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Abstract. Gravitational search algorithm (GSA) is a nature-inspired conceptual framework with roots in gravitational 
kinematics, a branch of physics that models the motion of masses moving under the influence of gravity. In a recent 
article the authors reviewed the principles of GSA. This article presents a review of applications of GSA in engineer-
ing including combinatorial optimization problems,  economic load dispatch problem, economic and emission dispatch 
problem, optimal power flow problem, optimal reactive power dispatch problem, energy management system problem, 
clustering and classification problem, feature subset selection problem, parameter identification, training neural net-
works, traveling salesman problem, filter design and communication systems, unit commitment  problem and multi-
objective optimization problems. 
Keywords: gravitational search algorithm, nature-inspired computing, gravitational kinematics, metaheuristic algorithm. 

Introduction

Inspired by the universal law of gravitation, Rashedi 
et al. (2009) proposed the Gravitational Search Algorithm 
(GSA) as a heuristic optimization method. In a recent ar-
ticle the authors reviewed the principles of gravitational 
search algorithm (GSA), how they are applied to the op-
timization problem, and the key ideas behind GSA (Sid-
dique, Adeli 2016). They presented a review of GSA and 
its variants and summarized guidelines from the literature 
on the choice of parameters used in GSA for effective 
solution of optimization problems. 

GSA was first applied to well-known benchmark 
combinatorial optimization problems (Rashedi et al. 
2009, 2011). Since then GSA has found a wide range of 
applications. This paper presents a review of GSA appli-
cations for solution of engineering problems. 

1. Economic load dispatch problem

Economic Load Dispatch (ELD) is a method of determin-
ing the most efficient, low-cost and reliable operation of 
a power system by dispatching available electricity gen-
eration resources to supply load on the system most eco-
nomically. The ELD problem is multimodal, non-differ-
entiable and highly nonlinear. The objective function of 
ELD problem can be stated as follows: 

 1
( )

gN

T i i
i

F Min C P
=

= ∑ ,  (1)

where TF  is the total electricity generation cost to be 
minimized, iC  is the cost function of i-th generator and 

gN  is the number of power generating units each load-
ed to iP  in MW. Chatterjee et al. (2012) proposed GSA 
with wavelet mutation (Perez et al. 2014; Dai et al. 2015) 
(GSAWM) for solution of the ELD problem with 3, 6, 13 
and 140 generating units incorporating valve-point effect. 
Swain et al. (2012) investigated the effectiveness and per-
formance of standard GSA for solving ELD systems with 
3 and 13 thermal generating units taking into account the 
valve-point effect. 

2. Economic and emission dispatch problem

Sustainability has become a key area in the frontiers of 
research (Wang, Adeli 2014; Rafiei, Adeli 2016). The 
cost-effective production of electrical energy is crucial 
with the increasing demand (Pinto et al. 2014; Morais 
et al. 2015). The thermal power plants using fossil fu-
els produce energy economically but release toxic gases 
such as carbon dioxide (CO2), sulphur dioxide (SO2), 
nitrogen oxide (NOx) and some other particles, which 
cause environmental pollution. The objective of the eco-
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nomic and emission dispatch (EED) of power generation 
is to schedule the committed generating unit outputs to 
meet the load demand at minimum operating cost and 
minimum emission levels. The EED problem has thus 
become one of the most important optimization prob-
lems in power system operation and forms the basis of 
a benchmark problem for optimisation algorithms. EED 
poses a bi-objective optimization problem formulated as 

[ ],Min F E , where F is the total fuel cost of gN  genera-
tors and E is the total emission dispatch from the genera-
tors expressed as the sum of all types of emissions such 
as NOx, SO2 , CO2, and particle emissions. Rather than 
handling the EED problem with two objectives, many re-
searchers convert the bi-objective problem into a single 
objective optimization function using a price penalty fac-
tor (Bharathi et al. 2007). Güvenç et al. (2012) applied 
the GSA to four different test cases for the EED problem 
with quadratic cost and emission functions. Shaw et al. 
(2012) applied opposition-based GSA to solve the EED 
problem. Mondal et al. (2013) applied GSA to the IEEE 
30-bus system with six conventional thermal generators. 
Jiang et al. (2014) proposed a hybrid particle swarm op-
timization (PSO) (Wu et al. 2014; Shabbir, Omenzetter 
2015) and GSA (HPSO-GSA) to solve the EED problem 
with five various features such as with/without losses, 
with/without valve-point effects, with/without prohibited 
operating zones, with/without multiple fuels and ramp 
rate limits. 

