
Notations
Variables and functions

A – intervention;
k – section;
costAk – intervention cost for A on k;

n
kd  – defect density of class n for k;

dk – vector of defect densities for k;
 Sk – safety metric;
i – annotation case;
ni – number of annotation cases;
e – expert;
Ck – cracking ratio for k;
Dk – rutting/pothole depth for k;
sk – roughness for k;
MCIk – MCI for k;

min
kMCI  – minimum MCI for k;

max
kMCI  – maximum MCI for k;
*
kMCI  – MCI obtained for optimum i* and IoU*;

kMCI  – safety limit MCI;

p – probability of MCI falling within a given range;
p0 – probability limit;
bq – unknown parameters;
b  – vector of unknown parameters;
di, dk,e – dummy variables.

Abbreviations

ANN – artificial neural network;
CNN – convolutional neural network;
GPS – global positioning system;
IoU – intersection over union;
LCC – life cycle costs;
mAP – mean average precision;
Mask R-CNN – mask region convolutional neural network;
MCI – Maintenance Control Index;
PMS – Pavement Management System;
RDD – Road Damage Dataset;
RoI – region of interest;
YOLOv4 – You Only Look Once version 4.
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1. Introduction
Pavement monitoring and management faces a number of 
challenges including a shortage of experts for an increas-
ing pavement stock, leading to the neglect of pavements 
(Maeda et al., 2018). This pavement neglect, which is main-
ly due to inadequate resources, may affect road user safe-
ty. Amid this challenge, technological developments such 
as low-cost smartphones and advanced analysis software 
including  image processing  techniques can be  leveraged 
by pavement managers to increase the pavement man-
agement scope cost-effectively and efficiently. Addition-
ally, human-based monitoring is prone to errors such as 
misreporting and is susceptible to bias due to its subjectiv-
ity, which may result in different inspection results by dif-
ferent experts for the same sections. Also, large inspection 
machines are costly and create negative externalities such 
as  traffic delays/disruptions due to closed roadways  (Mi-
zutani et al., 2020). This research explored the application 
and adoption of  image processing  techniques and deep 
learning to pavement asset management to improve the 
management scope and estimation accuracy in order to 
enable more appropriate management decisions.

Simpler image processing methods exclude the cum-
bersome and costly image annotation step; however, these 
methods may be challenged by poorer object detection 
and segmentation. On the other hand, deep learning that 
involves costly but vital preliminary steps including image 
annotation and the setting of model inputs such as inter-
section over union (IoU) has been shown to be more ac-
curate (He et al., 2018). Because image annotation is done 
manually by an annotator, it is not only cumbersome but 
also highly  subjective, which affects model  learning and 
object detection. The IoU is an important input parameter 
for object detection tasks because a very high IoU (more 
strict) leads to poor detection in which important objects 
such as pavement defects may be undetected, whereas a 
very low IoU (less strict) may result in detection of unwant-
ed objects including roadside vegetation. To avoid errone-
ous or meaningless detection, very high or very low IoUs 
are undesirable. For road pavement defect detection tasks, 
very precise annotations may not be required because the 
condition need only fall within a given range for effective 
management decisions to be made. Therefore, a trade-
off may exist between the annotation cost and quality as 
described and modeled herein. This study built a model in 
which  the  IoU and annotation quality are set objectively 
and validated by experts to aid appropriate object detec-
tion  for specific purposes and shows an empirical appli-
cation of the probabilistically determined deep learning 
output to asset management for selected roads in Japan.

2. Background
2.1. Pavement management
Pavement management decisions may be based on the 
predicted performance of pavement structures. Infrastruc-
ture performance models can be placed into three broad 

categories: stochastic (probabilistic), deterministic, and 
computer techniques (Tsuda et al., 2006; Kobayashi et al., 
2010; Tabatabaee & Ziyadi, 2013; Pérez-Acebo et al., 2019; 
Obunguta & Matsushima, 2020). The Bayesian approach 
has also been used to improve the prediction of infra-
structure performance through updating whenever addi-
tional data is available (Kobayashi et al., 2012; Tabatabaee 
& Ziyadi, 2013). Infrastructure asset management is heav-
ily dependent on  infrastructure condition, which requires 
significant amounts of data. Stochastic and deterministic 
techniques may require a minimum of  two-point data to 
predict infrastructure system performance; however, cases 
of incomplete data including one-point data occur due 
to a lack of human resources and equipment to carry out 
surveys in a wider geographical area and for a larger in-
frastructure stock. Lethanh and Adey (2012) applied the 
improved stochastic hidden Markov model for modeling 
pavement deterioration in case of incomplete monitoring 
data. Additional data may be generated through multiple 
imputations (Rubin, 1976, 1987) and/or computer tech-
niques could be used to process one-point data and out-
put useful information to support management decisions 
(Maeda et al., 2018; Zou et al., 2022).

In the past, data was collected by engineers through 
periodic inspection, which is prone to errors such as mis-
reporting, omissions, and/or incorrect data entries, espe-
cially as the infrastructure stock increases. Human-based 
detection and measurement of defects is a highly subjec-
tive process susceptible to bias. Furthermore, the collected 
data is normally sorted manually by a data analyst to elim-
inate unusable data, a process that may introduce addi-
tional errors. The poor data problem is further augmented 
at the data cleaning stage, where a large amount of data 
is  eliminated,  affecting  the power of estimates obtained 
from prediction models and thereby blurring management 
decisions. Barchard and Pace (2011) statistically showed 
the devastating effects of data errors, prevalent in human-
based systems, on estimated results. A shortage of experts 
has also resulted in reduced inspection coverage leaving 
significant  amounts  of  infrastructure  neglected  (Maeda 
et al., 2018). Additionally, the use of expensive specialized 
equipment for damage measurement may not be feasible 
in certain settings and disrupts traffic flow causing delays 
due to closed roadways (Mizutani et al., 2020). More ac-
curate and effective computer-based  infrastructure man-
agement using fewer resources (both human and material) 
is thus desirable.

Pavement management decisions are made to mini-
mize costs, typically life cycle costs (LCC), for a projected 
period of operation. Kobayashi et al. (2013) developed a 
pavement management model that optimized pavement 
inspection and repair by minimizing LCC taking into ac-
count pavement soundness and risk control level. Obun-
guta and Matsushima (2020) optimized pavement system 
LCC considering different management policies, i.e., time-
dependent and condition-dependent, and explored the ef-
fect of preventive maintenance on LCC. Efficient pavement 
intervention may also be determined by optimizing road 



116 F. Obunguta et al. Probabilistic management of pavement defects with image processing techniques ...

usage and utility (K. Lin & C. Lin, 2011; Liu & Wang, 2016; 
Mizutani et al., 2020).

Pavement Management Systems (PMS) such as the 
Highway Development and Management Tool (HDM-4) 
developed by the World Bank have been applied for proj-
ect appraisal and analysis of road management and invest-
ment alternatives through LCC optimization. The HDM-4 
incorporated detailed investigative studies in Kenya, India, 
Brazil and the Caribbean and has been applied in many 
countries to improve road travel including traffic conges-
tion and road safety (Kerali, 2000). The Kyoto Model PMS 
developed based on studies including Tsuda et al. (2006) 
and Kobayashi et al. (2010, 2013) has been applied in var-
ious countries including Japan and Vietnam to enhance 
road asset management (Thao et al., 2015). These PMS 
models have traditionally used numerical data collected 
through visual surveys. As highlighted by Maeda et al. 
(2018), a shortage of experts has hindered data collection 
necessitating the improvement of these PMSs to make 
them less human-dependent and more semi-autonomous.

Past studies including Bosurgi et al. (2022) and Geor-
gopoulos et al. (1995) made attempts in using digital 
image processing data for pavement distress evaluation. 
Georgopoulos et al. (1995) developed a method that 
generates digital imagery used as input for a specialized 
software to determine the severity of pavement cracking. 
Bosurgi et al. (2022) used computer vision to process road 
pavement  three-dimensional  data  to  output  quantified 
distress measures, i.e., area, perimeter and depth with the 
goal of using the measures to optimize road functionality 
and safety. Efficient digitalized systems have the potential 
to significantly reduce pavement monitoring and manage-
ment costs, and traffic disruptions when large equipment 
is used.

2.2. Image processing techniques
2.2.1. Datasets, simple segmentation, and deep learning

Recent technological advancements have led to the de-
velopment of smartphones with comparatively lower cost 
but high quality, which has resulted  in  the production of 
abundant smartphone road image data. The images may 
be stored in datasets such as ImageNet (Deng et al., 2009), 
Pascal VOC (Everingham et al., 2015), CamVid (Cambridge 
University, 2021), and Road Damage Dataset 2020 (RDD-
2020) (Arya et al., 2020a).

