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Abstract. Real-world optimization problems are ubiquitous across scientific domains, and many engineering challenges 
can be reimagined as optimization problems with relative ease. Consequently, researchers have focused on developing opti-
mizers to tackle these challenges. The Snake Optimizer (SO) is an effective tool for solving complex optimization problems, 
drawing inspiration from snake patterns. However, the original SO requires the specification of six specific parameters to 
operate efficiently. In response to this, enhanced snake optimizers, namely ESO1 and ESO2, were developed in this study. 
In contrast to the original SO, ESO1 and ESO2 rely on a single set of parameters determined through sensitivity analysis 
when solving mathematical functions. This streamlined approach simplifies the application of ESOs for users dealing with 
optimization problems. ESO1 employs a logistic map to initialize populations, while ESO2 further refines ESO1 by integrat-
ing a Lévy flight to simulate snake movements during food searches. These enhanced optimizers were compared against the 
standard SO and 12 other established optimization methods to assess their performance. ESO1 significantly outperforms 
other algorithms in 15, 16, 13, 15, 21, 16, 24, 16, 19, 18, 13, 15, and 22 out of 24 mathematical functions. Similarly, ESO2 
outperforms them in 16, 17, 18, 22, 23, 23, 24, 20, 19, 20, 17, 22, and 23 functions. Moreover, ESO1 and ESO2 were applied 
to solve complex structural optimization problems, where they outperformed existing methods. Notably, ESO2 generated 
solutions that were, on average, 1.16%, 0.70%, 2.34%, 3.68%, and 6.71% lighter than those produced by SO, and 0.79%, 
0.54%, 1.28%, 1.70%, and 1.60% lighter than those of ESO1 for respective problems. This study pioneers the mathematical 
evaluation of ESOs and their integration with the finite element method for structural weight design optimization, estab-
lishing ESO2 as an effective tool for solving engineering problems.

Keywords: steel structural design, finite element analysis, metaheuristic algorithm, enhanced optimizer, benchmark func-
tions.

Introduction

Real-world optimization problems pervade almost eve-
ry scientific domain, and many engineering challenges 
can readily be transformed into optimization problems 
(Podolski & Sroka, 2019; Ji et  al., 2020; Es-Haghi et  al., 
2022). These problems pose significant challenges, often 
involving nonlinearity, multiple objectives, discontinuities, 
high dimensions, uncertainties, and non-convex regions 
(Cheng & Cao, 2016). Metaheuristic optimization algo-
rithms, constituting a branch of approximate optimization 
techniques, have become one of computer science’s most 
active research areas in recent years (Xue & Chen, 2019; 
Chou & Truong, 2021). These techniques excel at finding 

optimal or near-optimal solutions for complex optimiza-
tion problems, including nondeterministic polynomial 
time (NP) problems, all within a reasonable computa-
tional timeframe (Gao et al., 2022).

Metaheuristics have found diverse applications in en-
gineering due to their ease of design and implementation, 
their independence from gradient information during the 
optimization process, and their applicability to a wide ar-
ray of optimization problems (Yang, 2010b). The crux of 
metaheuristics lies in two fundamental factors: explora-
tion and exploitation. Exploration signifies the search al-
gorithm’s capacity to unearth novel solutions in remote 
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corners of the search space. In contrast, exploitation in-
volves the algorithm’s prowess in discovering fresh solu-
tions within regions that have demonstrated promise.

The Snake Optimizer, developed by Hashim and 
Hussien in 2022 (Hashim & Hussien, 2022), is rooted in 
the behavioral patterns of snakes, illustrated in Figure 1. 
Snakes engage in food hunting and mating during late 
spring and early summer when temperatures are low. 
However, mating is contingent upon factors beyond just 
temperature and food availability. In situations where the 
temperature is low and food is abundant, rival male snakes 
engage in combat to capture the attention of a female. The 
female, in turn, selects her mate. Upon successful mating, 
the female lays eggs in a nest or burrow before leaving 
promptly.

Snake optimization, a potent tool for solving complex 
optimization problems, grapples with the challenge of 
setting its algorithmic parameters, C1, C2, C3, Threshold1, 
Threshold2 and Threshold3 (Hashim & Hussien, 2022). 
This intricate parameter configuration impedes the prac-
tical application of SO. To surmount these limitations in-
herent in the basic SO algorithm, this study introduces 
two innovative variants: the Enhanced Snake Optimizers 
(ESO1 and ESO2), requiring only one parameter to be set. 
To accomplish this goal, ESO1 employs a logistic map to 
initialize populations, while ESO2 enhances ESO1 further 
by integrating a Lévy flight, simulating snake movements 
during food searches. This parameter value was deter-
mined through sensitivity analysis conducted during the 
solution of mathematical functions.

To showcase the efficiency and prowess of the En-
hanced Snake Optimizers (ESOs), we evaluate their per-
formance on 24 mathematical functions (CEC-2022 func-
tions) and five structural weight design problems taken 
from the literature. These design problems include the 
47-bar power transmission tower, 72-bar tower, 672-bar 
double-layer grid, 1520-bar double-layer grid, and 1536-
bar double-layer barrel vault problems. The outcomes are 
meticulously compared with results obtained using vari-
ous other renowned optimizers. The findings demonstrate 
that the proposed ESOs outperform the standard Snake 
Optimizer (SO) and different well-known metaheuristic 
algorithms when solving mathematical benchmark func-
tions and structure design problems.

The subsequent sections of this paper are structured 
as follows: Section 1 reviews the classification of meta-
heuristic algorithms, the original snake optimizer, refined 
techniques for metaheuristic optimization, and their ap-
plications in solving structural design problems. Section 
2 introduces the Enhanced Snake Optimizer algorithm. 
Section 3 presents the results of numerical experiments 
using ESOs to solve mathematical functions. Section 4 ex-
plores the application of ESOs in addressing five specific 
structural engineering problems. Section 5 delves into the 
discussion of results from both the mathematical tests and 
structural applications. Final section draws conclusions 
based on the findings presented in this study.

1. Literature review 

1.1. Classification of metaheuristic optimizer

Metaheuristic optimizers can be categorized into four 
classes, as shown in Figure 2: evolutionary-based algo-
rithms, swarm intelligence-based algorithms, physical and 
chemical-based algorithms, and human-based algorithms 
(Zhao et al., 2019; Askari et al., 2020).

Evolutionary-based algorithms (EAs) are stochastic 
population-based algorithms inspired by nature and uti-
lizing genetic principles, including selection, crossover, 
mutation, and elimination. Examples of EAs include the 
genetic algorithm (GA) (Holland, 1992), evolutionary 
strategies (ES) (Beyer & Schwefel, 2002), differential evo-
lution (DE) (Rocca et al., 2011), and biogeography-based 
optimization (BBO) (Simon, 2008).

Swarm intelligence (SI) algorithms are characterized 
by decentralization, shape-formation, and self-organiza-
tion, inspired by the natural behavior of colonies of birds, 
insects, fishes, horses, and other animals. The most re-
nowned examples of SI algorithms include the particle 
swarm algorithm (PSO) (Kennedy & Eberhart, 1995), ant 
colony optimization (ACO) (Dorigo et al., 2006), artificial 
bee colony (ABC) (Karaboga & Basturk, 2007), cuckoo 
search (CS) (Gandomi et  al., 2013), bat algorithm (BA) 
(Yang & Hossein, 2012), firefly algorithm (FA) (Yang, 
2010a), and jellyfish search optimizer (JS) (Chou & Tru-
ong, 2021).

Figure 1. Life-cycle of a snake

Start Snake
group End Best

snake

1 Search for food 3 Fight each other

4 Mate each other5 Lay eggs

2 Hunt food



Journal of Civil Engineering and Management, 2023, 29(8): 757–786 759

Physical and chemical-based algorithms simulate 
natural physical phenomena or chemical laws. This class 
encompasses several algorithms, including simulated an-
nealing (SA) (Kirkpatrick et  al., 1983), the gravitational 
search algorithm (GSA) (Rashedi et al., 2009), chemical 
reaction optimization (CRO) (Lam & Li, 2010), big bang–
big crunch (BBBC) (Erol & Eksin, 2006), charged system 
search (CSS) and magnetically charged system search 
(MCSS) (Kaveh & Talatahari, 2010), ray optimization 
(RO) (Kaveh & Khayatazad, 2012), atom search optimiza-
tion (ASO) (Zhao et al., 2019), the vortex search algorithm 
(VSA) (Doğan & Ölmez, 2015), water evaporation optimi-
zation (WEO) (Kaveh & Bakhshpoori, 2016), the lighting 
search algorithm (LSA) (Shareef et al., 2015), and others.

The last category of metaheuristic algorithms under 
consideration is human-based algorithms, which draw 
inspiration from human activities, both physical and 
non-physical, encompassing cognitive processes and so-
cial behaviors. This class includes a variety of algorithms 
such as the teaching–learning based optimization (TLBO) 
algorithm (Rao et al., 2011), the ideology algorithm (IA) 
(Huan et al., 2017), the socio-evolution and learning op-
timization (SELO) algorithm (Kumar et  al., 2018), the 
cognitive behavior optimization algorithm (COA) (Li 
et al., 2016), human mental search (HMS) (Mousavirad & 
Ebrahimpour-Komleh, 2017), the cultural algorithm (CA) 
(Omran, 2016), the forensic-based investigation (FBI) al-
gorithm (Chou & Nguyen, 2020), poor and rich optimi-
zation (PRO) (Samareh Moosavi & Bardsiri, 2019), the 
student psychology-based optimization algorithm (SPBO) 
(Das et al., 2020), search and rescue optimization (SAR) 
(Shabani et al., 2020), and the arithmetic optimization al-
gorithm (AOA) (Abualigah et al., 2021).

1.2. Snake optimization algorithm 

Snake Optimization (SO) stands for the “Snake Opti-
mizer”, inspired by the mating behavior of snakes. Snakes 

mate when the temperature is low and food is available; 
otherwise, they focus solely on searching for food or con-
suming it (Hashim & Hussien, 2022). The search process 
in SO comprises two phases: exploration and exploitation. 
Exploration takes place only under specific environmental 
conditions, such as the right temperature and the presence 
of food. If these conditions are unmet, the snake focuses 
solely on searching for food. Exploitation involves several 
transitional phases aimed at reaching the optimal solution 
more efficiently.

If food is available but the temperature is high, snakes 
focus solely on consuming the available food. When food 
is available and the temperature is low, mating takes place. 
The mating process involves both fighting and mating. 
During the fighting stage, each male competes to attract 
the best female, while each female attempts to select the 
best male. In the mating stage, pairs mate based on the 
availability of food quantity. If successful mating occurs, 
the female may lay eggs that will eventually hatch. The 
subsequent subsections concisely introduce the algorith-
mic formulation presented by Hashim and Hussien (2022).

1.2.1. Initialization
SO starts by generating a random population with a uni-
form distribution to execute the optimization algorithm: 

( ) ( )i b b bx L rand 0,1 U L ,= + × −  (1)

where xi is the position of the ith individual; rand (0,1) is 
a random number between 0 and 1, and Lb and Ub are the 
lower and upper bounds on the problem.

1.2.2. Diving the swarm into two equal groups:  
males and females
SO assumes that 50% of the population is male and 50% 
is female:

( )m
NN
2

≈ ; (2)

Figure 2. Classification of metaheuristic optimizers
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( ) ( )f mN N N≈ − , (3)

where N is the number of individuals; N(m) denotes the 
numbers of males and N(f) represents the number of fe-
males.

1.2.3. Evaluate each group and define  
temperature and food quantity
Find the best individual in each group and identify the 
best male (f(m)best), the best female (f(f)best) and the posi-
tion of the food (ffood). Temperature (Temp) is defined 
using the following equation:

tTemp exp ,
T
− 

=  
 

  (4)

where t denotes the current iteration and T is the maxi-
mum number of iterations.

Food quantity (Q) is defined by the following equa-
tion:

1
t TQ C exp ,

T
− = ×  

 
  (5)

where C1 is a constant and equals 0.5.

1.2.4. Exploration phase (no food)

Step 1: If Q < Threshold1 (Threshold1 = 0.25), then the 
snakes search for food by updating their position to a ran-
domly chosen one. The exploration phase is modeled as 
follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 b b bm i m rand mt 1 t C A U L rand 0,1 L ,+ = ± × × − × +x x   

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 b b bm i m rand mt 1 t C A U L rand 0,1 L ,+ = ± × × − × +x x
  

(6)

where x(m)i  is the position of the ith male; x(m)rand is the 
position of a random male; rand (0,1) is a random number 
between 0 and 1, and A(m) is the ability of a male to find 
food, which is calculated as follows:

( )
( )( )
( )( )
m rand

m
m i

f
A exp ,

f

 − 
=  

 
 

x

x
  (7)

where f(x(m)rand)  is the fitness at  x(m)rand; f(x(m)i)  is the 
fitness of the ith male and C2 is a constant and equals 0.05.

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 b b bf i f rand ft 1 X t C A U L rand 0,1 L ,+ = ± × × − × +x x   

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 b b bf i f rand ft 1 X t C A U L rand 0,1 L ,+ = ± × × − × +x x
  

(8)

where  x(f)i  is the position of the ith female,  x(f)rand  rep-
resents the position of a random female;  rand (0,1)  is a 
random number between 0 and 1, and A(f)  is the ability 
of a female to find food, which is calculated as follows:

( )
( )( )
( )( )
f rand

f
f i

f
A exp ,

f

 − 
=  

 
 

x

x
  (9)

where f(x(f)rand)  is the fitness at x(f)rand and f(x(f)i)  is the 
fitness of the ith female in the group.