3. Optimal power flow problem

The optimal power flow (OPF) is a key problem in mod-
ern economic power systems requiring the balance of 
economy, reliable power supply, and computational ef-
fort. Efficient market equilibrium requires multi-part 
nonlinear pricing to be economical. As the power flow 
is alternating current, it induces additional nonlinearities 
(Carpentier 1979). Moreover, the power system must be 
able to withstand the loss of any generator or transmis-
sion unit, and the system operator must make binary deci-
sions to start up and shut down generation and transmis-
sion units in response to system events. The OPF problem 
is a large-scale highly nonlinear control optimisation 
problem which seeks the most favourable settings of a 
given power system that minimises total fuel cost, active 
power loss, and bus voltage deviation, and maximizes 
voltage stability while satisfying a number of equality 
and inequality constraints (Bhowmik, Chakraborty 2014).     

A number of population-based optimisation methods 
have been applied to the OPF problem such as PSO (Abi-
do 2002; Boulkabeit et al. 2014) and genetic algorithm 
(GA). Duman et al. (2012a) applied GSA to the standard 
IEEE 30-bus test system with six generators for different 
cases with various objective functions such as quadratic 
cost function, voltage profile improvement, voltage sta-
bility enhancement, voltage stability enhancement during 
contingency, piecewise quadratic fuel cost functions and 
quadratic cost curve with valve point loading. 

4. Reactive power dispatch problem

The OPF problem can be divided into two sub-problems: 
optimal Reactive Power Dispatch (RPD) and optimal real 
power dispatch (Shi et al. 2012). The electric power loads 
in a power generating system vary from hour to hour. 
The change in load causes variation in the reactive pow-
er requirement which depends on voltage. Therefore, an 
important operating task is to maintain the voltage level 
within the allowable range for high quality consumer ser-
vice and minimise real power transmission losses. The 
RPD problem is a non-linear optimization problem with 
a number of equality and inequality constraints. The ob-
jective functions of RPD are to minimise the real power 
losses and improve voltage profile and voltage stability 
while satisfying a number of constraints such as load 
flow, generator bus voltages, load bus voltages, switch-
able reactive power compensations, reactive power gen-
eration, transformer tap setting and transmission line flow 
(Duman et al. 2012a; Niknam et al. 2013; Shaw et al. 
2014). 

Recently, different meta-heuristic algorithms have 
been applied to the RPD problem such as differential 
evaluation (DE) (Vincenzi, Savoia 2015; Cheng et al. 
2015; Abou El Ela et al. 2011; Varadarajan, Swarup 
2008), GA (Lee, Park 1995), evolutionary programming 
(Lai et al. 1997; Lai, Ma 1997), cooperative co-evolu-
tionary DE algorithm (Liang et al. 2007), PSO (Mahade-
van, Kannan 2010), self-adaptive real coded GA (Sub-
baraj, Rajnarayanan 2009), and PSO-based multi-agent 
systems (Zhao et al. 2005) using the concept of autono-
mous agents from the artificial intelligence research (Sun, 
Wu 2014; Montalvo et al. 2014). 

Duman et al. (2012b) applied the GSA to the RPD 
problem for different cases with various objective func-
tions. Niknam et al. (2013) applied opposition-based self-
adaptive modified GSA to the RPD problem formulated 
as a mixed integer nonlinear optimisation problem (Adeli 
1994). Shaw et al. (2014) used opposition-based popula-
tion initialization and generation jumping in GSA to im-
prove the performance of GSA and applied the approach 
to the RPD problem. 

5. Energy management systems 

Energy management system (EMS) is an integrated com-
puter-based system used by operators of electric utility 
grids to monitor, control, and optimize the performance 
of the generation and/or transmission system. EMS is 
also used for optimum use of distributed energy sources, 
and automated control and monitoring of electromechani-
cal facilities in buildings with high energy consumption. 
Performance optimization and scheduling of the distrib-
uted generation (DG) are issues of concern within Micro-
grid (MG). Optimization methods need to be applied to 
achieve maximum efficiency and best performance. In the 
recent years, researchers have applied population-based 
algorithms to the EMS problem such as GA (Chen et al. 
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2011), and PSO (Hassan, Abido 2011) and also simulated 
annealing (SA) (Zhuang, Galiana 1990) with limited suc-
cess.   