For infrastructure systems such as road networks, im-
ages are normally collected by taking photos through the 
car windshield using a smartphone mounted on the dash-
board (Figure 1). Car windshield images are complex be-
cause they contain considerable noise (many objects) and 
are in perspective view. The images may additionally be 
affected by weather, e.g., lighting and shadows. Plan view 
images, taken directly above the road surface such as by 
using a drone, may be simpler but are legally prohibited 
in many jurisdictions.

Image processing has been applied to many fields such 
as forestry to evaluate the impacts of policies addressing 
deforestation (MathWorks Inc., 2021), transportation infra-
structure for road damage detection (Maeda et al., 2018; 
Arya et al., 2020a, 2020b, 2021), and dermatology to de-
termine the severity of skin cancer (Kinyanjui et al., 2019) 
and skin lesions (Mirikharaji et al., 2021). Zou et al. (2022) 
applied deep learning using the You Only Look Once ver-
sion 4 (YOLOv4) algorithm to detect defects in structures 
after  an earthquake disaster. Maeda et  al.  (2018) devel-
oped a road damage detection system using smartphone 
images in Japan. Thuyet et al. (2022) built an autonomous 
road inspection system using deep learning and data ob-
tained utilizing a laser crack measurement system (LCMS) 
to detect cracks and patches. Other studies such as Gon-
calves and Givigi (2016) and Hong et al. (2020) developed 
methods to detect and measure crack defects in civil infra-
structure from simple image data containing a few objects.

Object recognition systems can be broadly divided into 
three groups. First, human-based methods, where an in-
spector observes and measures defects using traditional 
measurement equipment; second, microscopic inspection 
using specialized tools; and third, machine vision, in which 
defects are identified and quantified automatically by im-
age analysis. Machine vision has proved to be the most 
efficient  and  accurate  of  the  three. Within machine  vi-
sion, artificial neural networks (ANNs), convolutional neu-
ral networks (CNNs) and pattern recognition using color 
models have emerged as the most popular (Goncalves 
& Givigi, 2016). Color models were an advancement of 
simple threshold segmentation (e.g., Otsu, 1979). Other 
segmentation methods have been developed, including 
graph-based segmentation using the lazy snapping tech-
nique and region growing from a seed point (MathWorks 
Inc., 2021).

In deep learning, algorithms built using region propos-
als and CNNs (R-CNN) have achieved higher accuracy. The 
Mask R-CNN algorithm (He et al., 2018), an advancement 
of Faster R-CNN (Ren et al., 2015), Fast R-CNN (Girshick, 
2015) and R-CNN (Girshick et al., 2014), is the current 
state-of-the art algorithm in the family of object detection 
and segmentation algorithms using region proposals. The 
Mask R-CNN algorithm extended Faster R-CNN by adding 
a branch for predicting segmentation masks from each 

Figure 1. Setup of smartphone in car (Arya et al., 2021)
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region of interest (RoI) and also replaced the RoIPool layer 
with the quantization-free RoIAlign layer, which solved the 
misalignment challenge in earlier algorithms.

Object  detection  techniques  build  a  bounding  box 
based on the object category, as shown in Figure 2, and 
therefore do not provide information about defect size 
and shape. Image detection and segmentation algorithms 
such as Mask R-CNN provide a pixel-wise mask for an 
object, which gives more details about its shape and size, 
and may also be more suitable for segmenting complex 
images containing overlapping objects and different col-
ors, textures, contrasts, and light intensities. The severity of 
defects, obtained through quantification,  is  important for 
the asset management decision process, especially con-
sidering user safety.

The main advantage of simple segmentation methods 
over deep learning is that the former does not require the 
costly image annotation step; however, these methods are 
challenged by inaccurate object detection and segmenta-
tion (Otsu, 1979; MathWorks Inc., 2021). On the contrary, 
despite requiring the costly annotation step, deep learning 
has proven to be more accurate and efficient in perform-
ing object detection and segmentation tasks (He et al., 
2018).

2.2.2. Image annotation

Despite being labor-intensive, annotation is a vital pre-
liminary step before training a deep learning model and 
therefore should be done as efficiently and accurately as 
possible. For object detection, bounding boxes and ob-
ject labels are manually added to the images at every in-
stance  that  an object  is  identified by  the annotator.  For 
object segmentation, a pixel-wise mask and object label 
are manually added to the images at each instance. Higher 
quality and more precise annotations may increase accu-
racy; however,  a higher  time cost  is  required  to achieve 
such annotations. Past studies including Greenwald et al. 
(2022) have attempted to optimize the time cost for anno-
tating images by combining expert, crowd, and computer 
input while ensuring that the required accuracy levels are 
met. Xu et al. (2021) applied partial annotation to lever-
age the advantages of using annotated and unannotated 
regions in the training process for crowd counting tasks. 
More informative annotations may involve detailed man-
ual boundary drawings for a feature of interest, whereas 
less informative approximate annotations (e.g., bounding 
boxes or simplified polygons) may require simpler draw-
ings. Therefore, a  trade-off may exist between  the qual-
ity and time cost of annotating images (Mirikharaji et al., 
2021). For infrastructure performance evaluations, the 
accuracy  requirements  for measurements may not be as 
strict compared  to fields such as health because classifi-
cation of the defect level need only fall within a specified 
range to generate useful information for effective decision 
making. Practitioners may decide the needed annotation 
quality for specific purposes more efficiently based on the 
accuracy–time cost trade-off.

2.3. Problem statement
As discussed earlier, road infrastructure asset management 
is faced with the challenge of an increasing infrastructure 
stock with a declining number of management experts, 
resulting in low coverage and infrastructure neglect, which 
may  adversely  affect  road  user  safety.  This  challenge  is 
further exacerbated by the inaccuracy of human-based in-
spection and data preparation, which compromises pave-
ment performance  results and  subsequent management 
decisions. Road infrastructure asset management should 
capitalize on gains in the technology industry that has 
seen  the  development  of  low-cost  high  quality  smart-
phones. Pavement smartphone images from a wider road 
infrastructure stock can be taken and analyzed using more 
efficient and accurate image processing techniques com-
pared to human-based methods. For image processing, 
less accurate simple segmentation methods that do not 
require  costly  annotations  and  the more  accurate  deep 
learning process that requires costly annotations are avail-
able. A  trade-off between accuracy and annotation  cost 
may therefore be evaluated by varying annotation pre-
cision  requirements  from no annotation  (for simple seg-
mentation methods) to less detailed annotations and more 
precise annotations (for deep learning). This trade-off may 
be used to evaluate the most appropriate image process-
ing methods and  requirements  for pavement defect de-
tection tasks because very precise defect measurements 
are unnecessary in pavement asset management since the 
defects need only fall within a specified range for appro-
priate intervention prescription. Also noted in the previous 
sections is the subjectivity of annotation and deep learning 
model inputs such as IoU, which this research work at-
tempts to set objectively by building a probabilistic pave-
ment asset management model that is validated by expert 
analysis.  Pavement  defects  are  detected  and  quantified 
by probabilistically setting IoU and annotation precision 
followed by effective management and intervention deci-
sions. This paper shows the substitutability of expert analy-
sis with  the  cost-effective  image processing  and details 
how the output from image processing/ deep learning can 
be applied to pavement asset management to encourage 
the adoption of more efficient  technologies  in  the asset 
management practice.

Figure 2. Crack detection (Maeda et al., 2018)
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2.4. Research objectives
The main objective of this study was to explore the pos-
sibility of arriving at sound pavement management deci-
sions with minimal  human dependence.  Specifically,  the 
objectives were as follows:

1) Carry out an experimental comparison between 
simple segmentation methods and deep learning.

2) Develop a probabilistic pavement management 
model based on safety and set the annotation pre-
cision and IoU objectively including expert valida-
tion.

3) Empirically show the applicability of the model us-
ing image processing output from the processed 
RDD-2020. 

To the best of our knowledge, this is the first study to 
develop a model that sets the IoU and annotation preci-
sion objectively including expert validation and empirically 
shows the applicability of the probabilistically determined 
image processing outputs as inputs for asset management 
decisions. The rest of this article is organized as follows. 
Section 2 comprehensively explains the probabilistic as-
set management model; Section 3 presents the empirical 
model application including deep learning on the RDD-
2020; and Section 4 concludes the article and suggests 
possible future work.

