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Abstract. A vector of residual forces of the ideally elastic-plastic structure at shakedown is obtained by solving the static 
analysis problem. A unique distribution of the residual forces is determined if the analysis is based on the minimum 
complementary deformation energy principle. However, the residual displacements developing in the shakedown process 
of ideally elastic-plastic structures under variable repeated loads can vary non-monotonically. Nevertheless mathematical 
models for the optimization problems of steel structures at shakedown must include the conditions for strength (safety) 
and stiffness (serviceability). Residual displacements determined by the plastic deformations are included in the stiff-
ness conditions; therefore to improve the optimal solution it is necessary to determine upper and lower bounds of the 
residual displacement variations. This paper describes an improved methodology for estimating the variation bounds of 
the residual displacements at shakedown. 
Keywords: elastic-plastic structures, shakedown, unloading phenomenon, residual displacements, energy principles, 
mathematical programming.

Introduction

The classic term “structural shakedown” implies un-
derstanding that paper refers to the ideal elastic-plastic 
structures subjected to variable repeated load ( )tF  (vec-
tors are denoted as bold letters) (Casciaro, Garcea 2002; 
Chaaba et al. 2010; Giambanco et al. 2004; Koiter 1960; 
König 1987; Maier 1969; Polizzotto et al. 1991; Raad, 
Weichert 1995; Staat, Heitzer 2003; Stein et al. 1992; 
Weichert, Maier 2002). Variable repeated load (VRL) is 
a system of external forces ( )tF , that may vary within 
time t  independently of each other. Load ( )tF  is as-
sumed to be quasi-static, i.e. dynamic effects are ignored. 
VRL is defined by lower infF  and upper supF  variation 
bounds ( )inf sup( )t≤ ≤F F F . In this paper, the equilib-
rium finite element method based on internal force ap-
proximation is applied for the discretization of structures 
(taking in to account an assumption of small displace-
ments) (Alawdin 2005; Belytschko 1972; Kalanta et al. 
2009;  Kaliszky, Lógó 2002; McGuire et al. 2000; Ngo, 
Tin-Loi 2007; Simon et al. 2013; Venskus et al. 2010). 
Optimization problems of elastic-plastic steel structures 
subjected to VRL are nonconvex mathematical pro-
gramming problems (Atkočiūnas 2012; Rozvany 2011). 
Mathematical models for the optimization problems of 
steel structures at shakedown contains strength (safety) 
and stiffness (serviceability) conditions (Alawdin, Liepa 

2016; Atkočiūnas, Venskus 2011; Kala 2005; Kaliszky, 
Lógó 2002; Merkevičiūtė, Atkočiūnas 2006; Palizzolo 
et al. 2014; EN 1993-1-1:2005). Displacements deter-
mined by plastic deformations appear in stiffness condi-
tions. But the residual displacements developing during 
shakedown process of ideally elastic-plastic structures 
under variable repeated load can vary non-monotonically. 
Therefore, it is necessary to be able to determine upper 

,supru  and lower ,infru  variation bounds of residual dis-
placements and to connect them with pseudo-elastic dis-
placements (Capurso 1974; Lange-Hansen 1998; Liepa, 
Gervyte 2015). In regards to mathematical models some 
for the limit and shakedown analysis of rod elements of 
reinforced concrete cross-section, involving the calcula-
tions of cross-section under quasi-static low-cycle load-
ings were presented by Alawdin and Kasabutski (2009). 
Modified mathematical model for optimization of rein-
forced concrete plane frames, subjected to variable re-
peated loads, at shakedown conditions was presented by 
Alawdin and Liepa (2015). In this paper, based on the 
principles of extreme energy (complementary and total 
potential energy minimum) (Tran 2011), a new scanning 
technique, which does not require detail analysis of load-
ing history, is proposed for evaluation of residual dis-
placements of structures at shakedown.
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1. Structural discretization, main dependences

The numerical methods of structural mechanics are based 
on a discrete structural model. The geometry of the struc-
ture, the material and finite element type are known. The 
equilibrium finite element method is applied for the dis-
cretization of a structure (Kalanta et al. 2012). The stress 
state of a discrete structure is expressed by the vector
of forces 1 2 ...