Marzband et al. (2014) applied GSA to the real-time 
EMS problem in an MG including different types of DG 
units with particular attention to the technical constraints. 
The EMS consists of a stand-alone wind turbine (WT), 
photovoltaic (PV), microturbine (MT) and energy storage 
(ES) system. The objective function for the optimisation 
of the EMS is the total general cost. The application in-
cludes the implementation of some variation in load con-
sumption model considering accessibility to the ES and 
demand response. The GSA provides a good compromise 
between computation time and precision of the solution. 

6. Clustering problem

Finding a high performance search method for mining of 
huge data known as big data is of great current interest 
(Chira et al. 2014). A requisite for mining of big data is 
an effective clustering algorithm (Peng, Ouyang 2014). 
Clustering is a search process of discovering hidden pat-
terns or relationship between data objects in large data 
sets (Gonçalves et al. 2014). It usually involves partition-
ing data sets into homogeneous subgroups or clusters sub-
ject to satisfying two objectives: minimise within-cluster 
variation (that is intra-cluster distance) and maximise the 
between-cluster variation (that is inter-cluster distance) 
(Menendez et al. 2014; Coletta et al. 2015). There are 
many popular clustering methods reported in the literature 
to date such as K-means clustering (MacQueen 1967), 
fuzzy C-means clustering (Bezdek 1981), mountain clus-
tering (Yager, Filev 1994), subtractive clustering (Chiu 
1994), and K-harmonic (K-H) means clustering (Zhang 
et al. 2000) but the search for effective algorithms still 
continues. 

Yin et al. (2011) integrated the GSA into K-harmon-
ic means clustering algorithm to help K-harmonic (K-H) 
means escape from local minima. Hatamlou et al. (2012) 
applied a hybrid GSA-K-means approach to solve the op-
timal clustering problem. K-means algorithm is used in 
generating the initial population, i.e. cluster centres, and 
then GSA is employed as an improvement method to find 
the optimal solution. The proposed approach was tested 
on five real datasets. 

7. Classification problems

Classification problem is to group objects into catego-
ries. Mathematically it is a mapping from input features 
into a set of labels or classes. There are many popular 
techniques for classifier system such as binary classifiers 
(Garcia-Predajas, Ortiz-Boyer 2011), decision tree clas-
sifier (Kurzynski 1983), neural networks classifier such 
as the Enhanced Probabilistic Neural Network (EPNN) 
(Ahmadlou, Adeli 2010), Bayesian classifier (Hernán-
dez-González et al. 2013), and support vector machine 
(Zhang, Zhou 2015; Chou, Pham 2015; Castillo et al. 
2015). Some researchers also applied metaheuristic ap-

proaches such as PSO (De Falco et al. 2007) and Artifi-
cial Bee Colony (ABC) (Karaboga, Ozturk 2011) to the 
classification problem. Bahrololoum et al. (2012) applied 
the GSA to instance-based classification. Chakraborti 
et al. (2014) used a local extrema-based GSA which em-
ploys a stochastic local neighbourhood-based search in-
stead of a global search to face recognition problem. 

8. Feature subset selection

Pattern recognition, data mining and knowledge discov-
ery problems require feature subset selection (FSS) to 
represent the patterns to be classified (Zalama et al. 2014; 
Amezquita-Sanchez, Adeli 2015). The FSS problem re-
fers to the task of identifying and discovering a useful 
subset of features to represent a pattern from a larger set 
of features which may be redundant and even irrelevant 
causing unnecessary computational complexity and cost 
(Jackowski et al. 2014). The research problem is then 
how to select the minimum subset of features to repre-
sent the original knowledge effectively. Thus, FSS can be 
viewed as a search problem. 