3. Probabilistic pavement asset  
management model

3.1. Model definition and overview
Consider that a road pavement section k(k = 1, 2, …, K) has 
defect density n

kd  estimated from processed image data 
with n(n = 1, 2, …, N) indicating the class of the defects, 
e.g., cracks and potholes. From the estimated n

kd , an input 
vector 1 ,  ,  N

k kd d = … kd  can be created that generates an 
output, the safety metric ( )kS f= kd . The safety metric may 
be the Maintenance Control Index (MCI) that is commonly 
used in Japan (JARA, 2013). Each section k can thus have 
an estimated MCIk. Based on the severity of the MCIk, road 
managers may propose the appropriate intervention A on 
a section with the following options: do nothing A0, crack 
sealing or patching A1, overlay A2, and reconstruction A3. 
The estimated defect density n

kd  may vary based on image 
processing, i.e., set annotation case i and IoU threshold. 
The defect density may also vary due to other factors in-
cluding image quality such as the lighting conditions, e.g., 
shadows; scale, e.g., perspective view; and/or pavement 
infrastructure properties, e.g., material colors. In this study, 
the processing methods were emphasized and the good-
ness of fit of annotation case i and IoU in defect detection 
was validated using the pavement condition estimates by 
experts e(e = 1, 2, …, E). The priority for intervention on 
a section k is determined based on the magnitude of the 
safety metric on that particular section in comparison with 
other sections and the intervention is proposed following 
an intervention matrix. This intervention prioritization is 

illustrated in Figure 3 with 1 2k kMCI MCI= =< , which implies 
that the worst section k = 1 should receive priority for 
intervention. The defect densities used to estimate MCIk 
are obtained probabilistically by maximizing the probabil-
ity of detection of defects considering different annotation 
cases i and IoU thresholds against the expert benchmark. 
The number of annotation cases is ni and *

kMCI  is the MCI 
determined after optimizing i and IoU. The road agency’s 
goal is to maximize the total *

kMCI  for all sections to pre-
serve road user safety within set constraints.

MCIk  is  defined  as  follows  (Minami  &  Suzuki,  2008; 
Miyamoto & Yoshitake, 2009; JARA, 2013; Yoshida, 2016; 
Kubo, 2017):

0.3 0.7 0.2
,0 10 1.48 0.29 0.47 ;k k k kMCI C D= − − − s  (1a)

0.3 0.7
,1 10 1.51 0.30 ; k k kMCI C D= − −  (1b)

0.3
,2 10 2.23 ;k kMCI C= −  (1c)

0.7
,3 10 0.54 ; k kMCI D= −  (1d)

( ) ( ),min ,  0, ,3 ,k k jMCI MCI j j= = …  (1e)

where Ck is the cracking ratio in percent, Dk is the rutting 
depth in millimeters, and sk is the roughness in millim-
eters.

3.2. Probabilistic annotation and IoU setting
Consider that the quality of image annotations and the set 
IoU applied in deep learning can be varied. Assume that 
the defect density dk for a given annotation case i and 
IoU can be estimated using a computer and can give an 
output MCIk. Consider that experts e(e = 1, 2, …, E) analyze 
the same K images and grade them using a similar point 
scale used for computer analysis. Considering the expert 
analysis as the benchmark, a successful computer match 
is established if MCIk falls within min max, k kMCI MCI 

  from 
the expert analysis; otherwise it is considered a failure (no 
match). Using multiple logistic regression, the probability 
 [0,1] of predicting a binary outcome (match = 1, or no 
match = 0) can be estimated given the annotation case i 
and IoU. The explanatory variable i may be considered as 
categorical and the IoU as continuous within the limits [0,1].

{ } ( )min maxPr ,  , ;k k
kMCI MCI MCI i IoU p i IoU≤ =  (2)

( ) ( )
( )
0 1 1 1 1

0 1 1 1 1

exp
, ,

1 exp
i i

i i

n n Q

n n Q

IoU
p i IoU

IoU

− −

− −

+ +…+ +
=

+ + +…+ +

b b d b d b

b b d b d b
 (3)

where ( )0 1,  , , Q…b b b b  is a vector of unknown parameters 
to be estimated with ( )  0,1  , ,q q Q= …  denoting the number 
of explanatory variables, and ( )  1, ,  1i ii n= … −d  are dummy 

Figure 3. Illustration of two pavement sections

k = 1 k = 2
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variables for the annotation case. The base annotation 
case  I  has  all  the dummies  equal  to  zero.  For  three  an-
notation cases, d1 = d2 = 0 for the base case I, d1 = 1 
and d2 = 0 for case II, and d1 = 0 and d2 = 1 for case III. 
The dummies d1 and d2 are comparative between cases 
II  and  III with  the base case,  respectively. This definition 
of dummies is important to avoid indeterminate model 
coefficients that may occur due to singularities as a result 
of violating the perfect collinearity property.

Assuming that the probabilities of detection are mutu-
ally independent, then the log-likelihood expressing the 
joint probability density of successful defect detection 
considering all experts and sections is as follows:

( ) ( ){ } ( ){ }( ), ,1

1 1

ln ln , 1 ,        k e k e
E K

e k

p i IoU p i IoU
−

= =

 
   = − =   
 
∏∏

d d
L  b

( ) ( ){ } ( ){ }( ), ,1

1 1

ln ln , 1 ,        k e k e
E K

e k

p i IoU p i IoU
−

= =

 
   = − =   
 
∏∏

d d
L  b

( ) ( ) ( ){ }, ,
1 1

ln , 1 ln 1 , ;
E K

k e k e
e k

p i IoU p i IoU
= =

   + − −   ∑∑ d d

( ) ( ) ( ){ }, ,
1 1

ln , 1 ln 1 , ;
E K

k e k e
e k

p i IoU p i IoU
= =

   + − −   ∑∑ d d

                                  

(4)

,
1     if  match        
0    if no match  k e


= 


d ,

where dk,e is a dummy variable for match or no match.
The unknown parameters can be obtained by maximiz-

ing the log-likelihood function:

( )ln
0;

q

 ∂   =
∂b

L  b
 (5)

( )0,1  , , .q Q= …

An iterative method such as the Newton–Raphson 
method could be used to iteratively estimate b within a 
given tolerance level.

For a given annotation case i and IoU to be acceptable 
to effectively detect and quantify defects,  the probability 
( ),p i IoU  should not be less than a set limit p0:

( ) 0, ) . p i IoU p≥  (6)

The annotation case i* and IoU* that optimizes the 
probability of the detection of defects is obtained as:

( )argmax  , .
, 

p i IoU
i IoU

 (7)

The defect densities *n
kd  obtained for i* and IoU* are 

used in the calculation of *
kMCI .

3.3. Pavement intervention planning
The choice of intervention A such as patching and over-
lay on a section may be determined by maximizing the 
MCI for the entire pavement stock (Obunguta et al., 2022). 
When action is carried out, it is assumed that the defect 
density improves and * 0n

kd = . The intervention on a given 

section is determined based on the MCI following an inter-
vention matrix as shown in Table 1. This type of interven-
tion decision is used by a number of agencies including 
the Ministry of Land, Infrastructure, Transport and Tourism 
of Japan (Miyamoto & Yoshitake, 2009; Kubo, 2017). The 
cutoff level for each defect class intervention can be varied 
by a road agency based on their standards.

For intervention planning, sections can be prioritized 
by maximizing the total MCI (safety) subject to constraints. 
The MCI optimization is defined as:

*

1

Max   ;
K

k
k

MCI
A k

=
→ ∑  (8)

subject to

* ;k kMCI MCI≥  (9a)

1

cost   Budget,
K

A k
k

→
=

≤∑  (9b)

where kMCI  is the safety limit and costAk is the interven-
tion cost.

The objective function above includes a serviceability 
and budget constraint. In case of a budget limit, sections 
could be prioritized by intervening on those that would 
result in larger MCI (safety) gains.

In MCI optimization, a Pareto frontier may occur where 
the *

kMCI  value is the same for two or more sections. In 
this case, other factors may be considered such as the im-
portance of a pavement section relative to others. If other 
factors are insignificant, then the prioritization of interven-
tion for the sections at the Pareto frontier may be done 
randomly.

Detailed pavement intervention planning could be a 
subject of future research by the authors in which stochas-
tic deterioration estimation considering two-point image 
data and LCC analysis will be done. The generated pave-
ment deterioration rates could inform better intervention 
planning through MCI and LCC optimization (Obunguta 
& Matsushima, 2020). Furthermore, the incorporation of 
image processing will improve and ease the application of 
infrastructure asset management models such as HDM-4 
and the Kyoto Model by making them more semi-auton-
omous.

Table 1. Intervention matrix  
(Miyamoto & Yoshitake, 2009; Kubo, 2017)

*
kMCI

Intervention

A0 A1 A2 A3

*
kMCI  = 10 o x x x

4.5 ≤  *
kMCI < 10 x o x x

2.5 ≤  *
kMCI  < 4.5 x x o x

*
kMCI  < 2.5 x x x o

Note: o indicates intervention and x indicates no intervention.
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4. Empirical application
4.1. Outline of application
In the empirical application, simple object segmenta-
tion methods that do not require costly annotation were 
explored, and a deep learning model was trained using 
the Mask R-CNN algorithm in Python 3.9.1 to detect and 
quantify defects  and  road  features  (RoIs)  in  images ob-
tained from the RDD-2020 to estimate defect densities 
applied in the probabilistic asset management model. To 
show model practicality, an empirical application was car-
ried out for selected roads in Japan.