1.2.5. Exploitation phase (food exists)

Step 2: If Q > Threshold1 (Threshold1 = 0.25) and if tem-
perature Temp > Threshold2 (Threshold2 = 0.6), then the 
snakes are hot and will move toward food:

( ) ( ) ( ) ( ) ( )( )i, j food,j 3 food,j i, jx t 1 x t C Temp rand 0,1 x t x t ,+ = ± × × × −  

( ) ( ) ( ) ( ) ( )( )i, j food,j 3 food,j i, jx t 1 x t C Temp rand 0,1 x t x t ,+ = ± × × × −
  

(10)

where  xi,j  is the position of the individual (male or fe-
male); xfood is the position of the best individuals, and C3 is 
a constant and equals 2.0. If temperature Temp < Thresh-
old2 (Threshold2 = 0.6), then the snakes are cold and will 
be in either fight mode or mating mode. 

Step 3: If rand (0,1) > Threshold3 (Threshold3 = 0.6), 
then the snakes will be in fight mode:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3m i m i f best m it 1 t C FM rand 0,1 Q t t ,+ = + × × × × −x x x x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3m i m i f best m it 1 t C FM rand 0,1 Q t t ,+ = + × × × × −x x x x
  

(11)

where  x(m)i  is the position of the ith male;  x(f)best  is the 
position of the best female in the group, and  FM  is the 
ability of a male to fight:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3f i f i m best f it 1 t C FM rand 0,1 Q t t ,+ = + × × × × −x x x x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3f i f i m best f it 1 t C FM rand 0,1 Q t t ,+ = + × × × × −x x x x
  

(12)

where x(f)i is the position of the ith female, x(m)best repre-
sents the position of the best male in the group, and FF is 
the ability of the female to fight. FM and FF can be calcu-
lated as follows: 

( )( )
( )( )
f best

m i

f
FM exp ;

f

 − 
=  

 
 

x

x
  (13)

( )( )
( )( )
m best

f i

f
FF exp ,

f

 − 
=  

 
 

x

x
  (14)

where f(x(f)best)  is the fitness of the best female;  f(x(m)
best) is the fitness of the best male, and f(x(f)i) or f(x(m)i) is 
the fitness of an individual female or male, respectively.

Step 4: If rand (0,1) < Threshold3 (Threshold3 = 0.6), 
then the snakes are in mating mode:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3m i m i m f i m it 1 t C M rand 0,1 Q t t ;+ = + × × × × −x x x x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3m i m i m f i m it 1 t C M rand 0,1 Q t t ;+ = + × × × × −x x x x
                    

(15)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3f i f i f m i f it 1 t C M rand 0,1 Q t t ,+ = + × × × × −x x x x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3f i f i f m i f it 1 t C M rand 0,1 Q t t ,+ = + × × × × −x x x x
  

(16)

where x(f)i is the position of ith female in the group; x(m)i  
is the position of the  ith male in the group and M(m) & 
M(f) are the mating abilities of a male and a female, re-
spectively, which calculated as follows:
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=  
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Step 5: If an egg hatches, the worst male and female 
are replaced:

( ) ( ) ( )b b bm worst L rand 0,1 U L ;= + × −x   (19)

( ) ( ) ( )b b bf worst L rand 0,1 U L ,= + × −x   (20)

where x(m)worst is the worst male and x(f)worst is the worst 
female. 

1.2.6. Checking terminating conditions

The process continues iteratively; if the stop criterion is 
satisfied, the process terminates.

1.3. Enhanced techniques for  
metaheuristic optimization

In recent decades, numerous metaheuristic optimizers 
have been developed to tackle optimization problems. 
However, these optimizers often require more coverage, 
impose constraints on the number of dimensions they can 
handle, and face challenges in balancing exploration and 
exploitation. As a result, many scholars have concentrated 
on enhancing these optimizers using various techniques 
to overcome these limitations. Below is a review of how 
prior literature has employed various efficient operational 
mechanisms to refine existing metaheuristic algorithms.

Arafa et al. (2014) enhanced the Differential Evolution 
(DE) algorithm by incorporating separate tuning process-
es for population size and a mutation-scaling factor; the 
crossover rate is implicitly handled during the crossover 
stage of the DE. A comparison between the original DE and 
the Success-History-based Adaptive DE (SHADE), a state-
of-the-art DE algorithm, illustrates the superiority of the 
proposed approach for most of the considered functions.

Joshi and Arora (2017) introduced an Enhanced Grey 
Wolf Optimization (EGWO) algorithm, which incorpo-
rates an improved hunting mechanism compared to the 
original Grey Wolf Optimization (GWO). This enhance-
ment effectively balances exploration and exploitation, 
optimizing the algorithm’s performance and generating 
promising candidate solutions. Simulation results show 
that the proposed algorithm outperforms several well-
known algorithms in mathematical tests. When applied to 
real-world problems with unknown search spaces, the re-
sults highlight the effectiveness of the proposed algorithm.

Chou and Ngo (2017) developed the Modified Firefly 
Algorithm (MFA) for multidimensional structural design 
optimization. In MFA, logistic chaotic maps generate a di-

verse initial population, and Gauss/mouse maps fine-tune 
the Firefly Algorithm’s attractiveness parameter, adaptive 
inertia weight manages local exploitation and global ex-
ploration during the search process, and Lévy flight is uti-
lized for exploitation. Experimental results demonstrated 
that the proposed MFA is more efficient and effective than 
the compared algorithms in solving mathematical func-
tions and addressing three multidimensional structural 
design optimization problems.

Kamoona et  al. (2018) introduced the Enhanced 
Cuckoo Search (ECS) algorithm, which integrates Gauss-
ian diffusion random walks and greedy selection into 
its methodology. In contrast to employing Lévy flights 
random walks, ECS utilizes Gaussian diffusion random 
walks to enhance the local search process. Additionally, 
incorporating greedy selection ensures that ECS can find 
the optimal solution. Through mathematical tests, ECS 
has demonstrated outstanding performance, achieving 
optimal values with a higher convergence speed than the 
Cuckoo Search (CS) and recent Adaptive Cuckoo Search 
(ACS) algorithms.

Ramli et al. (2019) improved the Bat Algorithm by ad-
justing its number of dimensions and introducing an iner-
tia weight. Mathematical tests showed that these modifica-
tions, involving changes in dimensionality and the addi-
tion of an inertia weight factor, significantly enhanced the 
effectiveness of the Bat Algorithm compared to its original 
version. These enhancements improved the results’ quality 
and the algorithm’s convergence speed.

Li and Han (2020) enhanced the Fruit Fly Optimi-
zation Algorithm for truss structure optimization by in-
tegrating the immune algorithm’s self-non-self-antigen 
recognition mechanism and the immune system’s learn-
memory-forgetting knowledge processing mechanism. 
Optimization test results and comparisons with other 
algorithms demonstrated that the improved Fruit Fly 
Optimization Algorithm exhibited increased stability and 
exceptional efficiency in solving structural optimization 
problems.

Sabbah (2020) introduced an Enhanced Genetic Algo-
rithm (EGA) inspired by Genetic Engineering and based 
on the Genetic Algorithm (GA). In EGA, the process of 
chromosome generation is modified based on the inter-
correlation between genes, treating highly correlated genes 
differently. The proposed Enhanced Genetic Algorithm 
(EGA) was employed to optimize classifications using the 
Support Vector Machine (SVM) on the popular “Spam-
base” dataset.

Kaveh et al. (2021) developed the Enhanced Forensic-
Based Investigation (EFBI) by modifying the original for-
mulation of the FBI algorithm. EFBI enhances communi-
cation between investigation and pursuit teams to balance 
intensification and diversification tasks better. EFBI was 
applied to solve three structural optimization problems. 
The results confirmed that EFBI significantly outperforms 
the original FBI and exhibits performance superior to or 
comparable with other considered metaheuristics.
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Makiabadi and Maheri (2021) introduced the En-
hanced Symbiotic Organism Search (ESOS) algorithm to 
enhance the exploitative capabilities of the SOS algorithm. 
The ESOS algorithm was implemented with two constraint 
handling methods – the Mapping Strategy (MS) and the 
Penalty Function (PF) – resulting in two ESOS variants: 
ESOS-MS and ESOS-PF. These variants were employed to 
optimize the weights of four benchmark truss structures. 
The results demonstrated that the proposed ESOS vari-
ants outperformed other algorithms and provided faster 
solutions.

Yıldızdan and Baykan (2021) made modifications to 
the Artificial Jellyfish Search Algorithm. In their adapt-
ed version, two additional search strategies were incor-
porated, enhancing the active motion component of the 
Artificial Jellyfish Search Algorithm. This modification 
prolonged population diversity, resulting in superior per-
formance in mathematical tests compared to the standard 
algorithm. The proposed algorithm demonstrated compet-
itiveness with other algorithms in the existing literature.

Hu et  al. (2022) developed an Enhanced Hybrid 
Arithmetic Optimization Algorithm (AOA) known as 
CSOAOA, which integrated the Point Set Strategy, Op-
timal Neighborhood Learning Strategy, and Crisscross 
Strategy to overcome deficiencies in the original AOA. 
These enhancements addressed challenges such as insuf-
ficient exploitation, susceptibility to local optima, and low 
convergence accuracy in large-scale applications. Experi-
mental results and statistical comparisons demonstrated 
that CSOAOA outperformed other algorithms in terms of 
precision, convergence rate, and solution quality based on 
mathematical testing.

1.4. Use of metaheuristic in solving  
structural problem

Structural optimization problems involve highly non-con-
vex and nonlinear design spaces with hundreds of design 
variables and constraints (Ficarella et al., 2021). Gradient-
based optimizers may need improvement when applied to 
solve these problems, as they often get stuck in local op-
tima. Moreover, evaluating gradients and defining search 
directions become computationally expensive when the 
optimization problem includes numerous design variables.

The random generation of trial designs enables the ex-
ploration of more significant fractions of the search space 
than local approximations in gradient-based optimization 
allow (Ficarella et al., 2021). However, a random search 
often leads to many analyses producing only marginal 
design improvements or even generating unfeasible trial 
designs. To streamline the search process, metaheuristic 
optimization methods have been developed, and these 
methods have found successful applications in various 
fields of science and engineering.

Comprehensive reviews of the applications of meta-
heuristic optimization algorithms to structural design 

problems and critical assessments of the relative advan-
tages of various methods can be found elsewhere (Kaveh 
& Ilchi Ghazaan, 2018a, 2018c; Kaveh et al., 2021). Addi-
tionally, many studies have compared the performances of 
metaheuristic algorithms in solving specific optimization 
problems, including those involving large-scale and real-
size truss structures and steel frames (Hasançebi et  al., 
2009, 2010), reinforced concrete frames (Aydogdu et al., 
2017), cellular beams (Erdal et al., 2011), layout optimiza-
tion, and optimization under frequency constraints (Tru-
ong & Chou, 2023), as well as tensegrity structures (Do 
et al., 2016).

According to the literature, metaheuristic algorithms 
have become standard for solving engineering problems 
(Ficarella et al., 2021). Their ease of implementation and 
the rapidly increasing computational power allow pop-
ulation-based algorithms to run on traditional comput-
ers. Since virtually all metaheuristic algorithms employ a 
population of candidate designs, their main limitation lies 
in the large number of function evaluations and structural 
analyses required in the search process. To overcome this 
limitation, researchers have developed hybrid formula-
tions that combine either two or more metaheuristic al-
gorithms (Hwang & He, 2006; Ficarella et  al., 2021) or 
metaheuristic search with gradient-based optimization 
(Fesanghary et  al., 2008) and approximate line search 
(Pholdee & Bureerat, 2012).

Truong and Chou (2023) enhanced a forensic-based 
investigation algorithm by integrating fuzzy logic to opti-
mize frequency-constrained structural dome designs. This 
modified version, the Fuzzy Adaptive Forensic-Based In-
vestigation (FAFBI), was applied to optimize the weight of 
steel dome structures under specific frequency constraints. 
Optimization results showed that FAFBI surpassed exist-
ing methods in the literature, enabling the identification 
of lighter domes that still met the required frequency con-
straints.

According to the “no free lunch” theorem, no meta-
heuristic algorithm outperforms all other algorithms in 
solving all optimization problems. Unlike gradient-based 
optimizers, which are still used as optimization tools in 
commercial software despite their formulations remaining 
essentially unchanged for almost 30 years, most newly de-
veloped metaheuristic algorithms have added very little to 
the practice of optimization, and their appeal disappears 
after a few years (Ficarella et al., 2021). This situation sug-
gests that instead of proposing new metaheuristic algo-
rithms that marginally improve upon existing methods, it 
is crucial to enhance the most common algorithms signifi-
cantly. This enhancement aims to make them competitive 
with gradient-based optimizers in terms of computational 
cost while preserving the inherent ability of metaheuristic 
optimizers to explore the design space globally. Therefore, 
this work focuses on developing the enhanced snake opti-
mization algorithm.
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2. Enhanced snake optimization

2.1. Mechanism of enhanced snake optimization 

2.1.1. Generating diverse initial  
populations using a logistic map
The initial location in the search space is commonly se-
lected at random. The logistic map was initially developed 
by May (1976) and is used herein to initialize the initial 
population (Chou & Truong, 2021); it is given by Eqn (21):

( )i 1 i i 0x x 1 x ,  0 X 1,+ = h − ≤ ≤   (21)

where xi is the position of ith member; x0 is the initial 
population, ( ) { }0 0x 0,1 ,  x   0.0,  0.25,  0.75,  0.5,  1.0∈ ∉ ; and 
h is set to 4.0.

2.1.2. Lévy flight to accelerate convergence 
Lévy flight has been used to accelerate the convergence 
of metaheuristic optimization algorithms and escape from 
local optima (Yang & Deb, 2009). Equation (22) provides 
the step length of s in Lévy flight: 

1
uLévy ~ s  ,0 2.

v τ
= < τ ≤  (22)

Suppose variables u and v are assumed to be normally 
distributed, then:

( ) ( )2 2
u vu ~ N 0, ,v ~ N 0, ;s s   

( ) ( )
( )

1

u v
1 /2

1 sin / 2
, 1

1 2
2

τ

τ−

 
 Γ + τ πτ s = s = 

+ τ  Γ τ    

, τ is set to 1.5.