The FSS problem can be treated as an optimization 
problem in a search space of 2N . Han et al. (2013) in-
troduced a binary GSA to solve the FSS problem.  The 
length of the encoding represents the total number of fea-
tures where 1 represents a selected feature and 0 repre-
sents a non-selected feature (Fig. 1). Once a set of features 
is selected, a classification algorithm such as K nearest 
neighbour (K-NN) or EPNN (Ahmadlou, Adeli 2010) is 
used to perform the classification. Han et al. (2013) also 
applied quantum-inspired GSA to the FSS problem with 
the aim of improving the classification accuracy of the 
K-NN method. The method was verified using several 
machine learning benchmark examples from the Univer-
sity of California Machine Learning Repository.

Fig. 1. Encoding of FSS problem

9. Parameter identification

System identification is a general mathematical procedure 
to build a dynamic model from measured input-output 
data (Sirca, Adeli 2012). That means system identifica-
tion needs to deal with analysis, determination of order 
and parameters, and estimation of parameters of the dy-
namic system (Gutierrez-Soto, Adeli 2014; Wang, Adeli 
2015). Thus, the system identification problem can be de-
fined as constructing a suitable model of the system from 
input-output data where input ( )u k  produces an output 
ˆ( )y k  such that ˆ( ) ( ) ( )e k y k y k ε= − <  for some desired 

0ε > , where .  is a suitably defined norm and the norm 
ˆ( ) ( )y k y k−  is absolute error or squared error. The pa-

rameter identification is then to obtain the best possible 
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set of parameter values by minimising an objective func-
tion which is usually defined as function of errors be-
tween the system’s actual output ( )y k  and model’s esti-
mated output ˆ( )y k . If the error ( )e k ε>  the parameters 
are re-estimated. The process continues until ( )e k ε<  is 
reached. The problem of parameter identification can be 
treated as a problem of optimisation of the parameter set 
with an objective function J  to be minimised (Ljung 
1999) defined as: 

 

21
min 1

ˆ( ) ( )
M

M
k

J y k y k ε
=

= − <∑ . (2) 

Many meta-heuristic algorithms have been applied to pa-
rameter identification. For example, GA and PSO have 
been used for power system parameter identification 
problems (Quispe, Graciela 2008; Carlos, Schirru 2008). 
Li and Zhou (2011) introduced a GSA-based optimisa-
tion algorithm for parameter identification of the hydrau-
lic turbine governing system (HTGS) with the following 
fitness function:

 

2

1 1
ˆ( ) ( ) ( )

N n

j j j
k j

F w z k z kθ
= =

 = − ∑∑ , (3)

where z  is the system output, ẑ  is the estimated model 
output, w  is the weight vector, N  is the number of sam-
ples and n is the number of parameters or the dimension 
of the system. 

Chen et al. (2014a, 2014b) also applied a GSA-
based optimisation algorithm for parameter identification 
of a water turbine regulation system using the same fit-
ness function represented by Eqn (3). Li et al. (2012a) 
applied GSA and chaotic GSA to identify the parameters 
of the chaotic Lorenz system described by

 

( )x y x
y x xz y

z xy z

σ
ρ

β

= −
 = − −
 = −







, (4)

where 4 14σ< < , 24 90ρ< <  and 1.5 4.5β< <  are the 
parameters of the Lorenz system. The task of identifica-
tion of the chaotic parameters [ , , ]σ ρ β  is to optimise the 
objective function defined by Eqn (3). 

There are a lot of inherent uncertainties in most 
real world systems which cannot be incorporated into a 
model simply by a set of differential equations. Research-
ers have attempted to model uncertainties in real world 
systems using the theory of fuzzy logic (Jiang, Adeli 
2003) such as the Takagi-Sugeno type fuzzy set known 
as the T-S fuzzy set modelling approach (Takagi, Sug-
eno 1985; Siddique, Adeli 2013). Li et al. (2013) applied 
chaotic GSA to a T-S fuzzy model of HTGS. The objec-
tive function used for the 3-rule T-S fuzzy model is the 
mean squared error defined by Eqn (3). Li et al. (2012b) 
also used a GSA-based hyperplane clustering for the T-S 
fuzzy model identification. 