4.2. Road image dataset
The RDD-2020 contains images of 600×600 pixels for road 
surfaces approximately 10 m ahead taken using a camera 
mounted on a vehicle traveling at an average speed of 
about 40 km/h (about 10 m/s) and capturing an image 
every second. The dataset is heterogeneous with more ob-
jects and includes images from India, Japan, and the Czech 
Republic (Figure 4).

4.3. Simple segmentation methods
4.3.1. Overview of methods

There are several segmentation techniques that can be ap-
plied to extract features of interest from images. Simple 
segmentation techniques do not require the costly anno-
tation step. For many images, segmentation needs to be 
done programmatically as opposed to manually due to 

computational cost reasons. This study explored graph-
based  segmentation  using  the  lazy  snapping  technique 
and region growing from a seed point. The segmenta-
tion algorithms can be developed in MATLAB and looped 
through images stored in a specified file directory.

For the lazy snapping technique, the initial background 
and foreground RoIs are user dependent. After the RoIs 
are set, the algorithm programmatically classifies other un-
allocated image pixels as either background or foreground 
based on a similarity metric. In Figure 5, consider a 5×5 
pixel image with a low pixel (dark) foreground and a high 
pixel (light) background. The foreground (object) region 
can be segmented out by specifying the RoI with dimen-
sions [xmin, ymin, width, height] and a background RoI 
with its own dimensions. The RoIs for each group (fore or 
background) can be as many as necessary. The lazy snap-
ping formula can then be used to group pixels based on 
similarity.

For region growing from seed point(s), the RoI is it-
eratively grown by comparing all unallocated neighboring 
pixels to the RoI based on a similarity measure, as illus-
trated in Figure 6 where the initial user-dependent seed 
point Sp with coordinates [x, y] is grown to cover the low 
pixel object region (Kroon, 2021).

To run either algorithm programmatically, the RoIs or 
the Sp must be pre-set by the user for the entire dataset. 
When performed programmatically, the algorithms may 
generate inaccurate results for cases in which the initial 
RoIs and Sps do not fall in the pixel area of the feature of 
interest for all images.

Figure 4. Road images from: a – Japan; b – India; c – Czech Republic

Figure 5. Graph-based segmentation by lazy snapping  
with a foreground and background RoI

Figure 6. Region growing from a seed point Sp

a) c)b)
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4.3.2. Simple segmentation experiments

The segmentation experiments shown in Figure 7 and Fig-
ure 8 highlighted the fact that both lazy snapping and 
region growing from a seed point were challenged by the 
following:

1) Region continuity breakage due to lighting condi-
tions, i.e., dark shadows (Figure 8a), bright shiny 
surfaces, and bright  reflections  (Figure 7c and Fig-
ure 8c) probably from the windscreen due to the 
camera flash.

2) Breakage in segmentation regions due to the color 
difference between the road markings such as zebra 
crossings and lane separations, and the pavement 
surface (Figure 7b, 7c and Figure 8b, 8c). 

3) Segmentation of unwanted regions (Figure 7d).
The simple segmentation experiments showed that 

both  techniques  were  challenged  by  the  complexities 
of segmenting features as a result of lighting and color 
changes, and unwanted objects were segmented in sev-
eral cases because segmentation of complex images is 
challenged by  inaccurate  initial RoI  specification  if done 
programmatically. On the other hand, manual segmenta-
tion may be cumbersome; hence, deep learning may offer 
more accurate segmentation results despite having a high-
er computational cost (annotation and training) compared 
to simple segmentation methods.

4.4. Deep learning
4.4.1. Algorithm

Deep learning involves annotating images and then train-
ing a model to detect the annotated RoIs. In this study, the 
deep learning model was trained using the Mask R-CNN 

algorithm to detect and build a pixel-wise mask on road 
features and defects. The main steps of the algorithm are 
detailed in Table 2 below.

Table 2. Deep learning algorithm

Algorithm: Deep learning and defect quantification

Start
Step 1: Obtain road pavement images
Step 2: Sort images
Step 3: Annotate images in the training and validation set
Step 4: Input annotated images then train and test the deep
              learning model
Step 5: Defect quantification
Step 6: Output quantified defects; i.e., defect densities
End

4.4.2. Deep learning accuracy

The mean average precision (mAP) is a popular metric in 
computer vision for evaluating the accuracy of object de-
tectors (Padilla et al., 2020). The measures, precision and 
recall, are required  in the estimation of mAP. Precision  is 
the ratio of true positives to all predicted positives, where-
as recall is the ratio of true positives to all actual positives. 
To explicitly express precision and recall, the following pa-
rameters are defined:

 – True Positive (TP): If an object or defect instance is 
present in the ground truth, and the label and the 
bounding box of the instance are correctly predicted 
with IoU ≥ threshold.

 – False Positive (FP): If the model predicts an object or 
defect instance at a particular location in the image, 
but the instance is not present in the ground truth 
for that particular image. The FP also applies to a 

Figure 7. Segmentation trials using the lazy snapping technique on RDD-2020

Figure 8. Segmentation trials using region growing from a seed point on the RDD-2020

a) c) d)

a) c) d)b)

b)
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case in which the predicted label does not match the 
actual label.

 – False Negative (FN): If an object or defect instance is 
present in the ground truth, but the model fails to 
predict either the correct label or the bounding box 
of the instance.
The precision and recall are defined mathematically as:

Precision  ;TP
TP FP

=
+

 (10)

Recall .TP
TP FN

=
+

 (11)

The average precision (AP) is obtained as the average 
of the precision values obtained from the precision–recall 
(PR) curve for a select set of recall values. The mAP score 
is the mean of the APs over all the object classes, N:

1

1 .
N

n
n

mAP AP
N

=

= ∑  (12)

4.4.3. Image annotation

This research explored three annotation cases (Figure 9) 
with  decreasing  labor  requirements  and  precision,  and 
compared their accuracy in determining the correct de-
fect classifications and quantifications against expert judg-
ments. The experimentation employed the Visual Geom-
etry Group (VGG) Image Annotator (VIA) software to an-
notate the RDD-2020 images, and the annotations were 
exported in the JavaScript Object Notation (JSON) format. 
The annotation of the objects of interest was done fol-
lowing Table 3. The road feature was added to the defect 
classes defined by Arya et al.  (2020a) with D00, D10, and 
D20 defining cracks and D40 mainly potholes, based on 
the Japan Road Maintenance and Repair Guidebook 2013 
(JARA, 2013). Figure 10 shows an example image of road 
damage before (a) and after (b) annotation. Depending on 
the number of defects that the annotator observed in the 
image, it took about 2–4 min for case I, 1–2 min for case 
II, and less than 1 min for case III to annotate a single im-
age using human labor. Figure 11 and Figure 12 show the 
training and validation data statistics, respectively, with a 
total of 1,165 annotated objects. The low occurrence of 
D40 defects in Japan compared to the other countries is 
probably due to better and more regular maintenance.

4.4.4. Deep learning experiments

The model was trained for 50 epochs at a learning rate 
of 0.001 in Python 3.9.1 using an Intel® Core™ i5-5200U 
CPU @ 2.20 GHz with a 4 GB RAM and 500 GB HDD com-
puter. Model accuracy was tested at different IoU thresh-
olds across different object classes considering varied an-
notation precision. The model training took about 33 h. 
Table 4 shows the mAP values per defect class at different 
IoU thresholds and annotation cases. Figure 13 shows the 
improved results of the road feature extraction and the 
defect identification done in parallel without image light-
ing and color change inhibitions (comparing Figures 13a 

with 8a; 13b with 7b and 8b; and 13c with 7c and 8c) and 
unwanted segmentation (comparing Figure 13d with 7d). 
The model showed high confidence values of up to 0.99 
for prominent road features.

Figure 9. Different annotation cases in red, green and blue

Figure 10. Road damage image before a)  
and after b) annotation

Japan India Czech All
countries

No. of images 82 78 83 243
Road 82 84 85 251
D00 87 21 45 153
D10 107 10 70 187
D20 56 41 49 146
D40 29 85 49 163
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Figure 11. Training data statistics

a) b)

Table 3. Objects of interest (Arya et al., 2020a)

Object ID Description Defects 
GroupRoad Road surface

D00 Linear crack, longitudinal
CkD10 Linear crack, lateral

D20 Alligator crack
D40 Pothole, rutting, bump, separation Dk
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Comparing across  the different annotation cases,  the 
mAP increased by an average of 8.3% from case I to II and 
by an average of 5.8% from case II to III considering all IoU 
thresholds. This mAP increase was due to the increase in 
the RoI size, which resulted in more overlap between the 
ground truth and the prediction; hence, more detection. 
However,  the  difference  in  detection  accuracy  was  less 
than 10% for both comparisons, which may arguably be 
insignificant. In particular, cases III and II may be competi-
tive because relatively similar mAP levels were achieved 
at a lower annotation cost compared to case I. This result 
may show the insignificance of very precise annotations in 
generating acceptable defect density estimates for pave-
ment management purposes. It is also important to note 
that for a given annotation case and IoU, specific defects 
may be better detected; for instance, the smaller size D00 
defects were detected at the highest AP considering an-
notation case II, which is more precise compared to III, for 
all IoU thresholds.