T
ζ =  S S S S , s vζ = × , where s 

is the number of finite elements ( 1, 2, ..., ,k s= k K∈ ) 
and ν is the number of nodes (design sections) of each 
element ( 1, 2,...,l ν= , l L∈ ). Thus, overall, there are 

sζ ν= ×  design sections: 1, 2, ..., , i i Iζ= ∈ . In gen-
eral, every section has several internal forces, therefore 
every component iS  of the vector S  expresses a vec-
tor of these forces (e.g. the bending moments for plates 
or bending moment and axial force for a plane frame 
section). In this case, the total number of scalar compo-
nents in the vector S  is n, but because a section-wise 
description is more convenient for the general analysis 
of a discrete structure, section index ζ  is kept as well 
(Atkočiūnas et al. 2015). Forces ( )k xS  at any point x 
of finite element k are expressed via forces kS  of ele-
ment nodal points, using approximation matrix ( )k xH : 

( ) ( )k k kx x =  S H S . The degree of freedom of a model 
is m, thus vectors of global displacements u and load F 
are 1 2 ... T

mu u u=   u  and 1 2 ... T
mF F F=   F , 

respectively. Nodal deformations are grouped together in 
vector 1 2 ... T =  ζΘ Θ Θ Θ . 

In order to avoid analyzing loading history the au-
thors use all possible discrete combinations of external 
loading jF : inf supj≤ ≤F F F , 1, 2, ..., , 2mj p p= =  

j J∈ . Then  elastic forces  1 2 ..., , ,
T

ej ej ej ej ζ =  S S S S  

and displacements 1 2 ..., , ,
T

ej ej ej ej mu u u =  u  are 

determined using the influence matrices α  and β : 

 ej j=S Fα , ej j=u Fβ , j J∈ . (1)

At shakedown state the total response due to a par-
ticular load combination contains elastic and residual 
components: j ej r= +S S S ; j ej r= +u u u . Residual

forces 1 2 ..., , ,
T

r r r r ζ =  S S S S  are self-balanced: 

 0r =AS .  (2)

Where ( )m n×A  is the matrix of the coefficients of equi-
librium equations. Strength (yield) condition is verified 
in every design section i I∈ , for every load combination 
j J∈ : ( )0 0, ,ij i ij ej i r iS fϕ = − + ≥S S . Yield conditions 

for the whole structure are as follows:

 ( )j j ej r= − + ≥ 0C f S Sϕ , j J∈ . (3)

Plastic constants in these conditions are element lim-
iting forces 0≡C S  which are assumed to be constant 

over the whole finite element. Statically admissible re-
sidual forces rS  satisfy the equilibrium Eqns (2) and the 
yield conditions (3). 

Residual displacements 1 2 ..., , ,
T

r r r r mu u u =  u
satisfy geometric equations:

 T
r r=A u Θ ,   r r p= +DSΘ Θ ,  (4)

where 1 2 1 2... ...
T T

p p p p p p p n   = =   , , , , , ,ζ Θ Θ ΘΘ Θ Θ Θ  

is a vector of plastic deformations and r r p= +DSΘ Θ

are residual deformations 1 2 1 2... ...
T T

r r r r r r r n   = =   , , , , , ,ζ Θ Θ ΘΘ Θ Θ Θ

1 2 1 2... ...
T T

r r r r r r r n   = =   , , , , , ,ζ Θ Θ ΘΘ Θ Θ Θ . Here ( )n n×D  is a blockdiagonal

matrix of element flexibilities kD . The com-
ponents of the vector of plastic deformations 

pΘ  are calculated according to the equation:

( ), , , ,,  ,

, , .

T T
p p i p i ij ej i r i ij

j

ij i I j J

ϕ = = ∇ + 

≥ ∈ ∈

∑ ( )

0

S SΘ Θ Θ λ

λ
 

(5)

Here the expression 

 , ,
, ,

,

( )
( )

T ij ej i r i
ij ej i r i

r i

f
ϕ

 ∂ +
 ∇ + =    ∂  

S S
S S

S
 (6)

is a gradient matrix of yield conditions (3) and ijλ
  is 

a vector of plastic multipliers. Kinematically admissible 
residual displacements ru satisfy geometric Eqns (4) and 
kinematic boundary conditions.