Here, Γ(z) is the Gamma function:

( ) z 1 t
0

z t e dt.
∞

− −Γ = ∫
2.1.3. Evaluate each group and define  
temperature and quantity of food
Since the temperature and quality of food change random-
ly as determine by environmental factors, Eqns (4) and (5) 
are revised to Eqns (23) and (24), respectively:

( ) tTemp rand 0,1 exp ;
T
− = ×  

 
  (23)

( ) t TQ rand 0,1 exp ,
T
− = ×  

 
  (24)

where t is the current iteration; T represents the maximum 
number of iterations, and rand (0,1) is a random number 
between 0 and 1.

2.1.4. Exploration phase (no food)
Step 1: To switch between the behaviors of snakes, a 
threshold food quality is a randomly selected rand (0,1).
When Q < rand (0,1), the snakes search for food by updat-
ing their position to any randomly selected one. Suppose 
this exploration phase is assumed to reduce by the time 

(t), Eqns (6) and (8) are adjusted to Eqns (25) and (26), 
respectively:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )t
b b bm i m rand mx t 1 x t A rand 0,1 U L rand 0,1 L ,α×+ = ± × × − × +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )t
b b bm i m rand mx t 1 x t A rand 0,1 U L rand 0,1 L ,α×+ = ± × × − × +

  
(25)

where α is the coefficient of motion of the snake, and the 
sensitivity of α from the mathematical function in Section 
3.3 shows that α = 0.1 is preferred for solving optimization 
problems; x(m)i  is the position of the ith male, x(m)rand  is 
the position of a random male;  rand (0,1)  is a random 
number between 0 and 1, and A(m) is the ability of a male 
to find the food, which is calculated using Eqn (7), above: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )t
b b bf i f rand fx t 1 x t A rand 0,1 U L rand 0,1 L ,α×+ = ± × × − × +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )t
b b bf i f rand fx t 1 x t A rand 0,1 U L rand 0,1 L ,α×+ = ± × × − × +

  
(26)

where α is the coefficient of motion of the snake, and the 
sensitivity of α from the mathematical function in Section 
3.3 shows that α =0.1 is the best value for solving optimi-
zation problem; x(f)i  is the position of the  ith female; x(f)
rand is the position of a random female; rand (0,1) is a ran-
dom number between 0 and 1, and A(f) is the ability of a 
female to find food, which is calculated by Eqn (9) above.

2.1.5. Exploitation phase (food exists)
Step 2: Similar to Threshold1, Threshold2 for switching 
between hot and cool is set to a rand (0,1) number. If Q >  
rand (0,1) and the temperature Temp > rand (0,1), then 
the snake is hot and will only move toward food. This ex-
ploitation step is simulated by searching around the cur-
rent best (xfood). As a result, Eqn (10) has been revised to 
Eqn (27):

( ) ( )( ) ( ) ( )( )i, j food,j food,j i, jx t 1 x 2 rand 0,1 0.5 x t x t .+ = + × − × −  

( ) ( )( ) ( ) ( )( )i, j food,j food,j i, jx t 1 x 2 rand 0,1 0.5 x t x t .+ = + × − × −
  

(27)

Lévy flight simulates this motion to enhance exploita-
tion (Zhou et al., 2018; Wu et al., 2023). Thus, Eqn (27) is 
revised to Eqn (28):

( ) ( ) ( )( ) ( )i, j food,j food,j i, jx t 1 x x t x t Lévy s ,+ = + − ⊗   (28)

where xi,j is the position of an individual (male or female), 
and xfood is the position of the best individuals.

When the temperature (1  – Temp)  >  rand (0,1), the 
snake is in a cool state and can be either in fight mode or 
mating mode. 

Step 3: Fight mode Eqn (11) and Eqn (12) are revised 
to Eqn (29) and Eqn (30), respectively, as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )m i m i f best m ix t 1 x t FM rand 0,1 Q x t x t ,+ = + × × × − 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )m i m i f best m ix t 1 x t FM rand 0,1 Q x t x t ,+ = + × × × −
  

(29)

where  x(m)i  is the position of the ith male; x(f)best  is the 
position of the best female, and FM is the fighting ability 
of a male.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )f i f i m best f ix t 1 x t FM rand 0,1 Q x t x t ,+ = + × × × −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )f i f i m best f ix t 1 x t FM rand 0,1 Q x t x t ,+ = + × × × −
  

(30)
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where x(f)i  is the position of the ith female, x(m)best  is the 
position of the best male, and FF is the fighting ability of 
a female. FM and FF can be calculated using Eqns (13) 
and (14), above. 
Step 4: Mating mode Eqn (15) and Eqn (16) are revised to 
Eqn (31) and Eqn (32), respectively, as follows:

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )m i m i m f i m ix t 1 x t 2 rand 0,1 0.5 M Q x t x t ;+ = + × − × × × −  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )m i m i m f i m ix t 1 x t 2 rand 0,1 0.5 M Q x t x t ;+ = + × − × × × −
  

(31)

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )f i f i f m i f ix t 1 x t 2 rand 0,1 0.5 M rand 0,1 Q x t x t ,+ = + × − × × × × −  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )f i f i f m i f ix t 1 x t 2 rand 0,1 0.5 M rand 0,1 Q x t x t ,+ = + × − × × × × −( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )f i f i f m i f ix t 1 x t 2 rand 0,1 0.5 M rand 0,1 Q x t x t ,+ = + × − × × × × −
  

(32)

where  x(f)i  is the position of the ith  female;  x(m)i  is the 
position of the  ith male and M(m) & M(f) are the mating 
abilities of a male and a female, respectively, which can be 
calculated using Eqns (17) and (18), above.

Step 5: Finally, the egg hatches, and this phenomenon is 
simulated as Eqns (19) and (20), above.

2.2. Pseudo-code of enhanced snake optimization

The two primary phases of a metaheuristic algorithm 
are exploration and exploitation (Chou & Truong, 2021; 
Truong & Chou, 2023). In SO, the exploration phase ob-
tains every snake’s search for food, and when food exists, 
each snack moves toward food only. In the exploitation 
phase, the snakes fight, mate with each other, and lay eggs. 

This study introduces two versions of ESO, namely 
ESO1 and ESO2. ESO1 employs a logistic map to initial-
ize diverse populations, while ESO2 further incorporates a 
Lévy flight during the food searching (Step 2) to enhance 
ESO1’s exploitation ability. Compared to the original SO, 
ESO1 and ESO2 have only one specific parameter to con-
figure: the coefficient of motion of the snake in Eqns (25) 
and (26), denoted as α, as depicted in Figure 3.

Begin
Initialize Problem Setting: Number of dimensions (Dim); Objective function (f); Lower and upper bounds: (Lb, Ub); Population: 
(N); Maximum number of iterations: (T)
Initialize the population using a logistic map according to Eqn (21) (Original equation is Eqn (1))
Divide population N into two equal groups, N(m) and N(f) using Eqns (2) and (3)
While (t ≤ T) do 

Evaluate each group N(m) and N(f)
Find best male f(m)best; best fermale f(f)best
Define temp using Eqn (23) (Original equation is Eqn (4))
Define food quantity (Q) using Eqn (24) (Original equation is Eqn (5))
If (Q < rand (0,1) then (Original formula is Q < 0.25)

# Step 1:
Calculate ability to find the food A(m), A(f) using Eqns. (7) and ( 9)
Perform exploration using Eqns (25) and (26) (Original equations are Eqns (6) and (8))

Else if (Temp (rand > 0,1)) then (Original formula is Temp > 0.6)
# Step 2 

(ESO1): Perform exploitation Eqn (27) (Original equation is Eqn (10))
(ESO2): Perform exploitation Eqn (28) (Original equation is Eqn (10))

Else
If (1-Temp)>rand(0,1), then (Original formula is rand > 0.6)
# Step 3:

Calculate the fighting abilities of male FM and female FF using Eqns (13) and (14)
Snakes in fight mode by Eqns (29) and (30) (Original equations are Eqns (11) and (12))

Else
# Step 4:
Calculate mating abilities of male M(m) and female M(f) using Eqns (17) and (18)
Snakes in mating mode by Eqns (31) and (32) (Original equations are Eqns (15) and (16))
# Step 5:
Change the worst male and female using Eqns (19) and (20)

End if
End if

End while
Return the best solution

End

Figure 3. Pseudo-code of ESOs
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3. Solving mathematical functions

3.1. Benchmarking test of optimization algorithms

The proposed algorithm is evaluated with 13 well-known 
metaheuristic optimizers (ABC (Karaboga & Basturk, 
2007), CA (Omran, 2016), DE (Storn & Price, 1997), FA 
(Yang, 2010a), GA (Holland, 1992), HS (Zong Woo et al., 
2001), JAYA (Rao, 2016), PSO (Kennedy & Eberhart, 
1995), SA (van Laarhoven & Aarts, 1987), SO (Hashim 
& Hussien, 2022), SOS (Cheng & Prayogo, 2014), TLBO 
(Rao et al., 2011), and GWO (Mirjalili et al., 2014)), and 
24 mathematical functions with ten and 20 dimensions 
that are taken from the IEEE CEC-2022 special section, 
detail of these functions are presented in Table A1 (Ap-
pendix, A) (Kumar et al., 2021). Thirty independent runs 
were carried out for each benchmark function to eliminate 
stochastic discrepancy (Chou & Truong, 2021). 

3.2. Wilcoxon rank sum test

The performance of the proposed algorithm is compared 
with that of each peer algorithm at a significance level of 
1%. If the performance of ESO1 or ESO2 is m1 and that of 
each peer algorithm is m2, then the hypotheses concerning 
the performance metrics are (Derrac et al., 2011):

0 1 2
1 1 2

H   :   is equivalent to  
H  :  is better than      

m m
 m m

. (33)

Figure 4. Box plots for effects of motion coefficient (α) 
 on the optimal value for ESO1

a) Box plots for effects of motion coefficient (α) on the optimal value of F3

b) Box plots for effects of motion coefficient (α) on the optimal value of F6

c) Box plots for effects of motion coefficient (α) on the optimal value of F9

d) Box plots for effects of motion coefficient (α) on the optimal value of F12

Figure 5. Box plots for effects of motion coefficient (α)  
on the optimal value for ESO2

3.3. Motion coefficient (α) of enhanced  
snake optimization 

The motion coefficient α (in Eqns (25) and (26)) affects 
the objective function value in solving optimization prob-
lems. Four mathematical functions (F3, F6, F9, and F12 
with dimension = 20) were used to evaluate the appropri-
ate value of the motion coefficient. In this investigation, α 
was set to various values (case 1 (α = 0.01), case 2 (α = 
0.1), case 3 (α = 0.2), case 4 (α = 0.3), case 5 (α = 0.4), 
case 6 (α = 0.5), case 7 (α = 0.6), case 8 (α = 0.7), case 9 
(α = 0.8), case 10 (α = 0.9), and case 11 (α = 1.0)). 

The population size and the number of iterations are 
50 and 1,000, respectively. ESO1 and ESO2 were execut-
ed 30 times for each case, generating the statistical box 
plots in Figures 4 and 5. In all four problems for ESO1 
and ESO2, case 2 (α = 0.1) exhibits a smaller interquartile 
range and a lower median than the other cases. Figures 4 
and 5 show that case 2 consistently yields a more stable 
global optimum. Consequently, α = 0.1 was chosen as the 
motion coefficient to solve these problems.

3.4. Comparison of algorithms  
for solving benchmark functions

In this test, the population size was set to 50, and each test 
function was solved within 5 seconds. All other internal 
parameters were kept at their default values. The statisti-

a) Box plots for effects of motion coefficient (α) on the optimal value of F3

b) Box plots for effects of motion coefficient (α) on the optimal value of F6

c) Box plots for effects of motion coefficient (α) on the optimal value of F9

d) Box plots for effects of motion coefficient (α) on the optimal value of F12
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cal optimal values of all optimizers are presented in Ta-
bles B.1 and B.2 (Appendix, B). Concurrently, the results 
of the Wilcoxon rank sum tests for ESO1, ESO2, and 13 
well-known algorithms are depicted in Figures 6 and 7, 
respectively. The analysis reveals that ESO1 significantly 
outperforms ABC, CA, DE, FA, GA, HS, JAYA, PSO, SA, 
SO, SOS, TLBO, and GWO in 15, 16, 13, 15, 21, 16, 24, 
16, 19, 18, 13, 15, and 22 out of 24 functions. Similarly, 
ESO2 outperforms these algorithms in 16, 17, 18, 22, 23, 

23, 24, 20, 19, 20, 17, 22, and 23 functions, demonstrating 
its superior performance.

Thus, ESO1 and ESO2 are more effective and robust 
than the original SO and other optimizers in the math-
ematical tests. Figure 8 illustrates this, with ESO2 consis-
tently outperforming ESO1 across 0 to 7 functions, show-
casing its superior ability to find optimal values compared 
to other algorithms.

