefighting), S2H4 (effective response of fire and rescue 
services) and S3H9 (passenger escape skill), are insuf-
ficient. Therefore, the operational staff’s fire safety skills 
and emergency response capabilities should be improved 
through professional training and fire emergency drills. 
To improve the effectiveness of fire and rescue services, 
fire stations and dedicated fire escapes should be set up 
near subway stations to ensure that firefighters can reach 
the fire scene within 15 min. Furthermore, strengthening 
passengers’ fire safety awareness and knowledge through 
regular broadcasts in subway stations is significant for de-
creasing passengers’ unsafe behaviour and improving their 
escape skill.

4.2. Backward deduction analysis
Backward deduction can be used to observe specific nodes 
by using effect-to-cause analysis (Zhang et al., 2013). The 
marginal probabilities of unobserved nodes are obtained 
by deducing the effect of the observed specific nodes 
through the BN model in a backward manner. In the cur-
rents study, all the specific nodes (i.e. economic loss and 
casualty) are set to the most severe states, i.e., P (eco-
nomic loss = burning proportions of main fire body parts 
≥70%) = 1, P (casualty = ≥100 injuries or ≥30 deaths) = 1, 
to diagnose the fire evolution paths with severe incident 
results and the corresponding most influential scenario el-
ements. In accordance with the backward deduction analy-
sis results presented in Figure 5, when the fire results of 
Xi’an subway station are in the most severe states, the oc-
currence probabilities of the fire ignition, growth and full 
development to extinguishment stages are 98%, 99% and 
83%, respectively, indicating serious incident results once 
a fire enters the fully developed stage. In addition, the 
failure probability of personnel evacuation is 61%, where 
S3H9 (good passenger escape skill) is the most critical in-
fluence factor. Thus, the fire prevention, emergency res-
cue capability and personnel evacuation capability of the 
Xi’an subway station system in the fire ignition and growth 
stages should be improved. As shown in Figure 5, S1E3

 

(effective response of human firefighting), S2E4 (effective 
response of fire and rescue services) and S4E10 (good fire-
fighting decision-making capability) exhibit the greatest 
failure probability that results in “fire ignition → growth → 
full development” and causes serious fire losses. Therefore, 
fire emergency response activities, including fire rescue by 
operational staff and professional firefighting teams, are 
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the most important guarantee for preventing fire evolution 
in the Xi’an subway system. Moreover, S3H9 (good passen-
ger escape skill) is significant for increasing the possibility 
of the successful evacuation of passengers. 

4.3. Sensitivity analysis
The results of the sensitivity analysis provide guidance for 
optimising the fire resistance of Xi’an subway station. The 
factors with higher sensitivity have a higher optimisation 

level (Christopher Frey & Patil, 2002; Chang et al., 2019b). 
In this section, sensitivity analysis was implemented to test 
the sensitivity of the focus nodes S1 (fire ignition stage), S2 
(fire growth stage), S3 (personnel evacuation stage) and S4 
(full development to extinguishment stage) to changes in 
their parent nodes. The sensitivity analysis function within 
GeNIe 3.0 was adopted to obtain a sensitivity value for 
each parent node. Figure 6 presents the sensitivity analysis 
results of S1, S2, S3 and S4. 

Top 1

Top 2

Top 3

Top 4

Top 5

Figure 4. Forward deduction analysis for assessing the fire risk of subway station fires

Figure 5. Backward deduction analysis for determining the critical fire evolution path
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From Figure 6a, the most influential factor on S1 (fire 
ignition stage) is S1E1 (reliability of fire alarm system) and 
S1E2 (reliability of hydrants). If S1E1 (reliability of fire alarm 
system) increases by 10%, then S1 (fire ignition stage) will 
increase by 4.0%. If S1E2 (reliability of hydrants) increases 
by 10%, then S1 (fire ignition stage) will increase by 2.4%. 
Notably, S1E1 (reliability of fire alarm system) and S1E2 (re-
liability of hydrants) are the root nodes that directly influ-
ence S1E3 (effective response of human firefighting). Thus, 
increasing fire alarm installation and hydrant allocation to 
improve the effectiveness of human firefighting is critical 
for decreasing the probability of fire ignition to the maxi-
mum.