2. Static formulation of the shakedown analysis 
problem

Variation bounds infF , supF  of the load ( )tF , ensuring 
structural shakedown, are known. Vector of residual forc-
es rS  of the discrete structure at shakedown is obtained 
by solving the formulated static analysis problem. This 
formulation is written on the basis of the minimum com-
plementary deformation energy principle (Atkočiūnas 
2012): of all statically admissible vectors rS  of resid-
ual forces, the actual one corresponds to the minimum 
of complementary deformation energy of the structure 
at shakedown. For the structure at shakedown, comple-
mentary deformation energy ′  is expressed in terms

of residual forces as follows: ( ) 1
2

T
r r r′ =S S D S . In this

case, the following extreme problem corresponds to the 
principle: 

 ( ) 1minimize
2

*T
r r r a ′ = = 

 
S S D S , (7)

subject to 
 0r =A S , (8)

 j j ej r− + ≥( ) 0= C f S Sϕ  for all j J∈ . (9)
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In problem (7)–(9), vector of limiting forces 0≡C S  
and pseudo-elastic internal forces ejS , j J∈  are known 
quantities. Vector of statically admissible residual forc-
es rS  is unknown, which minimizes the objective func-
tion (7). Matrix D  is defined positively, therefore func-
tion ′ is convex. Non-linear yield conditions (9) are 
convex functions. Problem (7)–(9) belongs to the group 
of convex non-linear mathematical problems (Bazaraa 
et al. 2006). Thus, an optimal solution to the static for-
mulation of the analysis problem at shakedown (7)–(9) 
is unique and will be denoted by *

rS . It is important to 
note, that after problem (7)–(9) is solved, for example 
using MATLAB, not only optimal solution r

∗S  is ob-
tained, but also optimal solutions r

∗u  and j
∗λ  of dual 

problem are found. Having determined plastic multipli-
ers j

∗λ , it is possible to calculate plastic deformations

( )
T

p j ej r j
j

∗ ∗ ∗ = ∇ + ∑ f S SΘ λ  according to Eqn (5) 

(without solving kinematic formulation of analysis prob-
lem directly). But mathematical model (7)–(9) is only 
good for analyzing of shakedown process, when unload-
ing phenomenon of cross-sections does not appear (more 
details about unloading phenomenon will be presented in 
Section 5.4).

3. Complete equation system of analysis problem 
for structures at shakedown

The constraints of problem (7)–(9), together with Kuhn-
Tucker conditions constitute the complete system of 
equations defining the stress-strain state of the structure 
at shakedown (Euler-Lagrange problem):

 0r =A S ; (10)

 ( ) 0j ej r− + ≥C f S S ; (11)

 
T T

r j ej r j r
j

 + ∇ + − = ∑ ( ) 0DS f S S A uλ ; (12)

 0T
j j ej r − + = ( )C f S Sλ ;  (13)

 j ≥ 0λ  for all j J∈ .  (14)

If ejS  and C  are known, solution of system (10)–(14)
is r

∗S , r
∗u , j

∗λ . As it was mentioned earlier, it is not dif-
ficult to calculate plastic deformations p

*Θ  according to 
Eqn (5) and express (or check) residual displacements 

r
∗u  and forces r

∗S :

 1 1 1T
r p p
∗ − − − ∗ ∗ = = ( )u AD A AD HΘ Θ ; (15)

1 1 1 1 1T T
r p p
∗ − − − − − ∗ ∗ = − = ( )S D A AD A AD D GΘ Θ ; (16)

 
T

p j ej r j
j

∗ ∗ ∗ = ∇ + ∑ ( )f S SΘ λ ; (17) 

 ( ) 0j ej r
∗− + ≥C f S S ; (18)

 0T
j j ej r
∗ ∗ − + = ( )C f S Sλ ; (19)

 j
∗ ≥ 0λ  for all j J∈ . (20)

Here G  and H  are the influence matrices of residual 
forces r

∗S  and displacements r
∗u  accordingly. It is not

 difficult to calculate r p
∗=*S GΘ  and r p

∗ ∗=u HΘ  when
 plastic deformations p

*Θ  are known. Equations (15), (16)
are valid not only for p

∗Θ , but also for plastic deforma-
tions p

∗
Θ , obtained analyzing shakedown process, when 

unloading phenomenon manifests.