Figure 6. Results of Wilcoxon rank sum test of ESO1 vs. other optimization algorithms

Figure 7. Results of Wilcoxon rank sum test of ESO2 vs. other optimization algorithms

Figure 8. Comparison of ESO1 and ESO2 vs. other optimization algorithms

Fun. d. ABC CA DE FA GA GWO HS JAYA PSO SA SO SOS TLBO
10 1 1 1 1 1 1 1 1 1 1 1 0 1 Better
20 1 1 1 1 1 1 1 1 0 1 0 1 0
10 1 1 1 1 0 1 1 1 0 1 0 0 0
20 0 0 1 1 1 1 1 1 0 0 0 0 0
10 1 1 0 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1
10 0 1 0 0 1 1 0 1 0 1 0 0 1
20 0 1 1 0 1 1 1 1 1 1 1 1 1
10 1 1 0 1 0 1 0 1 0 1 0 0 0
20 1 0 1 1 0 1 0 1 0 1 1 1 0
10 0 1 0 1 1 1 0 1 1 1 1 0 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 0 0 1 1 0 1 1 1 1 0 0
20 1 1 1 1 1 1 1 1 1 1 1 1 1
10 0 0 0 1 1 1 1 1 0 1 0 0 1
20 1 0 1 1 1 1 1 1 0 1 1 0 0
10 1 1 0 0 1 1 1 1 1 1 1 1 1
20 1 1 1 0 1 1 0 1 1 1 1 1 1
10 0 0 0 0 1 0 1 1 1 0 1 0 0
20 0 0 0 0 1 1 0 1 1 0 1 1 1
10 0 0 0 0 1 0 1 1 1 0 1 0 0
20 0 0 0 0 1 1 0 1 1 0 1 1 1 Non-significant
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10 1 1 1 1 0 1 1 1 0 1 0 1 0
20 0 0 1 1 1 1 1 1 0 0 0 0 1
10 1 1 0 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1
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20 0 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1
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20 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1
10 0 0 0 1 1 1 1 1 0 1 0 0 1
20 1 0 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 0 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 0 1 1 1 1 1 1
10 0 0 0 1 1 1 1 1 1 0 1 0 1
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4. Designing large space  
double-layer grid structures

4.1. Formulation of the optimization problem

In a truss optimization problem with multiple constraints, 
the objective is to minimize the total weight of the truss 
structure while satisfying various conditions. The sizing 
optimization problem for a truss structure is mathemati-
cally formulated (Degertekin et al., 2018):

Find { } 1 2 da ,a , ,a=   A   that minimizes

 { }( )
( )nm id

cost i, j j j
i 1 j 1

f a L ,
= =

= r∑ ∑A   (34)

{ }( )j c
min max
i i i

g 0               j 1,2, ,n
Subject to :  

a a a      i 1,2, ,d

 ≤ = …


≤ ≤ = …

A
, (35)

where { }( )f A  is the objective function, which is taken 
as the weight of the structure; A is the vector of design 
variables, whose elements are the cross-sectional areas of 
structural members; d is the number of sizing design vari-
ables; nm is the number of structural members; ai,j, rj and 
Lj are the cross-sectional area, material density, and length 
of the jth structural member, respectively; min

ia  and max
ia  

are the lower and upper bounds on ith design variable, 
respectively; { }( )jg A  denote design constraints; nc is the 
number of design constraints.

Among the various strategies for handling constraints 
in optimization problems, some common ones involve 
penalizing processes. The general idea behind penaliza-
tion is to transform the constrained optimization problem 
into an unconstrained one. As demonstrated above, this is 
achieved by incorporating a penalty term into the objec-
tive function:

Minimize { }( ) { }( ) { }( )cost pF f f ,= ×A A A  (36)

where { }( )F A is the penalized objective function and 
{ }( )pf A  is the penalty function. Degertekin et al. (2018) 

proposed a penalty function { }( )pf A  to handle the con-
straint conditions of the objective function { }( )costf A  (De-
gertekin et al., 2018). 

{ }( ) ( )åpf 1 ,= + fA e, (37)

where f is the sum of penalties, defined as
q

ii 1=
f = f∑ ; (38)

i
i *

i

p
1

p
f = − , (39)

where fi is the degree of constraint violation with the 
bound set to *

ip , and q is the number of active constraints. 
The exponent in the penalty function e is a function of the 
number of iterations and is given by 

o
iter

t1
Max

 
e = e +  

 
, (40)

where the initial value eo can be set between 1.001 and 
10,000 (Degertekin et al., 2018) and is set to 2 herein.

The finite element method (FEM) is applied to calcu-
late the axis forces (or element stresses) of the 3D truss 
structure, which is presented as a global stiffness equation 
below:

{ } { }F K .d=     (41)

Hooke’s law calculates the axial stress of each element 
(sx) as follows (Logan, 2016):

sx = Eex. (42)

Thus, each member’s axial force (T) is calculated by 
Eqn (42):

T = Asx, (43)

where {F} denotes global nodal forces; [K] is the global 
stiffness matrix; {d} is global nodal displacements; E is the 
modulus of elasticity, ex is axial strain; A is cross-sectional 
area.

The SO and ESOs are integrated with the finite ele-
ment method (FEM) to find the minimum weights of steel 
structures. Figure 9 shows the analytical procedure in this 
application. 

Figure 9. Framework of metaheuristic optimizers integrated 
with FEM for solving structural design problems

Metaheuristic optimizer

Begin

Initialize algorithmic 
parameters & population

Input: Joint coordinates; 
connectivity; elastic modulus; 

external forces

Calculate penalty values for 
handling multiple constraints:

fp({A}) = (1+ φ)ε

Calculate objective value:
F({A}) = fcost({A})xfp({A}) End

Stopping criteria 
reached?

Optimal solution

No

Yes

Determine cross-section area 
ai,j of each frame element

Finite element analysis

Prepare stiffness matrix

Calculate displacement

Calculate stress & axial 
force

Operate metaheuristic
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4.2. 47-bar power transmission tower

The design example, depicted in Figure 10, consists of 
47 members and 22 nodes, as presented in the work of 
Degertekin et al. (2019). The cross-sectional areas of the 
members are divided into 27 groups and were selected 
from the 64 discrete values listed in Table 1. The members’ 
material has Young’s modulus of 30,000 ksi and a density 
of 0.3 lb/in³ (Lee et al., 2005).

The structure’s nodes are subjected to three loading 
cases: (1) 6.0 kips in the positive x-direction and 14.0 kips 
in the negative y-direction at nodes 17 and 22, (2) 6.0 kips 
in the positive x-direction and 14.0 kips in the negative 
y-direction at node 17, and (3) 6.0 kips in the positive x-
direction and 14.0 kips in the negative y-direction at node 
22. The first loading case corresponds to applying a load 
by the two power lines at an angle to the tower, while the 
second and third loading cases correspond to snapping 
one of the two lines. All members of the tower must satisfy 
both stress and buckling constraints. Allowable tensile and 
compressive stresses are set at 20 ksi and 15.0 ksi, respec-
tively. The Euler buckling compressive stress of a member 
with a cross-sectional area of Ai is calculated as follows:

icr
i 2

i

KEA
, i 1,  2,  3, ,47,

L
−

s = = …    (44)

where K is a constant parameter that should be selected 
according to the cross-sectional geometry; E is Young’s 
modulus of the material; and Li is the length of member i.  
The buckling constant K is considered 3.96 (Lee et  al., 
2005).

To solve this problem, the snake population is set to 50, 
and the number of structural analyses is 10,000. Table 2  
compares the results concerning the optimal designs ob-
tained using different methods. The original SO, ESO1, and 

ESO2 generated the lightest designs, weighing 2,292.06 lb,  
2,281.61 lb, and 2,279.19 lb, respectively. The average op-
timized weight and the standard deviation of the average 
weight for that design (2,324.52 lb and 30.96 lb) by SO, 
(2,315.91 lb and 21.84 lb) by ESO1, and (2,297.67 lb and 
12.80 lb) by ESO2 are less than those obtained using any 
other method. SO and ESOs require 10,000 structural 
analyses to find the optimal solution design, whereas HS, 
CBO, DAJA, and MDVC-UVPS require 45,557, 25,000, 
8,046, and 4,867 structural analyses.

Figure 10. Schematic of 47-bar power transmission tower

Table 1. List of available cross-sectional areas in 47-bar power transmission tower problem (Kaveh & Ilchi Ghazaan, 2018c)

No. Area (in.2) No. Area (in.2) No. Area (in.2) No. Area (in.2)
1 0.111 17 1.563 33 3.840 49 11.5001
2 0.141 18 1.620 34 3.870 50 13.500
3 0.196 19 1.800 35 3.880 51 13.900
4 0.25 20 1.990 36 4.180 52 14.200
5 0.307 21 2.130 37 4.220 53 15.500
6 0.391 22 2.380 38 4.490 54 16.000
7 0.442 23 2.620 39 4.5899 55 16.900
8 0.563 24 2.630 40 4.800 56 18.800
9 0.602 25 2.880 41 4.970 57 19.900

10 0.766 26 2.930 42 5.120 58 22.000
11 0.785 27 3.090 43 5.740 59 22.900
12 0.994 28 1.130 44 7.220 60 24.500
13 1.000 29 3.380 45 7.970 61 26.500
14 1.228 30 3.470 46 8.530 62 28.000
15 1.266 31 3.550 47 9.300 63 30.000
16 1.457 32 3.630 48 10.85 64 33.500
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All frame members’ strength constraints are satisfied 
by the solution generated by ESO2, as shown in Figure 
11. Although SO and ESOs require a higher number of 
structural analyses (NSA) compared to DAJA and MDVC-
UVPS, they need a lower NSA than HS and CBO while 

being able to find lighter solutions than the other meth-
ods. Hence, both SO and ESOs effectively address the ini-
tial problem, with ESO2 consistently discovering solutions 
that are, on average, 1.16% and 0.79% lighter than those 
found by SO and ESO1, respectively.

4.3. 72-bar tower

This problem, previously studied by Wu and Chow (1995), 
Lee et al. (2005), and da Silva et al. (2011), involves seven 
members and 20 nodes and is presented in Figure 12. The 
material density is 0.1 lb/in.³, and the modulus of elasticity 
is 10,000 ksi. Stress limitations for all members are within 
±25 ksi. The uppermost nodes are regulated with a toler-
ance of ±0.25 in. in the x and y directions. The loads ap-
plied to the structure include load case 1: F1x = F1y = 5 kips 
and F1z = −5 kips and load case 2: F1z = F2z = F3z = F4z = 

Table 2. Weight design comparison for 47-bar power transmission tower

Design 
variables ai 

(in2)

HS (Lee et al., 
2005)

CBO
(Kaveh & 

Mahdavi, 2014)

DAJA
(Degertekin 
et al., 2019)

MDVC-UVPS
(Kaveh & Ilchi 

Ghazaan, 2018b)

SO ESO1 ESO2

(Present study)

a1 3.84 3.84 3.84 3.84 2.93 2.93 2.88
a2 3.38 3.38 3.38 3.38 2.38 2.38 2.38
a3 0.766 0.785 0.766 0.766 0.766 0.766 0.766
a4 0.141 0.196 0.111 0.111 0.111 0.111 0.111
a5 0.785 0.994 0.785 0.785 0.785 0.785 0.785
a6 1.99 1.8 1.99 1.99 1.99 1.99 1.99
a7 2.13 2.13 2.13 2.13 2.13 2.13 2.13
a8 1.228 1.228 1.228 1.228 0.994 0.994 0.994
a9 1.563 1.563 1.563 1.563 1.228 1.228 1.228
a10 2.13 2.13 2.13 2.13 2.13 2.13 2.13
a11 0.111 0.111 0.111 0.111 0.785 0.785 0.785
a12 0.111 0.111 0.111 0.111 0.111 0.111 0.111
a13 1.8 1.8 1.8 1.8 1.8 1.8 1.8
a14 1.8 1.8 1.8 1.8 1.8 1.8 1.8
a15 1.457 1.563 1.457 1.457 1.457 1.457 1.457
a16 0.442 0.442 0.563 0.563 0.442 0.563 0.442
a17 3.63 3.63 3.63 3.63 3.38 3.38 3.38
a18 1.457 1.457 1.457 1.457 1.13 1.13 1.13
a19 0.442 0.307 0.25 0.25 0.307 0.307 0.307
a20 3.63 3.09 3.09 3.09 3.09 3.09 3.09
a21 1.457 1.266 1.266 1.228 1.266 1.266 1.266
a22 0.196 0.307 0.307 0.391 0.442 0.391 0.391
a23 3.84 3.84 3.84 3.84 3.84 3.84 3.84
a24 1.563 1.563 1.563 1.563 1.563 1.563 1.563
a25 0.196 0.111 0.141 0.111 0.111 0.111 0.111
a26 4.59 4.59 4.59 4.59 4.5899 4.5899 4.5899
a27 1.457 1.457 1.457 1.457 1.563 1.457 1.457

Weight (lb) 2,396.8 2,386 2,376.019 2,374.09 2,292.06 2,281.61 2,279.19
Average (lb) N/A 2,405.91 2,399.92 2,413.46 2,324.52 2,315.91 2,297.67
Std. (lb) N/A 19.61 13.15 38.21 30.96 21.84 12.80
NSA 45,557 25,000 8,046 4,867 10,000 10,000 10,000

Figure 11. Violation check of strength constraint of 47-bar 
power transmission tower
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−5 kips. The frame members are divided into 16 groups 
as follows: (a1) A1–A4, (a2) A5–A12, (a3) A13–A16, (a4) 
A17–A18, (a5) A19–A22, (a6) A23–A30, (a7) A31–A34, 
(a8) A35–A36, (a9) A37–A40, (a10) A41–A48, (a11) A49–
A52, (a12) A53–A54, (a13) A55–A58, (a14) A59–A66, (a15) 
A67–A70, (a16) A71–A72. The design variables are the 
cross-sectional areas of the bars, each with a minimum 
value of 0.1 in².