The Road object class had the highest AP values be-
cause the road feature was very prominent in all images, 
which made it easy for the algorithm to learn, detect, and 
segment. On the other hand, linear cracks consisting of 
lateral and longitudinal cracks had comparatively lower 
APs because they were generally of much smaller size and 
less prominent compared to other objects; hence, their de-
tection and segmentation was poorer. As the IoU was de-
creased, the APs increased across all object classes except 
for the Road class because the less strict IoU requirement 
resulted in more object detection as the ground truth and 
the prediction did not need to overlap much. The high AP 
value for the Road class was stagnant because it was the 
maximum achievable value.

Table 4. AP per object class at different IoU thresholds

IoU Object 
ID

Case I Case II Case III

AP mAP AP mAP AP mAP

0.7

Road 0.9794

0.3436

1.0

0.3963

1.0

0.4097

D00 0.0833 0.3280 0.1517

D10 0.3556 0.0407 0.4520

D20 0.1011 0.2045 0.0824

D40 0.1985 0.4081 0.3624

0.5

Road 0.9794

0.5738

1.0

0.6328

1.0

0.6979

D00 0.3444 0.6472 0.5992

D10 0.5799 0.1512 0.7674

D20 0.5337 0.5704 0.4843

D40 0.4318 0.7951 0.6386

0.3

Road 0.9794

0.7020

1.0

0.7284

1.0

0.7645

D00 0.6083 0.7358 0.7258

D10 0.5950 0.2523 0.7681

D20 0.7291 0.7893 0.6039

D40 0.5984 0.8644 0.7245

0.1

Road 0.9794

0.7046

1.0

0.7309

1.0

0.7645

D00 0.6083 0.7358 0.7258

D10 0.5950 0.2523 0.7681

D20 0.7397 0.8019 0.6039

D40 0.6005 0.8644 0.7245

Figure 12. Validation data statistics

 Figure 13. Detection and segmentation of road features and defects on RDD-2020 for case I, IoU 0.5

Japan India Czech All
countries

No. of images 30 21 27 78
Road 30 25 28 83
D00 29 3 17 49
D10 29 2 18 49
D20 29 12 13 54
D40 8 13 9 30
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4.4.5. Defect density

The extent of defects could be estimated from the seg-
mented images by calculating the ratio of the size of de-
fect pixels to the size of pavement pixels. A ratio was con-
sidered because  the  images were  taken at different per-
spectives and using different smartphones and hence de-
tected objects had different relative sizes. This estimation 
of the defect densities n

kd   in an image taken at a specific 
location was done so as to facilitate comparisons between 
different road sections. The defect density is also similar to 
the cracking ratio defined by the Japan Road Association 
(JARA, 2013; Kubo, 2017):

No. of defect pixels  .
No. of total pavement pixels

n
kd =  (13)

The defect densities were estimated for 1,660 sections 
in Adachi City, Japan (Figure 14). For some sections, the 
aggregate defect densities were greater than expected, 
probably due to the detection and segmentation of mul-
tiple  objects  at  different  instances,  overlap,  and  partial 
detection of road features in the images. From Figure 14, 
more defects were detected when the IoU was reduced 
because a less strict IoU enabled more detection. Also, 
more severe defects could be detected from annotation 
case I to II, to III; attributable to the increase in the RoI 
size as annotation was made less precise. The reduction 
in defect detection for case III could be attributed to an-
notation variability.

4.5. Estimation of the safety metric 
The data preparation stage before application of the prob-
abilistic model generated 12,000 data points for 100 select-
ed sections from Adachi City considering 12 possible com-
binations of annotation case i and IoU compared against 
the judgment of ten expert engineers. The experts visually 
classified  the  pavement  images  based  on  a  three-point 
scale (Table 5) and their experience. To eliminate bias, the 
experts were presented with the selected images labeled 
from 1 to 100 (blind judgment). A comparison was made 
between  the  expert  image  classification  and  the  image 
analysis results. In the estimation of MCI, instead of the rut-
ting/pothole depth, the defect density value was used. The 
estimated MCI values were compared with the expert anal-
ysis to determine whether there was a match or no match.

Table 5. Evaluation of pavement soundness (Kubo, 2017)

Type Condition  
(Deterioration level)

Approximate 
MCIIk 

1 Good
Low and the
pavement surface is in 
a good condition

4.5 ≤ MCIk ≤ 10

2
Phase to 
keep surface 
function

Medium deterioration 
level 2.5 ≤ MCIk < 4.5

3 Repair phase
High and expected to 
be beyond the permis-
sible level soon

MCIk < 2.5

Table 6 shows a summary of  the expert classification 
aggregated into the worst, best, and mode (majority) re-
sults from the ten experts for each of the 100 sections. 
About 71% of the sections were classified as good by the 
majority of experts.

Table 6. Aggregate expert classification for the selected sections

Condition state
Number of sections

Worst Best Mode
1 28 86 71
2 51 13 28
3 21 1 1

Figure 15 shows a comparison of image processing 
output and expert classification with the highest matching 
rate of 65.5% achieved for both annotation cases II and III 
at 0.7 IoU considering all experts.

The unknown parameters were estimated by maximiz-
ing the log-likelihood function using Newton’s method, as 
shown in Table 7. All the estimated parameters had sig-
nificant p-values (< 0.05) and all had low standard errors. 
The significant p-values mean that i  and IoU influence the 
accurate detection of defects. The estimated parameters 
b1 and b2 were positive showing that matching detection 
increased as annotation was made less strict for case II and 
III, respectively, in comparison to the more strict case I. The 
positive parameters (b1 and b2) show that for pavement 
defect detection tasks, very strict annotations may be un-
necessary in determining acceptable pavement condition 
classifications for effective management and planning de-
cisions. Also, parameter b3 was positive showing that more 
matching detections were achieved as the IoU threshold 
was increased. However, very high IoU thresholds could 
have led to less defect detection and the classification of 
more pavements in good condition matching the experts. 
This result suggests that the IoU threshold should be set 

Figure 14. Section defect densities
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high enough to achieve more correct detections but not 
too high as many defects may be undetected. As the an-
notation case was made less strict, i.e., from I to II to III, the 
estimated parameters increased, which showed that the 
odds of obtaining correct detections increased by 25.2% 
from I to II, 28.3% from I to III, and 3.1% from II to III, if 
other  variables  were  fixed.  The  increase  in  odds  as  an-
notation was made less strict could be attributed to the 
increase in RoI area, which increased the probability of 
detection. There were 574% greater odds of correct detec-
tion if the IoU requirement was increased and annotation 
precision was fixed. As discussed above,  this  increase  in 
odds may also imply that very high IoUs resulted in less 
defect detection, which generated results that showed 
road pavements in good condition and matching the ex-
pert judgement. These results support the need to limit 
the IoU within given thresholds to avoid erroneous and 
meaningless detections as IoU approaches the limits of 0 
and 1, respectively.

To evaluate the success rate of the model in making 
correct predictions, a confusion matrix and hitting rate 
accuracy were generated. The confusion matrix showing 
the accuracy rate of the calibrated model in predicting an 
observed match or no match at a 0.5 cutoff is shown in 

Table 8. The model correctly predicted the observa-
tions at a 60.42% accuracy rate, showing the high good-
ness of  fit  of  the  calibrated model.  The model may not 

need to be an exact match since the expert classification 
was not based on only observed defects. The expert clas-
sification was also based on experience and other more 
informative defect characteristics including crack patterns 
and defect colors not considered in the deep learning. For 
example, diagonal cracks are indicative of shear failure in 
reinforced concrete structures, reflection linear cracks may 
show the degeneration of flexible pavement sublayers, and 
a black color may be due to bleeding defects where as-
phalt binder is forced to the pavement surface.

Table 8. Confusion matrix

Observed

Match No match Total

Predicted
Match 3637 2363 6000

No match 2387 3613 6000

Total 6024 5976 12000
Accuracy 0.6038 0.6046 0.6042

Figure 16 shows a match in classification between the 
image processing (case II) and the majority of experts with 
Figure 16a and 16b classified as 1 and 2, respectively, by 
both the experts and image processing. Figure 17 shows a 
mismatch in classification between the majority of experts 
(classified as 3) and case II of image processing (classified 
as 2) probably attributable to the variation in the group-
ing of the condition states and other factors such as crack 
patterns and defect colors not considered in the image 
processing as discussed above.