Example 1. The known geometry two-span frame struc-
ture is considered (Fig. 1). Bending stiffness EI and axial 
stiffness EA of elements are known (where 205.0 06E E+=  
– elastic modulus of steel, kPa; 25.17 -05I E=  – cross-
sectional moment of inertia of standard HEB300 cross-
section, m4; 149.0 -04A E=  – cross-sectional area, 
m2). Limit bending moment 0 y plM Wσ=  and limiting 
axial force 0 yN Aσ=  of frame members are known 
(where +253.2 03y Eσ =  – yielding stresses of steel, kPa, 

1869.0 -06plW E=  – plastic section modulus, m3), see 
Figure 1a. The frame is subjected to variable repeated 
loading, i.e. two concentrated forces ( )1F t  and ( )2F t , 
varying in time, are applied and their variation bounds are 

( )10 341.0 kNF t≤ ≤  and ( )20 440.0 kNF t≤ ≤ . Shake-
down analysis problem (7)–(9) is solved (using MAT-
LAB): it is determined if the frame under given loading 
shakes down and if so, the residual forces *

rS , ensuring 
shakedown process, plastic deformations p

*θ  and residual 
displacements *

ru  are obtained.
Discrete model of the frame is made by using 14 

sections ( 1, 2, ..., 14, i i Iζ= = ∈ ) and 7 finite elements 
( 1, 2, ..., 7,k s= = k K∈ ). Each of the elements may ex-
perience two bending moments (one in each section) and 
one axial force: there are three internal forces per element 
in total. Thus, the total number of components of internal 
force vector S  is 21n = : 

1 2 3 4 5 6 19 20 21

1 2 3 4 13 141 2 7

                ...       

      ...    .

T

T

S S S S S S S S S

M M N M M N M M N

=  

 
 

S =

=
 (21)

For frame, equilibrium equations =AS F  are written us-
ing equilibrium finite elements: the rank (17 x 21) of the 
coefficient matrix A  is obtained ( 17, 21m n= = ). Vec-
tor of residual forces rS  consists from 21 components 
and equilibrium conditions (8) of shakedown analysis 
problem (7)–(9) takes traditional form 0r =AS . Physi-
cal meaning of each column of matrix A  is determined 
by the composition of vector (21). Equilibrium equations 
are written following the order of global displacements 
(Fig. 1b).
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Linear yield conditions

  

0,
1.18 1.18 0,
1.18 1.18 0,

0,
1.18 1.18 0,
1.18 1.18 0

/ /
/ /

/ /
/ /

ei ri oi

ei i ei ri i ri oi

ei i ei ri i ri oi

ei ri oi

ei i ei ri i ri oi

ei i ei ri i ri oi

M M M
M c N M c N M
M c N M c N M

M M M
M c N M c N M
M c N M c N M

+ − ≤ 
+ + + − ≤ 
− + − − ≤ 
− − − ≤ 
− + − + − ≤


− − − − − ≤ 

1
2
3
4
5
6

 (22)

are checked for every i-th section ( i I∈ ). The coefficient 
in the Eqn (22) is 0 0i i ic M N= . With 6-dimensional 
limiting moment vector having constant values for a par-
ticular finite element 0 0 0 0

T
i i i iM M M=   M  , yield 

conditions iϕ  (22) for i-th section are written as follows:

 ( ) 0 .0i i ei ri i= + − ≤S S Mϕ Φ  (23)

Here matrix iΦ  for i-th cross-section is expressed as fol-
lows:

 

1 0
1 1.18
1 1.18

.
1 0
1 1.18
1 1.18

i

i
i

i

i

c
c

c
c

 
 
 
 −

=  
− 

 −
 

− −  

Φ  (24)

And limiting bending moment is constant 
0 473.23 kNmy plM Wσ= =  (see Fig. 1a). 