Figure 6b shows that S2 (fire growth stage) is most sen-
sitive to S2H6 (firefighters arriving at the fire scene within 
15 min). If S2H6 (firefighters arriving at the fire scene within 
15 min) increases by 10%, then S2 (fire growth stage) will 
increase by 4.5%. Thus, the prompt arrival of firefight-
ers can maximise the effectiveness of fire growth control 
more than any other potential firefighting actions in the 
fire growth stage. Moreover, S2 (fire growth stage) exhibits 
high sensitivity to S2H5 (large amount of combustible ma-
terials). Therefore, decorative materials with flame retard-
ant properties should be adopted to control fire growth.

In accordance with Figure 6c, S3 (personnel evacuation 
stage) is the most sensitive to S3E7 (reliability of evacua-
tion facilities), indicating that adjusting and updating the 
number and installation locations of evacuation facilities 
on the basis of the latest fire evacuation specifications can 
maximise the efficiency of personnel evacuation. In addi-
tion, the sensitivity of S3 (personnel evacuation stage) to 

S3H9 (good passenger escape skill) ranks second. There-
fore, strengthening the publicity of fire evacuation knowl-
edge is significant for improving the efficiency of person-
nel evacuation.

Finally, Figure 6d shows that the most influential fac-
tor on S4 (full development to extinguishment stage) is 
S4H11 (effective fire zone) and S4E9 (reliability of active 
emergency response equipment), indicating that improv-
ing the ability of a subway station to resist fire spread 
actively, including designing reasonable fire zoning and 
adjusting and updating the types and effectiveness of ac-
tive emergency response equipment, is more important in 
controlling fire spread in the full development stage than 
human firefighting. 

4.4. Model verification
To verify the correctness and accuracy of the constructed 
BN-based scenario evolution model of subway station fire, 
30 cases of subway station fire accidents are used as the 
verification set. Appendix (Table A1) shows the node state 
of each accident case. The error rate of predicting subway 
station fire evolution through BN can be calculated using 
GeNIe software, as shown in Eqn (6), where fCase∑  refers 
to the number of cases the results of which predicted by 
the BN model are inconsistent with the actual situation. 
Meanwhile, tCase∑  refers to the number of cases the re-
sults of which predicted by the BN model are consistent 
with the actual situation.

*100%f

f t

Case
Error

Case Case
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=
∑ + ∑
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Figure 6. Sensitivity analysis results of S1, S2, S3 and S4

a) b)

c) d)
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The node of S4 (full development to extinguishment 
stage) is selected as a target node to present the correct-
ness and accuracy of the constructed BN-based model in 
evaluating the fire state of the selected 30 cases. Table 6 
provides the verification results for the node of S4 (full 
development to extinguishment stage). Using GeNIe soft-
ware and Eqn (6), the error rate of the BN of the selected 
verification set is 10%. Shangguan et al. (2021) proposed 
that a BN model exhibits good correctness and accuracy if 
the error rate is lower than 15%. Thus, the constructed BN-
based model can accurately predict the scenario evolution 
of a subway station fire.

Table 6. Verification results for the node S4 (full development to 
extinguishment stage)

Predicted value
Actual value Error rate

Yes No

16 2 Yes ( )2 1
10%

30
+

=1 11 No

4.5. Result discussions with  
comparative analysis
BN has been applied to scenario analysis research in recent 
years. It functions as predictive and diagnostic analyses 
and supports the timely creation of “scenario–response” 
strategies. For example, Matellini et al. (2018) employed 
a three-part BN model to analyse dwelling fire evolution. 
Their model can quantify fire losses and provide decision-
making suggestions for firefighting. Therefore, risks are 
typically dependent and not additive. Compared with sys-
tem analysis and statistical analysis models, BN models 
can exhibit this characteristic. The scenario elements that 
affect the risk of subway station fires are generally not 
independent. Thus, BN was used to assess subway station 
fire risk in the current study. 