To solve this problem, a population of 50 snakes and 
20,000 structural analyses were utilized. Table 3 presents 
the optimal designs obtained by the original SO, ESOs, 
and methods from the literature. Among all methods, only 

ESO2 produced the lightest design, weighing 378.429 lb. 
Additionally, the average optimized weight and its stan-
dard deviation for ESO2 (378.607 lb and 0.515 lb) were 
lower than those of all other methods. The best designs 
found by GA+APM, DE, DUVDE+APM, and GAOS were 
387.036 lb, 379.880 lb, 379.667 lb, and 383.120 lb, respec-
tively. SO and ESOs required 20,000 structural analyses 
to find the optimal solution, whereas GA+APM, DE, 
DUVDE+APM, and GAOS required 35,000 or 30,000. 
Figure 13 illustrates the constraint violation check for 

Figure 12. 72-bar tower problem

Table 3. Weight design comparison for the 72-bar tower

Design 
variables ai 

(in2)

GA+APM
(Lemonge & 

Barbosa, 2004)

DE 
(da Silva et al., 

2011)

DUVDE
+APM 

(da Silva et al., 2011)

GAOS
(Erbatur et al., 

2000)

SO ESO1 ESO2

(Present study)

a1 0.15500 0.15665 0.15621 0.161 0.15609 0.15528 0.15558
a2 0.54534 0.54617 0.55147 0.544 0.52633 0.55283 0.55215
a3 0.27496 0.38993 0.41361 0.379 0.35323 0.39651 0.39637
a4 0.51853 0.58564 0.56267 0.521 0.52405 0.53918 0.53737
a5 0.60365 0.53008 0.53063 0.535 0.62609 0.56421 0.55861
a6 0.66607 0.52951 0.51932 0.535 0.52554 0.51884 0.51557
a7 0.10159 0.10000 0.10002 0.103 0.10185 0.10000 0.10002
a8 0.13008 0.10000 0.10052 0.111 0.11811 0.10897 0.10550
a9 1.19954 1.27713 1.27057 1.310 1.18824 1.19375 1.18999
a10 0.47368 0.52173 0.50926 0.498 0.52803 0.52433 0.52087
a11 0.10059 0.10000 0.10012 0.110 0.10188 0.10000 0.10002
a12 0.10945 0.10000 0.10000 0.103 0.10409 0.10001 0.10000
a13 1.95307 1.82352 1.86245 1.910 1.97753 1.97362 1.96867
a14 0.51653 0.50643 0.51098 0.525 0.52109 0.49679 0.49323
a15 0.10000 0.10000 0.10000 0.122 0.10000 0.10000 0.10000
a16 0.10105 0.10000 0.10000 0.103 0.10095 0.10002 0.10001

Weight (lb) 387.036 379.880 379.667 383.120 380.543 380.127 378.429
Average (lb) 402.58 380.24 380.42 N/A 381.271 380.651 378.607
Std. (lb) N/A 0.26517 0.57266 N/A 0.553 0.456 0.515
NSA 35,000 35,000 35,000 30,000 20,000 20,000 20,000

a) Strength constraint violation

b) Displacement constraint violation

Figure 13. Constraint violation check in the 72-bar tower
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the stress and displacement constraints in the solution 
obtained using ESO2, confirming that all frame members 
or nodes satisfy these constraints. Thus, ESO2 is an effec-
tive method for solving the second problem, consistently 
providing solutions that are, on average, 0.70% and 0.54% 
better than those found by SO and ESO1, respectively.

4.4. 672-bar double-layer grid problem

The structure spans 40×40 m with a height of 3 m, as 
outlined in Kaveh and Ilchi Ghazaan (2018b). This con-
figuration comprises 672 frame members and 205 nodes, 
with the bottom layer supported at the nodes illustrated 
in Figure 14 (Kaveh & Ilchi Ghazaan, 2018b). The cross-
sectional areas of the members are divided into 22 groups. 
Each top layer joint experiences a concentrated vertical 
load of 30 kN, as shown in Figure 14.

The design variables involve the cross-sectional areas 
of the bar elements, which are chosen from a selection of 
steel pipe sections specified in AISC-LRFD and detailed 
in Table 4 (American Institute of Steel Construction, 
1994). In this table, ST, EST, and DEST represent standard 
weight, extra strong, and double-extra robust, respectively. 
The steel’s modulus of elasticity, yield stress, and density 
are considered 205 GPa, 248.2 MPa, and 7833.413 kg/m3, 
respectively. As mentioned, the strength and slenderness 
constraints adhere to the AISC-LRFD regulations. Ad-
ditionally, displacement limitations of span/600 were ap-
plied to all nodes in the vertical direction (Kaveh & Ilchi 
Ghazaan, 2018b). Figure 14 provides a 3D view of a diago-
nal member within the grid. The constraint conditions for 

grid structures are as follows (American Institute of Steel 
Construction, 1994):

Displacement constraint:
max

i i ,  i 1,2, ,nn.δ ≤ δ = …   (45)

Tension member constraint:

t y g t
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≤ = f f =

  (46)

Compression member constraint:
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Figure 14. 672-bar tower problem

Table 4. List of steel pipe sections from American Institute of Steel Construction (1994)

No. Type Area
(cm2)

Gyration 
radius (cm) No. Type Area 

(cm2)
Gyration 

radius (cm)
1 aST ½ 1.6129 0.662432 20 EST 3½ 23.741888 3.318002
2 bEST ½ 2.064512 0.635 21 DEST 2½ 25.999948 2.143506
3 ST ¾ 2.129028 0.846582 22 ST 5 27.74188 4.775454
4 EST ¾ 2.774188 0.818896 23 EST 4 28.451556 3.749548
5 ST 1 3.161284 1.066038 24 DEST 3 35.290252 2.65811
6 EST 1 4.129024 1.034542 25 ST 6 35.999928 5.700014
7 ST1 ¼ 4.322572 1.371346 26 EST 5 39.419276 4.675124
8 ST1 ½ 5.16128 1.582166 27 DEST 4 52.25796 3.490976
9 EST 1¼ 5.677408 1.331214 28 ST 8 54.19344 7.462012

10 EST 1½ 6.903212 2.003806 29 EST 6 54.19344 5.577332
11 ST 2 6.903212 1.53543 30 DEST 5 72.90308 4.379976
12 EST 2 9.548368 1.945132 31 ST 10 76.77404 9.342628
13 ST 2½ 10.96772 2.41681 32 EST 8 82.58048 7.309358
14 ST 3 14.387068 2.955798 33 ST 12 94.19336 11.10361
15 EST 2½ 14.5161 2.346452 34 DEST 6 100.64496 5.236464
16 cDEST 2 17.161256 1.782572 35 EST 10 103.87076 9.216898
17 ST 3½ 17.290288 3.395726 36 EST 12 123.87072 11.028934
18 EST 3 19.483832 2.882646 37 DEST 8 137.41908 7.004812
19 ST 4 20.451572 3.835908

Note: aST standard weight; bEST extra strong; cDEST double-extra strong.
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Slenderness ratio constraints:

KL 200
r

≤  for compression member; (49)

KL 300
r

≤  for tension member.  (50)

To tackle this problem, a population of 50 snakes 
was used, and the structural analyses were performed 
10,000 times. Table 5 presents the optimal designs ob-
tained through SO, ESOs, and various methods from the 
literature. Among these methods, ESO2 identified the 
lightest structure, weighing 53,381 kg. The average opti-
mized weight and its standard deviation for SO (57,354 kg 
and 2,910 kg), ESO1 (56,735 kg and 3,615 kg), and ESO2 
(56,011 kg and 3,603 kg) were lower than those obtained 
by any other method. Specifically, CBO, ECBO, VPS, and 
MDVC-UVPS resulted in average optimized weight of 
62,287 kg, 59,164 kg, 60,850 kg, and 58,589 kg, respectively. 

Figure 15 illustrates the constraint violations related 
to strength, displacement, and slenderness ratio for the 
solution identified by ESO2. Additionally, ESOs required 
10,000 structural analyses to reach the optimum solution, 

while CBO required 4,360 NSA, MDVC-UVPS required 
3,142 NSA, ECBO necessitated 18,000 NSA, and VPS 
demanded 12,120 NSA. Consequently, ESOs are effec-
tive methods for resolving this problem, with ESO2 con-
sistently producing solutions that are, on average, 2.34% 
and 1.28% lighter than those found by SO and ESO1, re-
spectively.

4.5. 1520-bar double-layer grid problem

This structure comprises 1520 members and 401 nodes; 
Figure 16 provides a 3D view of a diagonal on a grid. Like 
the previous 672-bar problem, this structure spans 40×40 
m with a height of 3 m, as detailed in Kaveh and Ilchi 
Ghazaan (2018b). Each top-layer joint bears a concentrat-
ed vertical load of 16 kN. The members’ cross-sectional 
areas are grouped into 31 categories. The constraint condi-
tions for grid structures are outlined in Eqns (45) to (50), 
above.

To address this problem, a population of 50 snakes was 
employed, and structural analyses were conducted 10,000 
times. Table 6 provides a comparison of the optimal de-
signs obtained using different methods. Both SO and ESOs 

Table 5. Weight design comparison in 672-bar double-layer grid problem

Design 
variables ai 

CBO
(Kaveh & Ilchi 

Ghazaan, 2018b)

ECBO 
(Kaveh & Ilchi 

Ghazaan, 2018b)

VPS
(Kaveh & Ilchi 

Ghazaan, 2018b)

MDVC-UVPS 
(Kaveh & Ilchi 

Ghazaan, 2018b)

SO ESO1 ESO2

(Present study)

a1 ST 4 ST 4 ST 5 ST 4 ST 5 ST 5 ST 5
a2 ST 6 ST 5 ST 4 ST 5 ST 5 ST 5 ST 5
a3 ST 2½ ST 3½ ST 4 ST 3½ EST 2 EST 2 EST 2
a4 ST 2½ EST 1½ EST 1½ EST 1½ ST 1¼ ST 1¼ ST 1¼
a5 ST 2½ ST 4 ST 6 ST 3 EST 4 EST 4 ST 5
a6 EST 6 EST 4 EST 6 DEST 4 DEST 5 DEST 5 EST 6
a7 EST 4 EST 6 EST 6 DEST 4 EST 4 DEST 3 DEST 3
a8 EST 6 DEST 4 DEST 5 EST 6 DEST 4 DEST 4 ST 8
a9 EST 5 ST 6 EST 5 ST 6 EST 5 EST 5 EST 5
a10 ST 4 ST 3½ ST 3½ ST 3½ ST 4 ST 4 ST 4
a11 ST 6 EST 6 ST 5 DEST 4 EST 4 EST 4 ST 6
a12 EST 5 EST 4 EST 4 ST 5 EST 4 EST 4 EST 4
a13 EST 5 DEST 4 EST 6 EST 6 ST 8 DEST 4 ST 8
a14 DEST 4 DEST 4 ST 6 EST 5 EST 5 EST 5 EST 5
a15 EST 8 EST 6 DEST 4 DEST 4 DEST 4 DEST 4 DEST 4
a16 DEST 4 DEST 4 EST 6 EST 5 DEST 4 DEST 4 DEST 4
a17 ST 5 DEST 5 ST 8 DEST 5 EST 6 EST 6 EST 6
a18 ST 4 ST 4 ST 4 ST 4 ST 4 ST 4 ST 4
a19 ST 4 ST 4 ST 3½ ST 3½ ST 3½ ST 3½ ST 3½
a20 ST 3½ ST 3½ ST 3½ ST 3½ ST 3½ ST 3½ ST 3½
a21 ST 3½ ST 3 ST 3½ EST 2½ ST 3 ST 3 ST 3
a22 ST 2½ ST 2½ ST 2½ ST 2½ ST 2½ ST 2½ ST 2½

Weight (kg) 55,621 54,569 53,704 53,552 53,575 53,537 53,381
Average (kg) 62,287 59,164 60,850 58,589 57,354 56,735 56,011
Std. (kg) 9,853 5,597 5,985 3,626 2,910 3,615 3,603
NSA 4,360 18,000 12,120 3,142 10,000 10,000 10,000
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produced designs lighter than any other method, resulting 
in a weight of 79,426 kg, ESO1 at 79,423 kg, and ESO2 at 
79,421 kg. The average optimized weight and its standard 
deviation for SO (84,681 kg and 4,050 kg), ESO1 (82,979 
kg and 4,012 kg), and ESO2 (81,565 kg and 3,672 kg)  
were lower than those achieved by all other methods.

The SO and ESOs required 10,000 structural analyses 
to find the optimal solution, while CBO, ECBO, VPS, and 
MDVC-UVPS required 4,360, 18,000, 12,120, and 3,142 
structural analyses. Although SO and ESOs needed more 

structural analyses (NSA) than CBO and MDVC-UVPS, 
the solutions generated by CBO or MDVC-UVPS were 
heavier than those obtained using SO and ESOs. ESO2 
produced designs that were 3.68% and 1.70% lighter on 
average than SO and ESO1, respectively. The solution 
found by ESO2 satisfied all strength, displacement, and 
slenderness ratio constraints, as depicted in Figure 17. 
Consequently, ESO2 effectively solved this problem.

4.6. 1536-bar double-layer barrel vault

In the final example, the optimization focuses on sizing a 
double-layer barrel vault with 1536 bars, 413 joints, a span 
of 40 m, a length of 50 m, and 35 independent variable 
groups (Kaveh & Ilchi Ghazaan, 2018b). Figure 18 and Ta-
ble 7 provide detailed geometric information and member 
groupings. The material properties include a modulus of 
elasticity (E) of 30,450 ksi, yield stress of steel (Fy) at 58.0 
ksi, and material density (r) of 0.288lb/in3. Design variables 
pertain to the cross-sectional areas of the bar elements, as 
listed in Table 4. The structure’s top layer is fixed at its 
external edges, with all joints of the top layer subjected to 
concentrated vertical loads of 5 kips. Nodal displacements 
are constrained within ±0.1969 in. (5 mm) in all directions.  

a) Strength constraint violation

b) Displacement constraint violation

c) Slenderness ratio constraint violation

Figure 15. Constraint violation check in the 672-bar  
double-layer grid problem

Figure 16. 3D view of a 1520-bar double-layer grid

a) Strength constraint violation

b) Displacement constraint violation

c) Slenderness ratio constraint violation

Figure 17. Constraint violation check in the 1520-bar double-
layer grid problem



774 D.-N. Truong, J.-S. Chou. Integrating enhanced optimization with finite element analysis for designing steel ...

Table 6. Weight design comparison in 1520-bar double-layer grid problem

Design 
variables ai 

CBO
(Kaveh & Ilchi 

Ghazaan, 2018b)

ECBO
(Kaveh & Ilchi 

Ghazaan, 2018b) 

VPS
(Kaveh & Ilchi 

Ghazaan, 2018b)

MDVC-UVPS
(Kaveh & Ilchi  

Ghazaan, 2018b)