Component number of load vector corresponds to 
degree of freedom m  of frame discrete model. When 
there are less non-zero forces acting, it is convenient to 
include only non-zero components into vector F , for 
example, 1 2= TF F  F  for frame shown in Figure 1. 
Having done that for considered frame (Fig. 1), the three
main apexes j  of load ( ) ( ) ( )1 2= 

T
t F t F t  F  (see Ta-

ble 1). 
The first load combination 1j =  allows to write

vector 1 341.0 0 T=   F , the second one 2j =  

gives 2 0 440.0 T=   F  and the third one ( 3j = )

3 341.0 440.0 T=   F . Having used two corresponding 
(11th and 15th according to Fig. 1b) columns 1 2−α  of 
the influence matrix of internal forces α , it is possible to 
calculate vectors of elastic internal forces 1 1 2 1e −=S Fα , 

2 1 2 2e −=S Fα , 3 1 2 3e −=S Fα  according to Eqn (1) . Cal-
culated values are presented in Table 1. Numbers and 
types of internal force vector components are presented 
in the first two columns of the Table 1 according to the 
formation of vector (21). It becomes clear that, for de-
termining fact of frame’s ability to shake down (adapt) 
to given load, yield conditions (23) are written for every 
apex , j j J∈  of force locus (domain):

Fig. 1. A discrete model of the two-span frame subjected to the variable repeated loads (element numbers are marked
in square ): a) calculation scheme, b) scheme of possible nodal displacements directions (DOF is m = 17)
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( )
( )
( )

1 0

2 0

3 0

,

,

.

i j i ei j ri i

i j i ei j ri i

i j i ei j ri i

=

=

=

 = + − ≤

 = + − ≤


= + − ≤

, ,

, ,

, ,

0

0

0

S S M

S S M

S S M

ϕ Φ

ϕ Φ

ϕ Φ

 (25)

At the beginning of the analysis problem (7)‒(9) so-
lution process using MATLAB, it becomes clear that there 
exists at least one statically admissible vector of residual 
forces rS , i.e. frame adapts to load 10 341.0 kNF≤ ≤  
and 20 440.0 kNF≤ ≤ (yield conditions are not vio-
lated ‒ there is no cyclic-plastic collapse). Optimal so-
lution *

rS  of the analysis problem (7)‒(9) is presented 
in Table 1. It should be emphasized that analysis prob-
lem (7)‒(9) is solved once for the combination of forces 

1,sup 341.0=F , 2,sup 440.0=F . Solution of dual problem

is j
*λ  (or p

*Θ , see Table 1) and *
ru . For every section,

deformations p
*Θ  are calculated according to Eqn (5)

, , T
pi i ij

j
i I j J

∗
= ∈ ∈∑*Θ Φ λ :

 1 2 3 19 20 21   ...    
T

p p p p p p p
∗ ∗ ∗ ∗ ∗ ∗ ∗ 

 Θ Θ  Θ Θ Θ Θ=Θ . (26)

Solution of the analysis problem (7)‒(9), given in 
the table 1, is further analyzed. It is convenient to link 
vector *

rS  with Eqn (16) r p
∗ ∗=S GΘ  . Residual forces r

∗S  
obtained according to Eqn (16) coincides with optimal 
solution presented in Table 1. Influence matrix of residual 
forces G  is square: its rows correspond to the composi-
tion of force vector (21) and columns are related to the 
deformation vector (26).

It is necessary to note, that Eqn (16) is not the only 
way to check residual forces r

∗S . That can be done by 
solving optimization problem as follows: 

 1minimize ,
2

T T
r r r p

∗ + 
 

S DS S Θ  (27)

subjected to

 .0r =AS  (28)

Where vector of plastic deformations p
*Θ  is known and 

residual forces are to be found. Optimal solution of prob-
lem (27)‒(28) are residual forces that completely coin-
cides with the ones presented in Table 1. 