Table 9 shows the probabilities of obtaining a match 
or the correct detection for each i and IoU combination. 
The highest probability of 0.66 was achieved if IoU was 
set to 0.7 and the least precise annotation case III was 
applied. As noted, the high probabilities for 0.7 IoU were 
also influenced by no defect detection, which led to high 
MCI values that matched the expert results. If p0 is set 
to 0.5, then IoUs of 0.3 and below may be inappropriate 
for pavement defect detection tasks, and high IoUs of 0.7 
and above must be selected taking into consideration the 
inability to detect defects at such strict thresholds. This 
result  showed  the  insignificance of highly precise anno-
tations (case I) and that very low or very high IoUs may 
be undesirable for road defect detection tasks. From the 
optimization process, defect densities can be obtained and 
proposed section intervention can be determined follow-
ing an intervention matrix after prioritization.

Figure 15. Image processing vs expert classification
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Table 7. Estimation of unknown parameters

Parameter Estimate Standard error exp(b) Increase in odds p-value
b0 –0.9127 0.04734 0.4014 –0.5986 210–16

b1 0.2250 0.04580 1.2523 0.2523 8.9810–7

b2 0.2491 0.04581 1.2829 0.2829 5.4210–8

b3 1.9074 0.08483 6.7356 5.7356 210–16
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Table 9. Probabilities of detecting a match

Annotation case i IoU Pr (i, IoU)

I

0.7 0.6041

0.5 0.5102

0.3 0.4157

0.1 0.3270

II

0.7 0.6564

0.5 0.5661

0.3 0.4712

0.1 0.3783

III

0.7 0.6619

0.5 0.5720

0.3 0.4772

0.1 0.3839

3.6. Intervention prescription
Intervention was prescribed based on the estimated safety 
metric for the 100 sections classified by both the experts 
and through image processing. The MCIk mean values 
(shown in Appendix, Table 11) show decreasing MCI (wors-
ening pavement condition) as IoU was made less strict for 
all annotation cases because more defects were detected 
at lower IoU thresholds. Also, the standard deviations had 
less difference as annotation was made  less strict across 
IoUs of 0.5 and below due to the reduced variability in 
annotation quality.

The sections selected for intervention based on *
kMCI  

optimization and the intervention matrix in Table 1, with 

kMCI  set to 0 and considering a limitless budget, for each 
annotation case at 0.5 IoU are shown in Table 10. The re-
sults showed similarity between annotation case II and 
III as all the 100 sections were selected for either crack 
sealing or patching and overlay with a bigger proportion 
proposed for crack sealing or patching. The difference for 
annotation case I could be attributable to higher annota-
tion variability.

Table 10. Number of sections selected for intervention

Annotation 
case i

Intervention

A0 A1 A2 A3

I 5 33 61 1
II 0 80 20 0
III 0 59 41 0

5. Discussion
5.1. Annotation precision and cost trade-off
This study evaluated the trade-off between image process-
ing inputs including annotation precision and cost. First, 
the research experiment explored the use of simple seg-
mentation methods that do not require costly annotation 
on the publicly available RDD-2020. For efficiency reasons, 
simple segmentation should be done programmatically as 
opposed to manually since the latter is cumbersome for a 
large image dataset. Although simple segmentation meth-
ods do not incur annotation costs, they were challenged 
by region breakage due to poor lighting conditions and 
color changes, and unwanted objects were segmented in 
several cases. These challenges could have potentially re-
sulted in inaccurate estimation of defect densities.

The shortcomings of simple segmentation methods 
led to experimenting on deep learning methods. A deep 
learning model was trained using the Mask R-CNN algo-
rithm utilizing the RDD-2020. For deep learning, the road 
images were annotated by varying the degree of preci-
sion. Less informative annotations required less annotation 
time, whereas more informative annotations took more 
time.  The difference  in  the mAP values  for  the different 
annotation cases were arguably insignificant. Additionally, 
as the annotation precision was reduced, the odds of ob-
taining a correct match increased from annotation case I, 
II to III as a result of the increase in the RoI area, which 
increased the probability of defect detection. These results 
showed the  insignificance of very precise and costly an-
notations for pavement defect detection tasks. However, 

Figure 16. Image processing and expert classification match Figure 17. Image processing and expert 
classification no match

a) b)
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the annotations should be tight enough to avoid errone-
ous allocation of non-object regions as RoIs before model 
training as this may generate inaccuracies.

5.2. Deep learning, objective annotation,  
and IoU
As discussed in the previous subsection, deep learning 
overcame the challenges faced by simple segmentation 
methods. In addition, deep learning in which all objects 
of interest (road features and defects) were identified and 
segmented in parallel made it convenient to estimate the 
defect densities. The deep learning results were also more 
promising with objects detected and segmented with high 
AP values. Road features were detected and segmented 
with the highest AP values because they were very promi-
nent in the images. As the IoU threshold was decreased, 
more defects were detected because a less strict IoU re-
quirement enabled more detection since the ground truth 
and the prediction did not need to overlap much. Also, 
more severe defects were detected from annotation case 
I to II to III because of the increase in the RoI size, which 
allowed more overlap between the ground truth and the 
prediction.

A probabilistic pavement management model that in-
cluded setting the IoU and annotation precision objective-
ly with validation from experts was developed in this study 
to facilitate the standardization of setting model inputs to 
have more uniform outputs that would minimize the vari-
ability of infrastructure intervention decisions. Validation of 
the model by a group of experts ensured that the model 
could be applied even in areas where there were very few 
or no expert engineers, and hopefully reduce the propor-
tion of infrastructure neglected as a result of personnel 
shortages. In the empirical application of the model, the 
estimated parameters were significant, which showed that 
the IoU threshold and annotation precision influenced ac-
curate defect detection. The calibrated model also had a 
high success hitting rate of more than 60%. It was shown 
that a low IoU resulted in more defect detection, whereas 
the annotation precision was insignificant. As the annota-
tions were made less precise, the RoI size increased, which 
resulted in more overlap between the ground truth and 
the prediction, and hence more defect detection. As the 
IoU was  reduced,  the  requirement  for  the  area of over-
lap was made less strict, which meant that the ground 
truth and the prediction did not need to overlap much, 
increasing detection. However, the IoU threshold must be 
restricted to avoid meaningless and erroneous detections 
if the IoU approaches the limits of 0 and 1. Despite being 
insignificant,  the object annotations must be as  tight as 
possible to avoid labeling non-object regions as objects, 
and the annotations should not be cumbersome so as to 
lower the processing cost. The developed model maxi-
mized the probability of correct defect detection because 
more detection may encourage proactive intervention 
and further investigation for the candidate sections, which 
could improve road user safety.

5.3. Road asset management application 
The optimum model inputs, annotation precision and 
IoU, could be used to generate section defect densities 
and safety level, MCI, in this paper. The obtained MCI 
that may  closely match  the  classification by experts  can 
then be used to prescribe the appropriate interventions 
for a road pavement group using MCI optimization and 
an intervention matrix, as shown earlier. The intervention 
on a section can be based on the severity of the defects 
on a given section in comparison to other sections in the 
infrastructure group. It may be noted that the interven-
tion in this case could be based on one-point image data 
collected at one time point; however, the appropriateness 
of intervention decisions could be improved by incorpo-
rating future performance prediction models such as the 
stochastic Markov hazard model since more image data is 
expected to become available in the future. The required 
performance model could inform the image data collec-
tion process so as to generate more consistent and usable 
data for pavement performance prediction.

6. Conclusions
This research proposed a framework to feasibly apply 
deep learning model results to pavement asset manage-
ment. The study used publicly available smartphone road 
image data from Japan, India, and the Czech Republic to 
train and validate a deep learning model built on the Mask 
R-CNN algorithm. The experiments showed that with few-
er management resources for an increasing infrastructure 
stock, computer vision promises safer and more efficient 
asset management and planning compared to the current 
human-dependent practice. The research work empirically 
showed the following:

1) Experimental comparison showed the merits of 
deep learning compared to simple segmentation 
in overcoming poor lighting conditions and color 
changes to correctly segment objects in images.

2) Choice of the IoU threshold and annotation preci-
sion are important for object detection tasks and 
should  be  optimally  determined.  The  IoU  signifi-
cantly affected defect detection and hence should 
be carefully selected to avoid meaningless and er-
roneous detections. As the annotation precision 
was  insignificant  in  defect  detection,  less  costly 
simplified polygons may suffice.

3) Tests showed that one-point data obtained from a 
single image dataset can be efficiently used to sup-
port intervention choices on infrastructure with less 
human dependence.