SO ESO1 ESO2

(Present study)

a1 EST 5 DEST 5 EST 5 ST 6 EST 6 EST 6 EST 6
a2 ST 5 EST 5 ST 5 DEST 3 ST 5 ST 5 ST 5
a3 ST 2½ ST 2½ EST 2½ ST 2½ ST 3½ ST 3½ ST 3½
a4 EST 1½ EST 1½ EST 1½ ST 2½ EST 2 EST 2 EST 2
a5 ST 1½ ST 2 ST 1½ ST 2½ ST 1½ ST 1½ ST 1½
a6 EST 1¼ ST 2 ST 1¼ EST 2½ EST 2 EST 2 EST 2
a7 ST 3 EST 2½ ST 8 EST 2½ EST 2 EST 2 EST 2
a8 ST 4 EST 3 EST 5 EST 2½ ST 4 ST 4 ST 4
a9 ST 5 DEST 2½ EST 3½ EST 4 ST 5 ST 5 ST 5
a10 EST 10 EST 4 DEST 3 DEST 3 ST 6 ST 6 ST 6
a11 ST 6 ST 6 EST 5 DEST 3 DEST 4 DEST 4 DEST 4
a12 DEST 6 DEST 5 EST 10 DEST 6 ST 12 ST 12 ST 12
a13 EST 4 ST 2½ ST 2½ ST 3½ ST 3 ST 3 ST 3
a14 ST 3½ ST 3½ ST 2½ ST 3½ ST 3½ ST 3½ ST 3½
a15 ST 3 ST 4 EST 2½ ST 3½ ST 3 ST 3 ST 3
a16 ST 4 ST 5 ST 3 EST 3 EST 3 EST 3 EST 3
a17 EST 10 DEST 2½ ST 4 DEST 2½ EST 3½ EST 3½ EST 3½
a18 EST 3 EST 3½ DEST 3 DEST 3 EST 4 EST 4 EST 4
a19 DEST 2½ ST 6 DEST 3 EST 5 EST 5 EST 5 EST 5
a20 EST 4 DEST 5 DEST 4 ST 6 DEST 4 DEST 4 DEST 4
a21 DEST 6 EST 6 EST 10 ST 10 ST 8 ST 8 ST 8
a22 EST 5 EST 5 ST 6 ST 6 ST 6 ST 6 ST 6
a23 EST 3½ ST 3 ST 2½ ST 2½ ST 2½ ST 2½ ST 2½
a24 ST 3 ST 2½ EST 2½ ST 2½ ST 2½ ST 2½ ST 2½
a25 ST 2½ ST 2½ ST 3 ST 2½ ST 2½ ST 2½ ST 2½
a26 EST 1½ EST 1½ EST 1½ EST 2 ST 2½ ST 2½ ST 2½
a27 ST 3 EST 2 ST 2½ EST 2 EST 2 EST 2 EST 2
a28 ST 2½ EST 2 ST 3 EST 2 EST 2 EST 2 EST 2
a29 ST 2½ ST 2½ ST 2½ EST 1½ ST 3 EST 2½ ST 3
a30 ST 3 EST 1½ ST 1½ EST 2 EST 2 EST 2 EST 2
a31 ST 3½ EST 2 ST 4 ST2 ½ ST 2½ EST 2 EST 2

Weight (kg) 93,174 82,254 82,357 79,571 79,426 79,423 79,421
Average (kg) 97,823 90,752 89,607 85,398 84,681 82,979 81,565

Std. (kg) 9,226 5,995 5,188 4,407 4,050 4,012 3,672
NSA 4,360 18,000 12,120 3,142 10,000 10,000 10,000

Allowable tensile and compressive stresses adhere to 
AISC-ASD specifications (American Institute of Steel 
Construction, 1989; Kaveh & Ilchi Ghazaan, 2018b):
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 (52)Figure 18. 3D view of 1536-bar double-layer barrel vault
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Table 7. Weight design comparison in 1536-bar barrel vault problem

Design 
variables ai 

(in2)

ABC (Kaveh 
& Mahjoubi, 

2018) 

CS (Kaveh & 
Mahjoubi, 2018)

PSO
(Kaveh & 

Mahjoubi, 2018)

LPOA
(Kaveh & 

Mahjoubi, 2018)

MDVC-UVPS
(Kaveh & Ilchi 

Ghazaan, 2018b)

SO ESO1 ESO2 

(Present study)

a1 EST 6 ST 6 EST 6 DEST 4 DEST 4 EST 5 EST 6 EST 5
a2 DEST 2½ EST 4 EST 3 EST 3 ST 4 EST 4 EST 4 EST 4
a3 ST 4 EST 3½ EST 3 EST 3 EST 3½ ST 5 EST 3½ ST 5
a4 EST 4 EST 4 ST 6 ST 6 EST 5 EST 5 EST 5 EST 5
a5 EST 5 DEST 3 ST 6 DEST 3 EST 5 DEST 4 EST 5 DEST 4
a6 DEST 3 EST 6 EST 6 DEST 3 EST 5 DEST 4 ST 8 DEST 4
a7 EST ½ EST ¾ EST ½ ST ½ ST ½ ST 1½ ST 1½ ST 1½
a8 ST 3 DEST 2 EST 1½ EST 1½ ST 1½ ST 1½ ST 1½ ST 1½
a9 ST 3½ ST 3 EST 2½ ST 1½ ST 1½ ST 1½ ST 1½ ST 1½
a10 EST 2 DEST 2 ST 3 EST 1½ ST 1¼ ST 1 ST 1 ST 1
a11 ST 3½ ST 2½ ST 3 EST 2½ ST 2½ EST 1¼ ST 1¼ EST 1¼
a12 EST 3½ ST 3½ EST 2 ST 1½ EST 2½ ST 2 EST 1½ ST 2
a13 EST 2 ST 5 ST 3½ EST 1½ EST 3 EST 2½ EST 2 ST 3
a14 ST 5 ST 6 EST 3½ EST 4 DEST 3 ST 5 ST 6 ST 5
a15 EST 5 EST 5 DEST 4 ST 6 ST 6 EST 5 EST 5 EST 5
a16 ST 5 EST 4 ST 5 DEST 3 ST 5 DEST 3 ST 6 DEST 3
a17 ST 5 EST 3½ EST 3 ST 5 DEST 2½ ST 4 EST 3½ EST 3½
a18 ST 3½ ST 3 ST 3 EST 2 EST 2 ST 2½ ST 2½ ST 2½
a19 ST 3½ EST 3 ST 3½ EST 2 EST 2 EST 2 ST 2½ EST 2
a20 EST 2½ DEST 2 EST 1½ ST 1½ ST 1½ ST 1½ ST 1½ ST 1½
a21 DEST 2½ ST 3½ EST 2 ST 1½ ST 1½ ST 1 ST 1 ST 1
a22 EST 2 EST 3½ EST 2 EST 1½ ST 1½ ST 1½ ST 1½ ST 1½
a23 DEST 2½ ST 5 EST 2 ST 1½ EST 2 ST 1½ ST 1½ ST 1½
a24 ST 3½ EST 2 ST 2½ EST 1½ ST 1½ ST 1½ ST 1½ ST 1½
a25 EST 2½ EST 3½ EST 2 EST 1½ EST 2 ST 1½ ST 2 ST 1½
a26 EST 3 DEST 2 ST 3 ST 4 ST 2½ ST 2½ ST 2½ ST 2½
a27 ST 2½ ST 1½ ST 1½ EST 1½ EST 1½ ST 1½ ST 2 ST 1½
a28 ST 1½ EST 2 EST 1½ ST 1½ ST 1½ ST 1½ ST 1¼ ST 1½
a29 ST 4 EST 2 EST 1½ ST 2½ ST 1½ ST 1½ ST 1½ ST 1½
a30 EST 1½ EST 2½ ST 1½ EST 1½ EST 1½ ST 1½ ST 1¼ ST 1½
a31 EST 2½ ST 4 EST 1½ ST 2½ EST 1½ ST 2½ ST 2 ST 2½
a32 EST 1½ EST 1½ ST 1½ EST 1½ ST 2 ST 1½ ST 2 ST 1½
a33 EST 2½ ST 2½ EST 2 EST 1½ EST 1½ ST 2 ST 1¼ ST 2
a34 EST 1½ EST 2½ EST 1½ ST 1½ ST 2 ST 1½ ST 1¼ ST1½
a35 EST 2 EST 2 EST 1½ ST 1½ ST 2 ST 1½ ST 1¼ ST 1½

Weight (lb) 158,936 161,126 133,331 125,665 122,852 122,843 121,920 121,840
Average 
(lb) 167,500.58 170,331.45 147,812.18 135,156.90 146,229 133,556 126,630 124,600

Std. (lb) 4,863.51 2,902.44 15,645.08 11,208.05 14,552 8,632 6,884 5,144
NSA 15,000 15,000 15,000 15,000 4,762 10,000 10,000 10,000

Cc is the slenderness ratio that divides the elastic from the 
inelastic buckling regions, which is given by:

2

c
y

2 EC
F
π

= . (53)

For the ith member, li is the slenderness ratio 
i

i
i

KL
r

 
l = 
 

; K is the effective length factor (K  = 1); Li 

is the length; ri is the minimum radius of gyration, and Ai 
is the cross-sectional area.

AISC-ASD recommends a maximum slenderness ratio 
of 300 and 200 for tension and compression members, re-
spectively (American Institute of Steel Construction, 1989; 
Kaveh & Ilchi Ghazaan, 2018b). 

To tackle this problem, a snake population of 50 was 
employed, and a total of 10,000 structural analyses were 
conducted. Table 7 displays the optimal designs achieved 
through various optimization algorithms. The weight of the 
best configuration obtained by SO is 122,843 lb, while ESO1 
and ESO2 resulted in 121,920 lb and 121,840 lb, respectively, 
marking the lowest values among all compared methods.  
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The average optimized weight with SO was 133,556 lb, 
whereas ESO1 and ESO2 produced 126,630 lb and 124,600 
lb, respectively.

The weight obtained through this method is lower 
than that achieved using other methods. While SO and 
ESOs required 10,000 structural analyses to find the opti-
mal solution, ABC, CS, PSO, and LPOA required 15,000 
structural analyses, and MDVC-UVPS needed 4,762. De-
spite MDVC-UVPS employing a lower NSA than ESOs to 
solve this problem, it resulted in a heavier solution than 
ESOs. Moreover, the solution provided by ESO2 fulfills all 
strength, displacement, and slenderness ratio constraints, 
as depicted in Figure 19. Consequently, ESOs effectively 
solve this problem, with ESO2 finding an average weight of 
6.71% and 1.60% lighter than SO and ESO1, respectively.

5. Discussion

This subsection discusses five critical aspects of the ro-
bust Enhanced Snake Optimizers (ESOs): exploring the 
search space, exploiting promising solutions, converging 
to the optimal solution, insights derived, and user con-
venience.

5.1. Exploratory capacity

Exploration, or diversification, involves exhaustively 
searching the solution space to identify promising areas. 
An algorithm’s ability to locate the global optimum site 
signifies its strong exploration capability (Alorf, 2023). 
Multimodal functions, which feature numerous local op-
tima, serve as effective benchmarks for evaluating the ex-
ploration capabilities of optimization algorithms.

Based on the optimization results of IEEE CEC 2022 
functions (F2–F5) for dimensions 10 and 20, as illustrated 
in Figures 6 and 7, the p-values from Wilcoxon’s rank-sum 
tests indicate that the ESO1 optimizer outperformed the 
ABC algorithm (5/8), CA (7/8), DE (6/8), FA (6/8), GA 
(7/8), GWO (8/8), HS (7/8), JAYA (8/8), PSO (5/8), SA 
(7/8), SO (5/8), SOS (5/8), and TLBO (6/8). Similarly, the 
ESO2 optimizer outperformed the ABC algorithm (5/8), 
CA (7/8), DE (7/8), FA (8/8), GA (7/8), GWO (8/8), HS 
(8/8), JAYA (8/8), PSO (6/8), SA (7/8), SO (5/8), SOS 
(6/8), and TLBO (7/8). Consequently, the proposed ESOs 
outperform the other selected optimization algorithms in 
exploring the search space.

5.2. Exploitation capability

Exploitation, or intensification, involves searching within 
a promising region to find the best solution. An algorithm 
with this capability seeks the optimum within a potential 
area (Alorf, 2023). Consequently, unimodal functions can 
assess an optimization algorithm’s exploitation capability. 
In this study, IEEE CEC 2022 functions (F1 and F6-F8) 
were utilized to evaluate the exploitation capabilities of the 
ESOs optimizer and 13 other optimization algorithms, as 
depicted in Figures 6 and 7.

The p-values obtained from Wilcoxon’s rank-sum tests 
indicated that the ESO1 optimizer was superior or equiva-
lent to the ABC algorithm (7/8), CA (7/8), DE (5/8), FA 
(7/8), GA (6/8), GWO (8/8), HS (4/8), JAYA (8/8), PSO 
(5/8), SA (8/8), SO (6/8), SOS (4/8), and TLBO (4/8). 
Additionally, the ESO2 optimizer outperformed the ABC 
algorithm (8/8), CA (8/8), DE (8/8), FA (8/8), GA (8/8), 
GWO (8/8), HS (8/8), JAYA (8/8), PSO (7/8), SA (8/8), SO 
(8/8), SOS (6/8), and TLBO (7/8). Therefore, the proposed 
ESOs perform better than the other selected optimization 
algorithms in exploring the search space. Specifically, the 
ESOs exhibit excellent exploitation capability, with ESO2 
displaying exceptional exploitation abilities compared to 
ESO1. These outcomes are attributed to the Lévy flight im-
plemented in step 2. Moreover, ESO2 outperforms ESO1 in 
finding optimal values in mathematical tests, as illustrated 
in Figures 6 and 7.