Like it was mentioned above, dual solution of analy-
sis problem (7)‒(9) also includes the residual displace-
ments , m*

ru :
 

0.0021 0.0002 5.20 -05 0.000392 0.00212

0.00997 0.00426 0.00561 1.60 -06 0.00563 0.00053

0.00564 1.0 -05 0.00568 0.025925 0.00571 1.88 -05 .

*

T

r E

E

E E

− − − −

− − − − − −

− − − −





=u

Physical meaning of displacement vector compo-
nents is associated with frame scheme (see Fig. 1 b).

5. Scanning procedure of load locus and analysis 
problem for a stage 

5.1. Scanning procedure
Load variation bounds infF , supF  and the limiting forces 

0M  are known. The scanning method is based on the ex-
tension of the variation locus of external forces (Fig. 2).

Table 1. Elastic internal forces for each apex of load locus 1j = , 
2j = , 3j =  and results of problem (7)–(9) for frame shown in 

Figure 1

No. Type 1,e j=S 2,e j=S 3,e j=S *
rS p

*Θ

1 1M –31.5251 123.946 92.42117 54.3023 0

2 2M 0 0 0 0 0

3 1N –136.382 32.2406 –104.141 1.2455 0

4 3M 0 4.88E-14 4.88E-14 0 0

5 4M –477.336 112.842 –364.494 4.35919 0

6 2N 7.881286 –30.9866 –23.1053 –13.5756 0

7 5M 477.336 –112.842 364.4938 –4.35919 0

8 6M 238.8281 225.684 464.5124 8.71837 0

9 3N 7.881286 –30.9866 –23.1053 –13.5756 0

10 7M –1.90E-14 4.88E-14 2.99E-14 –1.7E-32 0

11 8M –31.6999 124.633 92.93345 54.6033 0

12 4N –247.81 –248.806 –496.616 13.1388 0

13 9M –238.828 –225.684 –464.512 –8.7183 –0.00616

14 10M 87.65557 –532.294 –444.639 59.0634 –0.01889

15 5N 15.80626 –62.1449 –46.3387 –27.2264 0

16 11M –87.6556 532.2942 444.6386 –59.0634 0

17 12M –63.5169 249.7272 186.2103 109.408 0

18 6N 15.80626 –62.1449 –46.3387 –27.226 0

19 13M 63.51691 –249.727 –186.21 –109.408 0

20 14M –0.29188 1.147573 0.855694 0.5028 0

21 7N 43.19214 –223.435 –180.243 –14.3843 0
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One of the procedures for scanning the locus of 
varying loads is employed through z  ( 1, 2, ...,z η= , 
z Z∈ ) stages. For every z  stage of scanning, a new 
locus of varying loads z

jF  covering the previous locus 
1,z

j j J− ∈F  is formed.  Then analysis problem (7)‒(9) 
is solved recording all possible distributions of plastic 
deformations. An important point is that every scanning 
stage does not require making new influence matrices α  
and β  (this would be impossible incrementally investi-
gating particular loading history ( )tF ). Then, for every 
stage are obtained:

 z z
j j=eS Fα ,  z z

ej j=u Fβ , j J∈ ,  z Z∈ . (29)

5.2. Scanning procedure: first formulation of analysis 
problem

Using Eqn (29) z z
j j=eS Fα  for the scanning procedure,

analysis problem (7)‒(9) obtains following form for each 
scanning stage z  ( )z Z∈ :  

 ( ) 1minimize
2

z zT z
r r r a ∗ ′ = = 

 
zS S D S ,  (30)

subject to 

 0z
r =A S ,  (31)

 z z z
j j ej r− + ≥( ) 0= C f S Sϕ  j J∈ , z Z∈ . (32)

Optimal solution of the problem (30)‒(32) is z
r

∗S . 
Solution of the dual problem to (30)‒(32) are z

p
∗Θ  and 

z
r

∗u .  Using Eqns (15) and (16) it is convenient to verify 
relations between obtained solutions: z z

r p
∗ ∗=S GΘ  and 

z z
r p

∗ ∗=u HΘ . Thus, for z η= , solution z
r

∗S of the prob-
lem (30)‒(32) completely coincides with optimal solution 

r
∗S  of the problem (7)‒(9) (see Table 1). Mathematical 

model (30)‒(32) enables to determine possible unload-
ing phenomenon of cross-sections within limits of chosen 
scanning strategy. 