Analysing the fire evolution path and assessing its loss-
es are difficult because dependency relationships amongst 
scenario elements related to subway station fires are fre-
quently obtained in qualitative terms. To solve this prob-
lem, some scholars have proposed applying D–S evidence 
theory or fuzzy set theory to reduce the limitations and 
subjectivity of expert judgement. For example, Wu et al. 
(2016) applied D–S evidence theory to calculate judge-
ment data obtained from experts, and thus, determined 
the causal relationship between each scenario element of 
mine water inrush hazard. Zhang et al. (2013) adopted a 
fuzzy BN for risk assessment during tunnel construction. 
To reduce the uncertainty of the constructed BN in dealing 
with expert judgement, the current study obtained data 
from eight experts, all of whom had over 6 years of work-
ing experience in subway operations and good exposure 
to the fire safety management of subway stations. There-
after, D–S evidence theory was adopted to further process 
the data collected from the questionnaires, and thus, re-
duce the limitations and subjectivity of expert judgement. 

Therefore, the BN-based model adopted in the current 
study provides a more accurate approach for analysing 
fire evolution path and assessing fire risk as described in 
the case study section.

The BN-based method also assists managers in as-
sessing the influences of different hazardous factors on 
subway station fire. Managers can identify which emer-
gency response activities are the most effective. For ex-
ample, the improvement of the reliability of evacuation 
equipment significantly increased the success probability 
of personnel evacuation in previous sensitivity analyses. 
This finding also complies with Matellini et al. (2018) who 
indicated that evacuation equipment is one of the most 
critical emergency response factors that influences person-
nel evacuation. In addition, improving the effectiveness of 
human firefighting, shortening the arrival time of firefight-
ers and designing reasonable fire zones can reduce the 
probability of fire ignition, growth and full development, 
respectively. BNs can also enable managers to evaluate 
fire risk under different scenarios. These results can help 
managers make appropriate emergency response activi-
ties to decrease subway station fire risk. Therefore, utilising 
the BN-based method will increase safety during subway 
station fire.

5. Conclusions and future work
5.1. Theoretical contributions
Subway station fire risk assessment is associated with vari-
ous evolution scenario uncertainties. This study constructs 
a scenario evolution network of subway station fires that 
can clearly present the possible scenario evolution path 
of subway station fires under the action of various sce-
nario elements and provide the probability of occurrence 
of different scenarios through BN. This BN-based scenario 
evolution probability calculation method can be extended 
to fire risk assessment of other infrastructure:

1. For scenario-based fire risk modelling methods: On 
the basis of the triangular framework of public safe-
ty science and technology, literature review and ex-
pert interviews are combined to identify scenario el-
ements and their causalities in each evolution stage 
of subway station fire, facilitating the understanding 
of the evolution mechanism of subway station fire.

2. For the BN-based scenario evolution probability 
calculation method: Firstly, the constructed scenario 
evolution model of subway station fire is simulated 
using the BN model, which maximises expert expe-
rience and knowledge to realise a comprehensive 
fire risk assessment. Compared with previous fire 
risk assessment methods (e.g. numerical simulation, 
system analysis and statistical analysis methods) 
that rarely consider the evolution of subway station 
fires, the BN-based scenario evolution model flexibly 
integrates information from hazardous factors and 
emergency response activity dimensions into each 
fire development stage of a subway station and cap-
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tures the complex causalities amongst them. Sec-
ondly, compared with the event tree and fault tree 
analysis methods, the developed BN-based model 
generates various fire scenarios through forward 
and backward deduction analyses. Forward deduc-
tion analysis intuitively presents the roles of vari-
ous scenario elements in the fire life cycle to enable 
managers to predict fire scenario states and assess 
fire risk. In addition, backward deduction analysis is 
an effective and efficient technique for diagnosing 
the most influential scenario elements that lead to a 
current fire scenario, assisting in making emergency 
response decisions.

3. For the optimisation method based on sensitivity 
analysis: The BN model can provide optimisation 
strategies by ranking the optimisation priorities of 
various scenario elements, enabling managers to se-
lect optimisation strategies flexibly at different oper-
ating life stages to reduce the fire risk level.

5.2. Practical implications
The constructed BN-based scenario evolution model of 
subway station fires is a practical management tool for 
subway station system managers. It can also be flexibly 
applied to other subway stations in different cities by col-
lecting questionnaire data on the probability distribution 
of each scenario element. On the basis of the results of the 
case study on the Xi’an subway system, the major findings 
are explained as follows:

1. For the scenario elements in subway station fire de-
velopment: This study innovatively identifies 27 fire 
risk assessment indicators from the scenario state, 
hazardous factor, emergency response activity and 
incident result on the basis of the development of 
subway station fire hazards. 