In the future, better stochastic asset management 
models could be developed using consistently obtained 
data because the current state-of-the-art asset manage-
ment models require at least two-point condition data to 
model deterioration processes and perform LCC analysis. 
Building and improving algorithms that detect the patterns 
of defects and their colors is a possible area for future re-
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search because defect patterns and colors could indicate 
the failure type. The efficiency of detection and segmen-
tation algorithms also needs to be generally improved. 
A positive feedback loop could also be created between 
data collection and future asset management needs. To 
make data more usable for planning, the global position-
ing system (GPS) coordinates of photos could be included 
in databases so that road sections can be better identified 
and linked to road network maps. It is recommended that 
further studies and methodologies be developed to make 
annotations more objective than subjective and thus mini-
mize the variability due to different annotators.
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APPENDIX
The Table 11 shows MCIk values for each annotation case i and IoU for the 100 sections from Adachi City obtained through 
image processing and majority expert classification.

Table 11. MCIk values for each annotation case and IoU for the 100 sections and majority expert classification

Section k

Annotation case i and IoU (Image processing)
Majority ex-
pert gradeI II III

0.7 0.5 0.3 0.1 0.7 0.5 0.3 0.1 0.7 0.5 0.3 0.1

Adachi_20170906094007.jpg 10.0 4.29 2.72 2.72 10.0 5.07 3.16 2.54 10.0 4.25 3.46 3.46 1

Adachi_20170906094019.jpg 10.0 4.65 3.33 3.33 5.59 5.59 5.59 5.59 10.0 4.51 3.71 3.71 1

Adachi_20170906102859.jpg 5.92 3.70 3.10 3.10 10.0 5.73 3.13 3.13 5.97 4.55 2.44 2.44 2

Adachi_20170906102924.jpg 8.43 3.56 3.45 2.99 6.93 6.15 2.51 2.51 10.0 3.75 3.45 3.45 2

Adachi_20170906103322.jpg 5.62 4.38 2.93 2.93 10.0 5.29 3.52 3.52 8.14 4.00 3.41 3.41 1

Adachi_20170906105116.jpg 10.0 3.71 2.68 2.68 10.0 8.46 3.63 3.63 6.22 4.75 4.75 4.75 1

Adachi_20170906105131.jpg 10.0 5.56 4.61 4.61 7.41 6.47 5.43 5.43 10.0 4.29 4.11 4.11 1

Adachi_20170906105143.jpg 10.0 4.31 2.55 2.55 10.0 5.88 3.68 3.68 6.40 3.64 3.39 3.39 1

Adachi_20170906143942.jpg 10.0 10.0 3.27 3.27 10.0 4.45 2.48 2.48 6.68 4.21 3.42 3.42 1

Adachi_20170906143948.jpg 10.0 9.93 4.08 4.08 10.0 9.90 4.24 4.24 10.0 4.20 4.20 4.20 1

Adachi_20170906144435.jpg 8.27 3.76 3.44 3.44 6.25 2.80 2.80 2.80 6.11 5.05 3.82 3.82 1

Adachi_20170906150612.jpg 10.0 3.48 3.31 3.31 10.0 4.31 2.52 2.52 5.71 4.32 3.84 3.84 1

Adachi_20170906151235.jpg 10.0 3.07 2.46 2.46 10.0 2.85 2.74 2.64 6.43 4.06 3.65 3.65 2

Adachi_20170906151255.jpg 8.51 3.81 3.81 3.81 10.0 5.55 3.30 3.30 10.0 4.39 3.89 3.89 2

Adachi_20170906153240.jpg 10.0 4.79 3.90 3.90 10.0 4.30 4.30 4.30 5.33 4.62 4.02 4.02 1

Adachi_20170906153353.jpg 10.0 5.37 4.89 4.89 5.00 4.45 4.63 4.63 6.77 6.08 5.23 5.23 1

Adachi_20170906153805.jpg 5.83 3.98 3.41 3.41 5.54 3.87 3.87 3.87 6.01 5.40 3.94 3.94 1

Adachi_20170906154228.jpg 10.0 10.0 3.28 3.28 7.17 6.18 3.27 3.27 7.87 5.19 4.00 4.00 1

Adachi_20170906154236.jpg 10.0 5.84 5.84 5.84 10.0 5.40 2.82 2.82 5.75 5.07 4.49 4.49 1

Adachi_20170906155248.jpg 6.91 3.42 2.55 2.55 10.00 5.30 3.51 3.51 9.80 4.34 3.34 3.34 1

Adachi_20170906155457.jpg 10.0 3.81 3.81 3.81 10.0 5.97 3.77 3.77 10.0 5.76 4.69 4.69 1

Adachi_20170906160907.jpg 10.0 6.18 5.46 5.46 5.79 4.84 3.44 3.44 10.0 5.62 5.38 5.38 1

Adachi_20170907134021.jpg 5.12 3.42 3.24 3.24 6.10 3.71 3.71 3.71 5.92 3.85 3.85 3.85 2

Adachi_20170907134352.jpg 10.0 3.58 2.89 2.89 6.04 4.68 3.08 3.08 5.77 4.22 3.59 3.59 1

Adachi_20170907134444.jpg 10.0 3.26 3.26 3.26 7.07 6.53 3.70 3.70 10.0 4.75 4.70 4.70 1

Adachi_20170907134447.jpg 10.0 4.61 3.83 3.83 10.0 5.39 3.04 3.04 7.34 4.48 4.04 4.04 1

Adachi_20170907134508.jpg 10.0 4.45 3.45 3.45 10.0 5.03 3.50 3.50 10.0 5.67 5.67 5.67 1

Adachi_20170907135021.jpg 9.91 4.93 3.12 3.12 8.93 5.42 3.21 3.21 6.32 5.13 5.13 5.13 1

Adachi_20170907140937.jpg 10.0 4.37 3.35 3.35 10.0 6.18 4.11 4.11 5.38 4.78 3.93 3.93 1

Adachi_20170907142138.jpg 10.0 5.85 4.37 4.37 9.89 5.98 4.12 4.12 10.0 5.25 5.25 5.25 1

Adachi_20170907142141.jpg 10.0 5.53 2.50 2.29 6.31 5.86 3.92 3.92 5.03 4.57 4.57 4.57 1

Adachi_20170907142609.jpg 5.12 4.97 3.61 3.61 10.0 6.20 3.65 3.49 6.03 4.82 4.92 4.92 2

Adachi_20170907145734.jpg 5.18 4.35 3.79 3.79 6.90 5.48 4.36 4.36 6.12 4.68 4.68 4.68 2

Adachi_20170907150258.jpg 10.0 10.0 10.0 10.0 9.87 9.87 9.87 9.87 6.05 5.38 5.38 5.38 1

Adachi_20170907151702.jpg 10.0 10.0 2.97 2.97 10.0 9.11 4.90 4.90 5.63 4.94 4.44 4.44 1

Adachi_20170907152141.jpg 7.35 3.86 2.32 2.32 6.50 6.50 4.37 4.37 6.06 3.68 3.43 3.43 1

Adachi_20170907152148.jpg 10.0 10.0 2.52 2.52 6.30 5.88 4.64 4.64 6.21 4.79 3.92 3.86 1

Adachi_20170908093837.jpg 9.87 4.54 2.58 2.58 6.57 6.57 3.10 3.10 10.0 4.82 3.49 3.49 1

Adachi_20170908100005.jpg 8.88 3.01 2.54 2.54 9.89 5.39 2.82 2.82 6.13 4.26 3.69 3.69 1
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Section k

Annotation case i and IoU (Image processing)
Majority ex-
pert gradeI II III

0.7 0.5 0.3 0.1 0.7 0.5 0.3 0.1 0.7 0.5 0.3 0.1

Adachi_20170908100119.jpg 9.72 3.85 3.01 3.01 10.0 5.59 2.99 2.94 6.58 4.25 3.48 3.48 2

Adachi_20170908100151.jpg 7.50 3.06 3.06 3.06 7.88 3.87 2.70 2.70 5.79 3.71 3.54 3.54 2

Adachi_20170908100920.jpg 6.15 4.57 2.68 2.68 10.0 6.42 5.15 5.15 5.93 4.20 3.87 3.87 1

Adachi_20170908100923.jpg 4.98 2.99 2.98 2.98 5.90 5.32 3.88 3.88 5.47 3.97 3.85 3.85 2

Adachi_20170908100939.jpg 8.89 3.66 3.66 3.66 6.57 4.71 3.11 3.11 10.0 5.01 5.01 5.01 1

Adachi_20170908100951.jpg 10.0 4.28 4.22 4.22 7.95 4.70 2.98 2.98 8.09 5.07 5.07 5.07 1

Adachi_20170908101018.jpg 8.29 4.12 4.12 4.12 10.0 4.45 4.45 4.45 10.0 4.59 4.42 4.42 2

Adachi_20170908101024.jpg 10.0 3.95 3.95 3.95 6.18 6.18 4.09 3.39 6.42 4.50 4.36 4.36 2

Adachi_20170908101431.jpg 8.23 5.74 4.40 4.40 10.0 6.53 3.95 3.95 10.0 4.83 4.74 4.74 2