10. Training neural networks

In general, feed-forward neural network (NN) consists of 
one input layer, one or more hidden layers with a nonlin-
ear activation function and one output layer with a linear 
activation function (Adeli, Park 1998). Biases can be set 
to non-zero or zero. The problem is to find the connec-
tion weights of the network for the given architecture to 
produce the correct output for the function for each cor-
responding inputs. The training NN weights are obtained 
by minimizing the mean squared of the network error 
function defined by Adeli and Hung (1995):

 

2
, 1

1 ˆ( , ) min ( )
m

i iw b i
MSE w b y y

m =

  = − 
  
∑ . (5)

Minimum of ( , )MSE w b leads to optimum behaviour of 
the NN where iy  is the target output and ˆiy  is the actual 
or estimated output of the network. Most NN applications 
use the backpropagation (BP) algorithm or its variation 
for training the NN which requires the gradient informa-
tion of error with respect to the weights. BP algorithm 
can get trapped in local minima and end up bouncing 
between local minima without reaching the global opti-
mum (Siddique, Adeli 2013). BP’s speed and robustness 
are sensitive to its parameters: such as learning rate, mo-
mentum and acceleration constant and the best param-
eters usually varies from problem to problem. Various 
heuristic optimisation algorithms have been applied for 
training of NN such as PSO (Settles et al. 2003), central 
force optimisation (Siddique, Adeli 2015), spiral dynam-
ics optimisation (Siddique, Adeli 2014). Mirjalili et al. 
(2012) proposed combining PSO and GSA for finding the 
optimal values of weights and biases. 

11. Travelling salesman problem

The travelling salesman problem was mathematically 
formulated in the 1800s by the Irish mathematician W. 
R. Hamilton and by the British mathematician Thomas 
Kirkman. Hassler Whitney at Princeton University intro-
duced the name travelling salesman problem (Schrijver 
2005). TSP is modelled as an undirected weighted graph 

( ),G V E= , where the set of vertices V denotes the n 
cities and the edge set E denotes the edges between cit-
ies. The goal of TSP is to find a tour with the minimum 
total length among all such possible tours for the given 
graph where each city is visited only once. Many real 
world combinatorial optimisation problems can be for-
mulated as an instance of the TSP such as scheduling (Li 
et al. 2015), routing, placement of goods and machines 
in the warehouse, and printed circuit design. Dowlatshahi 
et al. (2014) applied a discrete GSA to a set of 54 Euclid-
ean benchmark instances of TSP with sizes ranging from 
51 to 2392 nodes. The TSP is encoded as a permutation 
problem and a small move operator is used based on a 
swap operator. 
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12. Filter design and communication systems

A digital filter transforms input signals into desired output 
signals by keeping the frequency contents of the desired 
band and eliminating undesirable signals. Two important 
types of linear filters are finite impulse response (FIR) 
filters and infinite impulse response (IIR) filters (Mitra 
2002). Non-linear filters are another type of digital fil-
ters used in many systems with nonlinear behaviour. The 
output of a FIR filter depends on inputs whereas the out-
put of an IIR filter depends on the inputs as well as the 
outputs. IIR filters have the advantage of requiring fewer 
coefficients to compute. A nonlinear filter is described by 
the ratio of two polynomials expressed as:  

[ ]
[ ]

ˆ ˆ ˆ( 1), , ( ), ( 1), , ( )
ˆ( ) ˆ ˆ ˆ( 1), , ( ), ( 1), , ( )

a x k x k n y k y k m
y k

b x k x k n y k y k m
− − − −

=
− − − −

 

 

, (6)

where ˆ( )y k  is the estimated output of the filter, m and n 
are the orders of the filter, ˆia  and îb  are the filter coef-
ficients to be estimated using a suitable algorithm. Rashe-
di et al. (2011) applied GSA to modelling digital filters 
where they estimated the filter parameters ˆia  and îb  us-
ing a GSA-based optimisation procedure. The objective 
function is defined as:

 
[ ]2

1

1 ˆ( ) ( )
L

k
J y k y k

L =
= −∑ , (7)

where ( )y k  is the actual output of the filter. Han and 
Chang (2012a) present a secure communication approach
consisting of encoding, GSA-based filtering, and chaotic 
receiver and decoding. Useful signal is encoded as a para-
metric continuous-time carrier signal in the unified cha-
otic system. The chaotic states recovered in the receiver 
are corrupt with noise which requires a GSA-based filter-
ing to estimate the states used in a decoding scheme to 
achieve a useful message. Han and Chang (2012b) also 
proposed a chaotic secure communication scheme based 
on a modified GSA to minimize the risk of premature con-
vergence of GSA. Saha et al. (2015) present an optimal 
IIR filter design using GSA with Wavelet Mutation (Kim, 
Adeli 2005; Hsu 2015). 