5.3. Scanning procedure: second formulation of  
analysis problem
In this case, substitution of variables is introduced in the 
analysis problem (30)‒(32): 1z z z

r r r
−
Σ + ∆S = S S , where 

z
r∆S  is increment of residual forces rS  at the end of each 

scanning stage z
jF  ( z Z∈ , j J∈ ) (increment  z

r∆S  is 
caused by load change from 1z

j
−F  to z

jF ). Further in the
paper z

rS  will be noted z
rΣS  ( z z

r rΣ≡S S ) to emphasize
the summation procedure. Meanwhile 1z

r
−
ΣS  is sum of in-

crements of residual forces obtained in earlier stages for 
the beginning of z-th stage:

 1 0 1 1 1z z z
r r r r r

z

− − −
Σ = ∆ + ∆  +...+ ∆ = ∆∑S S S S S . (33)

When 1z = , initial increment 0 0r∆ =S  and 0 0rΣS = . 
Then for each scanning stage z  ( z Z∈ ) using elastic 
forces z z

j j=eS Fα , following analysis problem is solved:  

Fig. 2. Typical scanning procedure: a) variation locus of load ,sup infF F ; b) 1st  scanning stage; c) 2nd 
scanning stage; d) 3rd scanning stage; e) η -th scanning stage (returning to the “a)” – full load locus)
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( )
( ) ( )

1

1 1
min 1

2

z

z z
r r

Tz z z z
r r r r

a

−
Σ

∗

− −
Σ Σ

 ′ + ∆ =
 

= 
 + ∆ + ∆
 

S S

S S D S S


,  (34)

subject to 

 0z
r∆ =A S ;  (35)

1z z z z
j j r ej r

−
Σ− + + ∆ ≥( ) 0= C f S S Sϕ  j J∈ , z Z∈ . (36)

Optimal solution of problem (34)‒(36) is z
r

∗∆S . Con-
sidering Eqn (33), it becomes clear that components 

1 2 1z
r r r

−∆ ,  ∆  + ...+ ∆S S S  are optimal solutions of sepa-
rate stages 1 2 1( )z

r r r
∗ ∗ − ∗∆ ,  ∆  + ...+ ∆S S S . Residual forc-

es 1z z z
r r r

∗ − ∗
Σ + ∆S = S S  are obtained at the end of each 

scanning stage and they coincide with optimal solu-
tion of the problem (30)‒(32) for the same stage. So-
lution of the dual problem to (34)‒(36) consists of 

z
p

∗Θ  and z
r

∗u . Applying Eqns (15) and (16) it is not 
difficult to check the relation between obtained solu-
tions: 1z z z z

r r r p
∗ − ∗ ∗

Σ + ∆ =S = S S GΘ  and z z
r p

∗ ∗=u HΘ . 
Advantage of the problem (34)‒(36) is that increments 

z
r

∗∆S are obtained at once at the end of each stage. 

5.4. About unloading phenomenon of cross-sections 
during shakedown process
Yield conditions (9) of the analysis problem (7)‒(9) 
which are satisfied as equalities (therefore correspond-
ing plastic multipliers are positive 0λ > ) are called 
active yield conditions. Complementary slackness con-
ditions (11), (13), and (14) 0,T

j j ej r − + = ( )C f S Sλ  

j ≥ 0λ , ( ) 0j ej r− + ≥C f S S  for all j J∈  do not al-
low direct evaluation of unloading phenomenon. Opti-
mal solution r

∗S , r
∗u , j

∗λ  of the problem (7)–(9) is ob-
tained without analyzing loading history: in this case 
locus of internal forces ( )e tS  is represented by vectors 

ej j=S Fα , j J∈ .
Scanning procedure helps to notice the fact of un-

loading phenomenon of cross-sections. By solving anal-
ysis problems (30)‒(32) or (34)‒(36), it is possible to 
determine cross-sections where unloading phenomenon 
from variation of active yield conditions appeared (if 
once active condition 0, , ,( )i j i j ei j riC f− + =S S  be-
came inactive 0, , ,( )i j i j ei j riC f− + >S S ) . Naturally, 
choice of one or the other scanning tactics (Fig. 2) has a 
significant influence on determination of fact of unload-
ing phenomenon.