5.3. Convergence efficiency

In the context of the IEEE CEC 2022 functions, conver-
gence represents the state where the characteristics of all 
solutions in population-based metaheuristics become 

Figure 19. Constraint violation check in the 1536-bar  
double-layer barrel vault

a) Stress constraint violation

b) Displacement constraint violation

c) Slenderness ratio constraint violation
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similar, indicating that the solutions have ceased to im-
prove. An algorithm lacking this ability might need help 
effectively exploiting promising regions (Alorf, 2023). Ac-
cording to the p-values from Wilcoxon’s rank-sum tests, 
the ESO1 optimizer outperformed ABC, CA, DE, FA, 
GA, GWO, HS, JAYA, PSO, SA, SO, SOS, and TLBO in 
15/24, 16/24, 13/24, 15/24, 21/24, 22/24, 16/24, 24/24, 
16/24, 19/24, 18/24, 13/24, and 15/24 functions, respec-
tively. Similarly, ESO2 demonstrated superiority in 16/24, 
17/24, 18/24, 22/24, 23/24, 23/24, 23/24, 24/24, 20/24, 
19/24, 20/24, 17/24, and 22/24 functions. The ESOs effec-
tively identified optimal values for unimodal, multimodal, 
separate, non-separable, and hybrid composite functions. 
Remarkably, concerning hybrid composite functions (F6-
F12), ESO1 outperformed ABC, CA, DE, FA, GA, GWO, 
HS, JAYA, PSO, SA, SO, SOS, and TLBO in 8/14, 7/14, 
5/14, 7/14, 12/14, 12/14, 7/14, 14/14, 10/14, 10/14, 12/14, 
7/14, and 8/14 functions, respectively. Similarly, ESO2 ex-

hibited superiority in 9/14, 8/14, 9/14, 12/14, 14/14, 13/14, 
13/14, 14/14, 13/14, 10/14, 13/14, 10/14, and 14/14 func-
tions. Given that all optimizers were set to solve math-
ematical functions within a similar timeframe (5s), these 
results highlight the higher convergence abilities of ESOs 
compared to the comparison algorithms.

5.4. Insights derived

The performance of the proposed ESOs was evaluated 
by solving five structural weight design problems: the 
47-bar power transmission tower, 72-bar tower, 672-bar 
double-layer grid, 1520-bar double-layer grid, and 1536-
bar double-layer barrel vault, all of which encompassed 
multiple constraints. The results obtained by applying 
ESOs were compared with those documented in existing 
literature. ESO1 exhibited favorable outcomes, while ESO2 
excelled. ESO2 demonstrated significantly superior opti-

Table 8. Comparison of parameters setting for SO vs. ESOs

No. Stages of algorithm SO ESO1 ESO2

1. Initialization
Equation Eqn (1) Eqn (21)
Specific parameters to operate Uniform distribution Logistic map

2. Specific definition 
2.1 Temperature

Equation Eqn (4) Eqn (23)
Specific parameters to operate Decrease over time Randomly decrease over time

2.2 Food quantity
Equation Eqn (5) Eqn (24)

Increase over time Randomly increase over time

Specific parameters to operate R –Constant C1= 0.5
3. Exploration phase (Step 1 and 5)
3.1 Step 1: The snakes search for food

Equation Eqns (6) and (8) Eqns (25) and (26)
Specific parameters to operate R R

Threshold1 = 0.25
Constant C2 = 0.05 Coefficient of motion α=0.1

3.2 Step 5: If an egg hatches, the worst male and female are replaced
Equation Eqns (19) and (20)
Specific parameters to operate – –

4. Exploitation phase (Steps 2, 3 and 4)
4.1 Step 2: The snakes are hot and move toward food

Equation Eqn (10) Eqn (27) Eqn (28)
Specific parameters to operate R

–Threshold2 = 0.6
Constant C3 = 2

Lévy flight to enhance the 
exploitation phase

4.2 Step 3: The snakes are in fight mode
Equation Eqn (11) and (12) Eqns (29) and (30)
Specific parameters to operate R

Threshold3 = 0.6
Constant C3 = 2 –

4.3 Step 4: The snakes are in mating mode
Equation Eqns (15) and (16) Eqns (31) and (32)
Specific parameters to operate R

–Threshold3 = 0.6
Constant C3 = 2

5. Checking terminating conditions
Specific parameters to operate – – –
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mization results, highlighting its stability and robustness 
in addressing these complex structural issues. Specifically, 
ESO2 generated solutions that were, on average, 1.16%, 
0.70%, 2.34%, 3.68%, and 6.71% lighter than those pro-
duced by SO, and 0.79%, 0.54%, 1.28%, 1.70%, and 1.60% 
lighter than those produced by ESO1 for these respective 
problems. Consequently, ESO2 can be regarded as a viable 
alternative to other metaheuristic algorithms, particularly 
for tackling high-dimensional challenges.

5.5. User convenience

This study introduces enhanced versions of the snake op-
timizer, namely Enhanced Snake Optimizer 1 (ESO1) and 
Enhanced Snake Optimizer 2 (ESO2). ESO1 incorporates a 
logistic map to generate the initial population, while ESO2 
builds upon ESO1 by employing a Lévy flight to simulate 
snake movement during the food search. ESO1 and ESO2 
require only specific parameter settings (the motion coef-
ficient parameter (α)), unlike the original Snake Optimiz-
er (SO), which necessitates six particular parameters (C1, 
C2, C3 Threshold1, Threshold2 and Threshold3). Table 8  
illustrates the differences between the SO algorithm and 
the ESO algorithms. The exact parameters of ESOs are 
determined through sensitivity analysis when solving 
mathematical functions (α = 0.1). Therefore, users need 
to configure fewer parameters for ESOs compared to the 
original SO algorithm.

Conclusions

This study developed two new enhanced versions of the 
snake optimizer, ESO1, and ESO2, which require setting 
only one specific parameter for the operator (the mo-
tion coefficient, α), compared to the six parameters of 
the SO algorithm (C1, C2, C3 Threshold1, Threshold2 and 
Threshold3). Thus, the proposed ESOs (ESO1 and ESO2) 
are easier to use than the original SO. In ESO1, a logistic 
map is used to generate diverse initial populations, and 
the optimal value of the motion coefficient parameter (α) 
is determined. Notably, Lévy flight is employed to simulate 
the movement of snakes in ESO2, enhancing the exploita-
tion ability of ESO1.

The Enhanced Snake Optimizers (ESOs) were rigor-
ously tested against 13 established optimization algorithms 
using 24 mathematical benchmark functions (CEC-2022). 
The results of Wilcoxon rank sum tests comparing the 
ESOs with these algorithms demonstrate that both ESO1 
and ESO2 significantly outperform ABC, CA, DE, FA, GA, 
GWO, HS, JAYA, PSO, SA, SO, SOS, and TLBO in the 
mathematical tests. Furthermore, ESO2 proves superior 
to ESO1 in identifying optimal values within these math-
ematical tests.

The ESOs were then applied with the finite element 
method to solve five distinct structural design problems. 
The ESOs efficiently optimized all structural weights, no-
tably discovering solutions lighter than those documented 

in the existing literature. The performance of ESO2 is par-
ticularly noteworthy, which consistently found solutions 
lighter than those obtained by the standard Snake Opti-
mizer (SO) and even more lightweight than those achieved 
by ESO1 for these specific problems. Consequently, ESO2 
emerges as a potent computational technique for address-
ing optimization challenges in structural engineering.

Future research should concentrate on delving deeper 
into the performance of ESO2 with additional structural 
problems and its application in various machine learning 
methods across diverse scenarios. The development of 
multiple objective-enhanced snake optimizer (MOESO) 
or many objective-enhanced snake optimizer (MAESO) 
should also be pursued. Creating a user-friendly platform 
that integrates ESO2 with the Finite Element Method 
(FEM) will empower designers to conveniently utilize the 
system for solving engineering problems.
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APPENDIX 

A. Supplementary information on mathematical functions

Table A.1. IEEE CEC 2022 benchmark functions (Kumar et al., 2021)

No. Function Optimal value Range Characteristics

F1 Shifted and fully rotated 
Zakharov function 300 [–100, 100] – Unimodal

– Nonseparable

F2 Shifted and fully rotated 
Rosenbrock function 400 [–100, 100]

– Multimodal
– Nonseparable
– A large number of local optima

F3 Shifted and fully rotated 
expanded Schaffer F6 function 600 [–100, 100]

– Multimodal
– Nonseparable
– Asymmetric
– A large number of local optima

F4
Shifted and fully rotated 
noncontinuous Rastrigin 
function 

800 [–100, 100]

– Multimodal 
– Nonseparable
– Asymmetric
– A large number of local optima

F5 Shifted and fully rotated Levy 
function 900 [–100, 100]

– Multimodal
– Nonseparable
– A large number of local optima

F6 Hybrid function 1 (N = 3) 1800 [–100, 100] – Unimodal or multimodal, depending on the basic function
– Nonseparable subcomponents
– Different properties for variable subcomponents 

F7 Hybrid function 2 (N = 6) 2000 [–100, 100]

F8 Hybrid function 3 (N = 5) 2200 [–100, 100]

F9 Composition function 1 (N = 5) 2300 [–100, 100]
– Multimodal
– Nonseparable
– Asymmetric
– Different properties around local optima

F10 Composition function 2 (N = 4) 2400 [–100, 100]

F11 Composition function 3 (N = 5) 2600 [–100, 100]

F12 Composition function 4 (N = 6) 2700 [–100, 100]

Note: N refers to the number of essential functions.

B. Supplementary data for statistical values in mathematical tests

Table B1. Statistical optimal values of ABC, CA, DE, ESO1, ESO2, FA, GA, and GWO

Fun. d Value ABC CA DE ESO1 ESO2 FA GA GWO

F1

10

Min. 2104.30 300.00 444.11 300.00 300.00 300.00 325.85 307.92
Max. 4139.89 7629.94 1156.77 300.00 300.00 300.00 2775.97 4267.50
Mean 3062.74 1139.64 646.65 300.00 300.00 300.00 613.17 1055.06
Std. 527.69 1441.96 177.84 0.00 0.00 3.25E-04 472.01 1373.04

20

Min. 18541.42 5962.82 12441.49 300.00 300.00 300.01 310.64 574.69
Max. 29847.10 45215.69 29567.59 300.00 300.00 300.02 608.17 16658.90
Mean 23998.37 23871.55 20162.53 300.00 300.00 300.01 416.63 6860.76
Std. 2774.36 10067.87 3771.11 7.80E-07 6.90E-09 1.98E-03 70.48 3817.55

F2

10

Min. 404.28 400.23 406.63 400.00 400.00 400.00 400.00 400.61
Max. 408.92 474.11 408.92 408.92 404.77 408.92 470.98 470.86
Mean 408.47 411.35 407.68 404.38 403.11 406.24 405.85 416.55
Std. 1.14 14.98 0.62 2.96 2.03 3.78 12.69 16.11

20

Min. 449.08 417.01 448.42 444.90 405.34 444.90 405.64 445.49
Max. 449.08 530.81 449.09 449.08 449.08 473.24 474.84 582.53
Mean 449.08 462.00 449.06 448.94 447.35 452.19 453.22 486.31
Std. 7.46E-11 37.18 0.12 0.76 8.00 8.35 13.76 36.97
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Fun. d Value ABC CA DE ESO1 ESO2 FA GA GWO

F3

10

Min. 600.00 600.00 600.00 600.00 600.00 600.01 600.00 600.01
Max. 600.00 608.99 600.00 600.00 600.00 600.02 600.00 604.08
Mean 600.00 601.33 600.00 600.00 600.00 600.02 600.00 600.54
Std. 7.05E-12 2.21 4.22E-14 0.00 0 1.93E-03 8.34E-05 1.046

20

Min. 600.00 601.03 600.00 600.00 600.00 600.03 600.00 600.15
Max. 600.00 648.90 600.00 600.00 600.00 600.04 600.06 606.39
Mean 600.00 618.88 600.00 600.00 600.00 600.04 600.01 602.50
Std. 5.54E-11 13.58 0.00 0.00 1.12E-13 3.20E-03 0.01 1.82

F4

10

Min. 814.67 806.96 805.25 800.99 800.00 803.98 803.98 804.99
Max. 830.85 851.74 820.35 806.96 803.98 823.13 832.01 825.23
Mean 824.59 822.52 813.45 804.38 802.97 810.38 816.61 811.58
Std. 3.98 12.07 3.29 1.69 0.89 5.12 7.67 4.97

20

Min. 889.92 821.89 873.82 805.97 803.98 814.93 817.00 822.92
Max. 919.53 962.18 914.27 818.90 811.08 849.75 875.76 894.37
Mean 906.24 879.96 895.08 813.80 809.00 828.91 845.50 845.71
Std. 6.53 32.76 10.54 3.73 2.12 7.36 14.90 17.54

F5

10

Min. 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00
Max. 900.00 1032.14 900.00 900.18 900.00 900.00 906.31 950.66
Mean 900.00 927.96 900.00 900.03 900.00 900.00 901.24 904.78
Std. 0.00 36.95 9.48E-12 0.05 0.00 6.38E-05 1.66 10.39

20

Min. 900.00 993.92 900.24 900.00 900.00 900.00 900.94 909.31
Max. 900.00 4130.56 905.91 900.54 900.00 900.00 951.75 1477.08
Mean 900.00 2391.62 901.17 900.14 900.00 900.00 913.60 1047.36
Std. 0.00 852.55 1.06 0.18 0.00 3.41E-04 13.34 149.17

F6

10

Min. 2372.54 1925.07 2078.19 1808.61 1808.95 1887.93 1803.84 1921.56
Max. 8323.28 17760.88 4964.15 5169.89 2208.04 8038.34 6006.86 8135.21
Mean 4845.30 5537.44 2860.64 2725.45 1934.07 3969.15 3157.90 4916.45
Std. 1654.19 4939.79 776.71 1010.71 126.34 2161.62 1407.92 2298.56

20

Min. 333881.33 1993.97 137024.69 1821.74 1837.26 2272.17 1847.36 2023.65
Max. 1407004.14 26610.04 1935368.20 6812.97 2333.35 20869.14 16868.18 20339900.46
Mean 939557.05 6510.25 830825.76 3368.99 2025.72 6426.82 4876.37 1729956.41
Std. 270570.17 6247.68 472479.53 1482.27 141.64 5215.63 3999.99 5205631.17