13. Unit commitment problem in power systems

Unit commitment (UC) problem in power systems aims 
to schedule the most cost-effective combination of gen-
erating units to meet the forecasted load and reserve re-
quirements while adhering to generator and transmission 
constraints. The commitment schedule takes into account 
the inter-temporal parameters of each generator (mini-
mum run time, minimum down time, notification time, 
etc.) but does not specify production levels which are 
determined five minutes before delivery. The determina-
tion of these levels is known as economic dispatch and 
is the least-cost usage of the committed assets during a 
single period to meet the demand. The objective is to 
minimize the total system cost of generating power from 

N units over a specific time horizon T defined by Happ 
et al. (1971): 

 
( ) ( )

1 1
( ) ( ), ( )

T N

i i i i i
t i

F FC P t S h t u t
= =

 = + ∑∑ . (8)

The fuel costs iFC  are dependent on the level of power 
generation ( )iP t . The start-up costs iS  are dependent on 
the state of the unit ih  and the number of hours the unit 
has been on (positive) or off (negative). The discrete deci-
sion variable iu  denotes if power generation of the unit 
at time t  is up (denoted as 1) or down (denoted as –1) 
from the unit at time 1t + . Binary numbers are used in 
the UC problem to indicate the units’ status (i.e. commit-
ted or not committed). There are a number of equality 
and inequality constraints in the UC problem depending 
on the nature of the power system under study. 

Roy (2013) applied GSA to the UC problem. 
Units’ status is updated using a sigmoid function

1( ) {0,1}
1 exp( )

j
i j

i
f x

x
= ∈

+
. In each test case, GSA 

appears to be a robust and reliable optimisation algorithm 
showing competitive performance compared with other 
heuristic algorithms.  Ji et al. (2014) also applied binary 
GSA to the UC problem and reported competitive results 
in all experiments.  

14. Multi-objective optimisation

Problems requiring simultaneous optimization of more 
than one objective functions are known as multi-objec-
tive optimization problems (MOOP). Formally it can be 
defined as:

 

( )
( )

Minimise/maximise ( )
Subject to 0, 1,2,3, ,

0, 1, 2,3, ,
j

k

f x
g x j J

h x k K




≥ =
 = =





, (9)

where ( ) ( ) ( ) ( ){ }1 2, , , nf x f x f x f x=   is a vector 
of objective functions, n is the number of objectives, 

{ }1 2, , , px x x x=   is a vector of decision variables and 
p  is the number of decision variables. The goal is to 

optimize n objectives while satisfying J inequality and K 
equality constraints. This type of problem has no unique 
solution. The objectives can interact or conflict with each 
other. Multi-objective optimization algorithms usually 
do not provide a single solution rather a set of solutions 
based on trade-offs or good compromises among the ob-
jectives. In order to generate these trade-off solutions, an 
old notion of optimality called Pareto-optimum is usually 
adopted (Ben-Tal 1980). 

Hassanzadeh and Rouhani (2010) proposed a multi 
objective GSA. Ghasemi et al. (2013) discuss design of 
multi-machine power system stabilizers using a fuzzy 
GSA. Mondal et al. (2013) solve the multi-objective eco-
nomic emission load dispatch problem considering wind 
power penetration using the GSA. Tian et al. (2014) dis-
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cuss the multi-objective optimization of short-term hy-
drothermal scheduling using a non-dominated sorting 
GSA with chaotic mutation.

Conclusions

GSA is a relatively new algorithm but has attracted sig-
nificant attention from the research community in the past 
few years. This paper presented a review of significant 
engineering applications of GSA. Additional research is 
needed on several topics such as premature convergence 
to a local minimum, estimation of convergence rate, 
searching behaviours, and parameter selection. GSA can 
be used for solution of a variety of civil engineering prob-
lems such as optimization of renewable energy sources 
(Yazdani-Chamzini et al. 2013), hybrid multicriteria de-
cision support systems (Turskis et al. 2009; Zavadskas 
et al. 2016), size and topology optimization of structures 
(Cirovic et al. 2014), optimization of transportation net-
works (Chen et al. 2014a, 2014b), and optimization of 
water distribution systems (Montalvo et al. 2014). 
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