Adachi_20170908103050.jpg 10.0 3.96 2.65 2.65 10.0 5.84 3.27 3.01 10.0 4.36 4.36 4.36 2

Adachi_20170908103330.jpg 8.90 4.40 2.68 2.68 8.86 8.86 4.15 4.08 6.55 5.40 4.42 4.42 2

Adachi_20170908103708.jpg 10.0 3.68 3.68 3.68 9.03 6.54 3.95 3.95 6.63 4.96 3.95 3.95 1

Adachi_20170908103711.jpg 10.0 4.24 3.79 3.79 10.0 5.85 4.62 4.62 5.51 4.59 3.57 3.57 1

Adachi_20170908104001.jpg 7.25 3.21 2.37 2.37 10.0 5.27 3.88 3.88 4.82 4.34 3.09 3.09 2

Adachi_20170908104028.jpg 5.43 2.32 1.66 1.45 6.55 2.81 2.25 2.25 5.04 3.27 3.13 3.13 3

Adachi_20170908104341.jpg 8.47 5.15 5.15 5.15 9.75 6.32 3.64 3.64 9.79 5.17 5.17 5.17 1

Adachi_20170908104437.jpg 7.45 4.24 3.61 3.61 10.0 5.59 3.43 3.43 5.61 4.30 3.96 3.96 1

Adachi_20170908104502.jpg 10.0 4.61 4.40 4.40 6.47 4.69 3.36 3.13 7.71 6.62 5.04 5.04 1

Adachi_20170908104520.jpg 7.54 2.99 2.85 2.85 6.97 4.31 3.17 3.17 5.70 3.40 2.82 2.82 1

Adachi_20170908135014.jpg 10.0 5.62 5.62 5.62 5.59 5.59 3.94 3.94 10.0 5.18 4.57 4.57 1

Adachi_20170908141637.jpg 10.0 7.46 6.02 6.02 9.81 5.43 4.49 4.49 10.0 5.94 5.94 5.94 1

Adachi_20170908142026.jpg 10.0 2.62 2.62 2.62 6.43 6.20 5.07 5.07 10.0 5.33 4.42 4.42 1

Adachi_20170908142138.jpg 10.0 4.51 3.57 2.37 10.0 6.20 4.59 4.59 5.81 4.42 3.46 3.46 1

Adachi_20170908144014.jpg 10.0 3.96 1.95 1.95 10.0 5.71 3.33 3.33 6.55 5.49 4.90 4.90 2

Adachi_20170908144258.jpg 7.68 4.40 3.48 3.48 10.0 6.16 4.29 3.48 7.90 6.04 5.54 5.54 2

Adachi_20170908144401.jpg 5.77 3.03 3.03 3.03 10.0 6.17 4.25 4.25 6.53 4.59 3.96 3.96 2

Adachi_20170908144724.jpg 5.85 3.16 3.10 3.10 10.0 6.18 4.59 4.59 6.30 4.07 4.07 4.07 1

Adachi_20170908150714.jpg 9.85 6.39 2.91 2.91 7.32 4.15 4.05 4.05 9.84 4.23 4.23 4.23 1

Adachi_20170911101139.jpg 10.0 5.01 3.88 3.88 6.26 6.20 2.96 2.96 5.14 4.07 3.40 3.40 1

Adachi_20170911101331.jpg 10.0 3.28 2.62 2.62 10.0 3.71 2.79 2.79 5.22 3.68 3.68 3.68 1

Adachi_20170911101544.jpg 4.89 4.13 3.03 3.03 5.08 2.78 2.78 2.78 6.28 3.62 2.90 2.90 1

Adachi_20170911102454.jpg 10.0 3.92 3.49 3.49 7.07 3.91 3.91 3.66 10.0 5.19 4.71 4.71 1

Adachi_20170911103837.jpg 4.49 3.91 3.87 3.87 10.0 8.88 3.81 3.81 5.36 3.79 3.71 3.71 1

Adachi_20170911112332.jpg 4.79 3.54 3.24 3.24 9.67 4.72 4.39 4.39 9.82 5.54 5.54 5.54 1

Adachi_20170911112605.jpg 10.0 4.29 4.29 4.29 10.0 3.88 3.42 3.42 6.40 5.03 5.03 5.03 2

Adachi_20170912093442.jpg 8.77 5.66 4.02 4.02 9.52 4.45 3.62 3.62 7.39 5.43 3.39 3.39 2

Adachi_20170912152741.jpg 5.60 4.07 3.16 3.16 5.25 4.47 3.35 3.04 6.16 4.34 3.85 3.85 2

Adachi_20170913104249.jpg 5.97 5.97 4.09 4.09 9.92 5.60 3.59 3.59 5.79 4.10 4.07 4.07 1

Adachi_20170913104408.jpg 6.13 3.72 3.72 3.72 6.21 6.00 3.68 3.68 6.31 4.70 4.70 4.70 2

Adachi_20170913105158.jpg 5.68 3.31 2.82 2.82 6.39 5.28 3.22 3.22 5.93 4.31 3.59 3.59 2

Adachi_20170913112957.jpg 6.27 3.80 1.85 1.85 6.65 4.68 4.68 4.68 10.0 4.60 4.36 4.36 2

Adachi_20170913113152.jpg 10.0 5.43 3.36 3.36 10.0 7.20 4.17 4.17 10.0 4.75 4.75 4.75 1

Adachi_20170913113542.jpg 6.16 3.87 2.71 2.71 7.18 6.48 3.82 3.82 6.32 4.62 4.62 4.62 1

Continuation of Table 11
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Section k

Annotation case i and IoU (Image processing)
Majority ex-
pert gradeI II III

0.7 0.5 0.3 0.1 0.7 0.5 0.3 0.1 0.7 0.5 0.3 0.1

Adachi_20170914105125.jpg 10.0 9.91 3.96 3.96 10.0 8.42 5.92 5.92 9.81 5.91 4.57 4.57 1

Adachi_20170914111358.jpg 10.0 4.33 4.33 4.33 10.0 7.25 5.34 5.34 10.0 4.99 4.95 4.95 1

Adachi_20170914141906.jpg 10.0 9.79 4.15 4.15 8.18 6.46 6.46 6.46 10.0 4.87 4.31 3.42 1

Adachi_20170914150611.jpg 5.44 3.49 3.49 3.49 10.0 5.86 2.89 2.89 6.35 4.07 4.07 4.07 1

Adachi_20170914151446.jpg 10.0 4.59 3.68 3.68 10.0 7.43 7.28 7.28 10.0 5.68 3.68 3.68 1

Adachi_20170914155050.jpg 5.11 3.84 3.84 3.84 6.51 6.51 3.99 3.99 10.0 3.60 2.80 2.80 1

Adachi_20170920141001.jpg 10.0 8.89 4.88 4.88 10.0 5.33 3.30 3.30 7.15 3.74 3.47 3.47 1

Adachi_20170920144854.jpg 9.84 5.13 4.63 4.63 9.84 7.19 5.07 5.07 6.71 5.45 5.45 5.45 1

Adachi_20170920144855.jpg 9.85 4.70 4.44 4.44 7.37 5.29 4.20 4.20 6.08 5.31 4.58 4.58 1

Adachi_20170920150338.jpg 4.67 3.76 3.11 3.11 10.0 5.30 4.47 4.47 10.0 4.44 3.48 3.48 2

Adachi_20170920150551.jpg 10.0 3.90 3.68 3.68 5.85 5.85 4.38 4.38 10.0 6.66 3.18 3.18 1

Adachi_20170920150559.jpg 5.06 4.05 3.67 3.67 5.32 5.31 4.38 4.38 10.0 5.84 4.71 4.71 1

Adachi_20170920150923.jpg 10.0 7.27 3.00 3.00 10.0 5.39 4.64 4.64 10.0 4.52 3.13 3.13 1

Adachi_20170921105037.jpg 7.81 6.77 5.28 5.28 10.0 6.62 5.18 5.18 5.51 5.36 4.74 4.74 2

Adachi_20170921111658.jpg 5.72 4.43 3.65 3.65 10.0 5.66 2.42 3.24 10.0 4.93 4.30 4.30 2

Adachi_20170921143215.jpg 10.0 4.39 3.99 3.99 8.89 5.28 2.92 2.92 10.0 6.38 6.38 6.38 1

Adachi_20170921145517.jpg 10.0 4.17 2.90 2.90 5.39 2.73 2.19 2.19 5.86 4.76 3.73 3.73 1
Adachi_20170921155217.jpg 7.02 3.72 2.46 2.46 10.0 9.90 3.95 3.95 5.37 4.34 4.34 4.34 1
mean 8.48 4.80 3.56 3.54 8.48 5.68 3.89 3.86 7.59 4.73 4.18 4.17
Standard deviation 1.93 1.85 1.07 1.08 1.79 1.45 1.08 1.08 1.93 0.71 0.75 0.76

End of  Table 11