F7

10

Min. 2011.51 2020.62 2000.00 2000.00 2000.00 2000.71 2000.09 2001.12
Max. 2023.22 2090.70 2020.00 2020.00 2001.00 2022.06 2020.02 2046.20
Mean 2018.31 2034.77 2001.88 2010.10 2000.31 2012.53 2014.52 2023.90
Std. 2.81 16.10 3.67 10.07 0.46 9.99 8.52 8.80

20

Min. 2057.01 2027.70 2029.70 2011.60 2007.19 2015.29 2021.73 2028.65
Max. 2090.74 2259.22 2046.15 2033.26 2023.94 2081.54 2145.79 2120.19
Mean 2078.91 2115.62 2036.35 2024.53 2021.80 2041.00 2054.12 2057.81
Std. 8.37 61.74 4.42 4.13 2.90 17.45 34.07 20.75

F8

10

Min. 2216.21 2219.87 2203.24 2200.04 2200.02 2200.29 2203.93 2201.64
Max. 2226.76 2226.74 2221.32 2220.64 2220.01 2222.98 2221.81 2230.00
Mean 2222.40 2221.77 2213.62 2217.71 2206.14 2210.77 2219.33 2221.03
Std. 2.73 1.53 5.26 6.51 8.36 10.15 4.32 7.08

20

Min. 2232.19 2221.02 2224.82 2220.12 2220.03 2220.52 2220.54 2223.63
Max. 2243.98 2490.71 2228.28 2221.35 2220.88 2237.71 2341.58 2355.58
Mean 2238.83 2285.34 2226.49 2220.87 2220.63 2221.81 2235.50 2244.19
Std. 2.67 74.21 0.74 0.30 0.19 3.02 35.83 41.30

Continue of Table B1
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Fun. d Value ABC CA DE ESO1 ESO2 FA GA GWO

F9

10

Min. 2529.28 2487.34 2529.28 2529.28 2529.28 2529.28 2529.28 2529.28
Max. 2529.28 2592.53 2529.28 2529.28 2529.28 2529.28 2529.29 2635.30
Mean 2529.28 2502.78 2529.28 2529.28 2529.28 2529.28 2529.28 2548.95
Std. 0.00 20.78 0.00 0.00 0.00 0.00 0.00 29.31

20

Min. 2480.78 2465.71 2480.78 2480.78 2480.78 2480.78 2480.78 2481.33
Max. 2480.78 2493.66 2480.78 2480.78 2480.78 2480.78 2480.96 2569.35
Mean 2480.78 2474.59 2480.78 2480.78 2480.78 2480.78 2480.79 2495.97
Std. 7.81E-08 7.65 1.60E-07 0.00 3.87E-13 1.12E-04 3.24E-02 19.71

F10

10

Min. 2500.36 2500.34 2491.64 2500.16 2428.35 2500.12 2500.24 2500.24
Max. 2500.64 3282.12 2500.77 2500.26 2500.21 2500.29 2632.13 2616.27
Mean 2500.47 2576.42 2500.12 2500.21 2497.79 2500.20 2531.93 2544.94
Std. 0.08 146.82 1.60 0.03 13.12 0.03 53.25 55.67

20

Min. 2501.13 2500.78 2438.49 2421.04 2409.36 2500.25 2500.37 2500.29
Max. 2524.14 4846.82 2510.31 2551.22 2500.29 2633.79 3138.87 4269.80
Mean 2503.46 3548.22 2497.72 2492.38 2460.02 2509.17 2658.05 3033.94
Std. 4.85 650.37 13.08 38.48 30.57 33.59 230.71 592.48

F11

10

Min. 2861.66 2845.76 2858.62 2861.40 2858.62 2858.62 2863.92 2859.68
Max. 2864.22 2900.00 2863.31 2865.21 2863.88 2865.21 2872.93 2867.27
Mean 2863.04 2852.38 2860.88 2864.04 2862.99 2863.51 2868.02 2864.11
Std. 0.68 13.33 1.28 1.00 1.22 1.54 2.52 1.36

20

Min. 2932.01 2891.73 2935.11 2938.26 2932.50 2931.38 2941.91 2942.66
Max. 2939.92 2900.98 2944.40 2953.74 2941.25 2968.88 3023.69 2989.95
Mean 2934.87 2899.57 2939.74 2945.31 2938.41 2944.19 2962.65 2957.19
Std. 1.46 1.73 1.98 4.14 2.63 7.52 15.98 10.43

F12

10

Min. 2860.73 2846.30 2858.66 2860.68 2859.37 2858.62 2865.34 2859.24
Max. 2864.11 2900.00 2863.88 2865.21 2863.88 2866.66 2878.69 2872.95
Mean 2862.94 2855.92 2860.81 2864.00 2863.13 2863.38 2868.70 2863.72
Std. 0.76 15.84 1.43 1.18 1.00 1.71 2.73 2.61

20

Min. 2929.18 2899.51 2935.64 2937.23 2932.86 2932.20 2941.98 2940.33
Max. 2937.12 2903.49 2942.89 2952.90 2942.46 2959.63 2975.91 3033.86
Mean 2934.72 2900.10 2939.10 2945.14 2939.37 2943.01 2956.82 2959.60
Std. 1.56 0.65 1.75 5.31 2.76 6.09 10.63 20.10

Table B2. Statistical optimal values of HS, JAYA, PSO, SA, SO, SOS, and TLBO

Fun. d Value HS JAYA PSO SA SO SOS TLBO

F1

10

Min. 300.88 12160.86 300.00 303.26 300.00 300.00 300.00
Max. 591.65 50336.74 300.00 321.70 300.00 300.00 300.00
Mean 342.42 25199.78 300.00 312.53 300.00 300.00 300.00
Std. 60.83 8254.36 0.00 4.56 0.00 0.00 0.00

20

Min. 510.16 31882.40 300.00 345.57 300.00 300.00 300.00
Max. 1333.19 118486.64 300.00 535.21 300.00 300.02 300.00
Mean 821.11 76387.62 300.00 421.57 300.00 300.00 300.00
Std. 215.81 21362.39 0.00 35.08 5.24E-4 4.17E-3 1.03E-06

F2 10

Min. 400.00 412.20 400.01 405.36 400.01 400.00 400.00
Max. 408.92 500.56 470.78 409.24 408.92 470.78 470.78
Mean 406.38 439.23 406.02 408.58 402.61 409.63 405.53
Std. 3.28 19.83 12.80 1.24 3.14 15.57 12.84

End of Table B1
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Fun. d Value HS JAYA PSO SA SO SOS TLBO

F2 20

Min. 449.08 811.87 400.00 446.49 402.96 400.00 402.48
Max. 474.98 1847.27 471.08 450.40 471.88 473.31 474.77
Mean 452.41 1150.57 446.19 447.60 444.19 443.44 448.39
Std. 8.51 253.12 19.41 0.78 14.11 21.19 18.82

F3

10

Min. 600.00 612.42 600.00 601.05 600.00 600 600.00
Max. 600.00 624.74 619.70 601.90 600.15 600.00 600.19
Mean 600.00 618.67 601.77 601.57 600.01 600.00 600.01
Std. 2.60E-07 3.49 4.06 0.21 0.03 9.06E-06 0.034

20

Min. 600.00 629.65 600.45 603.15 600.03 600.00 600.04
Max. 600.00 667.74 639.55 604.38 600.36 600.06 608.05
Mean 600.00 645.69 613.02 603.80 600.17 600.01 602.06
Std. 0.00 9.69 10.08 0.36 0.10 0.01 1.74

F4

10

Min. 800.99 831.61 804.97 802.87 803.98 801.99 800.99
Max. 809.95 859.21 831.84 810.53 813.93 820.78 812.94
Mean 805.45 846.26 817.58 807.27 808.86 810.11 806.52
Std. 2.26 7.07 7.35 1.85 2.91 4.77 2.87

20

Min. 860.50 918.75 825.87 826.90 813.93 809.15 812.93
Max. 902.27 989.68 876.61 860.70 829.85 898.27 855.56
Mean 886.88 955.76 851.11 843.13 821.86 844.86 828.19
Std. 9.75 15.43 13.24 7.53 4.80 21.26 8.91

F5

10

Min. 900.00 928.89 900.00 900.84 900.00 900.00 900.00
Max. 902.40 1022.25 901.91 901.99 900.18 900.09 902.77
Mean 900.27 968.58 900.40 901.36 900.01 900.01 900.27
Std. 0.51 26.51 0.56 0.33 0.04 0.02 0.56

20

Min. 900.00 1889.22 904.22 908.68 900.00 900.18 900.09
Max. 910.04 5663.92 4778.71 917.33 1049.28 910.41 959.38
Mean 901.92 3339.69 1338.20 913.76 916.82 901.93 914.99
Std. 2.72 938.90 763.54 2.15 40.48 2.13 13.16

F6

10

Min. 1805.89 301947.73 1806.90 1982.46 1843.99 1814.38 1893.49
Max. 6313.36 13003715.97 7308.82 8566.82 6813.60 6918.72 6654.43
Mean 2953.77 3601011.96 3218.84 4502.37 2685.61 2858.97 2718.62
Std. 1190.57 2896745.52 1520.67 2283.85 1081.28 1215.09 1065.62

20

Min. 1836.22 27528483.61 1867.36 44818.82 1907.11 1886.04 1920.95
Max. 12155.82 367229216.12 19886.07 310663.83 18983.09 20285.99 23427.98
Mean 4214.63 162628824.16 6107.94 143998.01 7225.03 6662.28 5817.89
Std. 2849.44 95195636.06 5476.22 77510.57 5103.51 5058.09 5341.92

F7

10

Min. 2000.00 2033.35 2004.60 2008.18 2000.99 2000.00 2000.99
Max. 2020.01 2079.20 2051.84 2141.38 2033.50 2020.34 2025.54
Mean 2009.62 2051.38 2029.88 2024.13 2016.40 2003.20 2010.96
Std. 9.88 9.61 12.00 22.90 9.54 6.81 9.46

20

Min. 2016.15 2125.04 2034.99 2037.33 2024.54 2006.21 2022.73
Max. 2065.90 2259.39 2219.81 2185.30 2098.26 2065.15 2061.81
Mean 2033.93 2183.71 2107.44 2078.46 2045.83 2034.31 2040.09
Std. 12.49 30.43 61.65 51.22 21.83 14.23 9.20

F8 10

Min. 2200.72 2226.70 2220.00 2207.65 2200.51 2200.40 2200.26
Max. 2221.10 2239.50 2318.85 2345.97 2223.55 2222.00 2226.82
Mean 2216.84 2230.60 2223.89 2243.80 2220.13 2216.72 2217.25
Std. 6.06 3.21 17.94 46.42 3.84 7.75 9.98

Continue of Table B2
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Fun. d Value HS JAYA PSO SA SO SOS TLBO

F8 20

Min. 2220.55 2236.87 2220.73 2228.54 2220.58 2220.95 2224.57
Max. 2223.23 2268.60 2341.64 2246.12 2238.86 2228.90 2347.36
Mean 2221.45 2251.38 2254.18 2231.26 2222.99 2224.24 2234.83
Std. 0.57 8.28 53.01 3.09 3.30 1.65 21.69

F9

10

Min. 2529.28 2534.24 2529.28 2529.32 2529.28 2529.28 2529.28
Max. 2529.37 2573.32 2529.28 2529.42 2529.28 2529.28 2529.28
Mean 2529.30 2548.79 2529.28 2529.37 2529.28 2529.28 2529.28
Std. 0.02 9.30 0.00 0.03 0.00 0.00 0.00

20

Min. 2481.00 2607.57 2480.78 2481.38 2480.78 2480.78 2480.78
Max. 2483.84 2997.30 2480.78 2481.87 2480.78 2480.78 2480.78
Mean 2482.08 2754.43 2480.78 2481.65 2480.78 2480.78 2480.78
Std. 8.04E-01 94.09 1.23E-12 0.12 6.02E-05 2.67E-13 1.18E-12

F10

10

Min. 2400.00 2473.26 2500.23 2476.39 2400.44 2500.15 2500.20
Max. 2614.32 2666.96 2624.07 2611.78 2632.95 2500.44 2607.56
Mean 2546.63 2536.88 2581.01 2537.45 2512.93 2500.30 2507.42
Std. 57.17 56.42 53.86 52.12 70.57 0.06 27.00

20

Min. 2400.03 2534.61 2500.35 2500.46 2420.27 2500.40 2500.43
Max. 2500.49 5993.31 4645.80 3630.92 3099.05 2641.63 3220.73
Mean 2403.46 3688.43 3653.37 2983.71 2677.98 2514.00 2562.46
Std. 18.33 1421.76 642.84 295.73 186.44 41.18 142.51

F11

10

Min. 2861.44 2869.13 2862.70 2859.11 2863.90 2858.73 2861.11
Max. 2867.82 2912.20 2923.38 2863.55 2887.48 2865.21 2867.53
Mean 2865.35 2877.61 2867.92 2861.58 2869.13 2862.54 2863.95
Std. 1.88 8.71 10.65 1.63 5.36 1.71 1.46

20

Min. 2936.21 3015.41 2951.34 2934.95 2941.77 2936.95 2941.51
Max. 2961.62 3163.37 3098.25 2946.27 3021.22 2998.54 3007.13
Mean 2946.38 3075.85 2985.95 2939.05 2976.25 2955.65 2956.88
Std. 6.13 39.05 31.11 3.09 18.76 12.30 16.42

F12

10

Min. 2861.41 2870.08 2864.03 2859.42 2864.64 2858.62 2858.62
Max. 2869.89 2928.41 2919.97 2863.22 2889.26 2865.17 2867.58
Mean 2866.21 2878.28 2868.05 2861.61 2869.05 2862.05 2864.12
Std. 2.23 10.99 9.98 1.21 4.75 1.52 1.91

20

Min. 2931.39 2988.10 2945.44 2935.21 2946.63 2937.72 2934.74
Max. 2961.51 3149.75 3092.88 2943.32 3061.97 3123.09 3044.73
Mean 2947.03 3075.70 2998.05 2938.48 2977.01 2957.14 2958.22
Std. 7.38 35.03 38.34 2.20 20.61 32.95 22.07

End of  Table B2