2. For the BN-based assessment results: The occur-
rence probability of the fire ignition, growth and 
full development to extinguishment stages of the 
Xi’an subway station system are 70%, 72% and 23%, 
respectively. Moreover, the failure probability of 
personnel evacuation once the fire ignites is 35%. 
The high fire risk of the Xi’an subway station system 
resulted from low fire resistance capacity in the fire 
ignition and growth scenarios, where “passenger be-
haviour”, “effective response of human firefighting”, 
“large amount of combustible materials”, “effective 
response of fire and rescue services”, and “effective 
emergency response of subway station staff” had 
high failure probabilities. The findings of the forward 
deduction analysis indicate that for a subway sta-
tion system with a short running time, such as the 
Xi’an subway station system, most pieces of physi-
cal equipment that are related to fire risk are highly 
robust, but fire prevention and response experienc-
es are insufficient. Thus, increasing investment in 
strengthening operational staff’s fire safety skills and 
popularising fire safety knowledge to passengers is 
required. In addition, the results of the backward de-

duction analysis show that a fire will lead to serious 
economic losses and casualties once it enters the 
fully developed stage, where “effective response of 
human firefighting”, “effective response of fire and 
rescue services”, “good firefighting decision-making 
capability”, and “good passenger escape skill” are 
the most influential factors that lead to “fire igni-
tion → growth → full development” and cause seri-
ous accident losses. The aforementioned deduction 
analysis results not only reflect the fire risk level of 
Xi’an subway station system in each scenario state 
but also assist managers in determining scenario el-
ements with the highest failure probabilities in fire 
prevention and response.

3. For the optimisation results based on sensitivity 
analysis: Assigning optimisation priorities to the sce-
nario elements with the greatest critical importance 
to fire risk in each fire scenario state can maximise 
optimisation performance. In particular, improving 
the effectiveness of human firefighting, shortening 
the arrival time of firefighters and designing rea-
sonable fire zones can reduce the probability of fire 
ignition, growth and full development, respectively. 
In addition, improving the reliability of evacuation 
equipment can increase the success probability of 
personnel evacuation. 

5.3. Limitations and future work
The BN-based scenario evolution model in this study can 
contribute to assessing the fire risk of subway stations at 
each development stage and provide decision-making 
support for risk prevention and control. Nevertheless, the 
constructed model has limitations.

The constructed BN model includes collective concepts 
of scenario elements, with each element set having two 
states, to comply with the interviewees’ memory character-
istics of historical fire accidents. In addition, the probability 
distribution of each node in the BN model is obtained 
through questionnaire data, increasing the subjectivity of 
the results. Our future study will refine the scenario ele-
ments of the constructed BN model and set multiple states 
to support a more precise fire risk assessment. Moreover, 
one study will be implemented by setting distinct types of 
sensors in the subway station to collect operation informa-
tion of equipment and behaviour information of humans. 
The accumulated quantitative information can be utilised 
as prior knowledge to facilitate the data-driven combina-
tion between BN and machine learning to realise the auto-
mated generation of conditional dependency relationships 
between scenario elements.
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APPENDIX 
Table A1. Nodes state of each accident case

No.
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H
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H
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H

9
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S3 S4
H
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S4
E9

S4
E1

0

S4
E1

1

S4

Case1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1
Case1 0 1 0 0 1 1 1 1 – – – – – – 0 – – – – 0 – – – – 0
Case1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1
Case1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1
Case1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 – – – – 0 – – – – 0
Case1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1
Case1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1
Case1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 – – – – 0
Case1 1 1 0 0 1 1 1 1 – – – – – – 0 – – – – 0 – – – – 0
Case1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1
Case1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1
Case1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 – – – – 0
Case1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1
Case1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0
Case1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1
Case1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 – – – – 0
Case1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1
Case1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0
Case1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1
Case1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1
Case1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1
Case1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1
Case1 0 1 1 0 1 1 1 1 – – – – – – 0 – – – – 0 – – – – 0
Case1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 – – – – 0
Case1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1
Case1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1
Case1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0
Case1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1
Case1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1
Case1 1 1 0 1 1 1 1 1 – – – – – – 0 – – – – 0 – – – – 0

Note: “1” represents the state of “Yes”, and “0” represents the state of “No”.
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