6. Determination of plastic deformation growth

Example 2. Scanning procedure is illustrated with math-
ematical model (34)‒(36) of analysis problem for frame 
shown in Figure 1. Frame is subjected to variable repeated 
loads ( )10 341.0 kNF t≤ ≤  and ( )20 440.0 kNF t≤ ≤ . 
Four scanning stages 1, 2, , =4z η=   will be performed. 
Note that for 1z = , 0 0r∆ =S   and 0 0rΣ =S . There is 

only one effective load combination 1
1 341.0 0 Tz

j
=

= =   F  
for the first stage ( 1z = ). For the second stage 2z = , 
the first load combination 1j = allows us to write 
vector 2

1 341.0 0 Tz
j

=
= =   F , the second one 2j =  gives

2
2 0 398.3159 Tz

j
=

= =   F  and the third one ( 3j = )
2

3 341.0 398.3159 Tz
j

=
= =   F . Then elastic forces z

ejS  can 
be determined according to Eqn (29).

Load variation bounds are selected to highlight vari-
ation of plastic deformations in different sections, i.e. to 
determine formal transition of plastic deformations from 
non-zero to zero (unloading phenomenon) and their vari-
ation from zero to the final value. Such load variation 
bounds can be obtained, for example, by solving analysis 
problem (30)‒(32). 

The results of scanning problem (34)‒(35) are pre-
sented for each stage of scanning process in Table 2. From 
Table 2, it is possible to see that plastic deformations

( )1
7 0.001389z

pΘ = =  appeared in the 5th section at the first 
scanning stage 1z = . Meanwhile, if the second stage 

2z =  would be performed at once, plastic deformations
( )2

14 0.001889,
z

pΘ = = −  would appear only in the 10th sec-
tion, and we even wouldn’t know, that plastic deforma-
tions 7 0.001389pΘ =  could have been in the 5th sec-
tion. Thus, the fact that the 5th section had experienced 
unloading was recorded.

At the stage 3z = , plastic deformation of the 10th
section continued developing ( )3

14 0.00539,
z

pΘ = = −  and 
new plastic deformations appeared in the 9th section
( ( )3

13 8.60 -09,
z

p EΘ = = − ). Residual forces 4( )z
r

=S  obtained 
at the end of stage 4z =  completely coincide with op-
timal solution r

∗S  of the problem (7)‒(9) presented in 
Table 1 (for the same set of forces).

We will show that actual plastic deformations can 
be determined without ignoring the unloading for each 
stage, i.e. taking into account influence of deformations 
of the first stage (z = 1) to results of further scanning 
stages. Values of actual plastic deformations z

p
( )
Θ  and 

total residual forces ( )z
rΣS  resulted by those deformations 

are presented in Table 3. 
Calculation of actual plastic deformations z

p
( )
Θ  (see 

Table 3), what remains after unloading of cross-section, 
is explained in details. Having performed scanning stage 

2z = , it is noticed that the 5th section experienced un-
loading: yield condition is not violated (satisfied as strict 
inequality), but plastic deformation 7 0.001389,pΘ =  
remains for structure at stage 2z =  as well. Mean-
while, vector of plastic deformations 2z

p
=( )Θ , present-

ed in Table 2, contains only one non-zero component 
2

14 0.001886( )
,
z

pΘ = = − . Recalculation of this deformation 
is performed taking into account unloading of cross-section. 
We need to find actual component of plastic deformations 

( )2
,
z

p mΘ =
 , where 14m = , taking into account deformation 

( )2
7 0.001389, ,

z
p n pΘ Θ= = =  (here 7n = ), which we don’t 

see at stage 2z =  anymore. Equations are created  
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Table 3. Actual plastic deformations z
p
( )
Θ  and residual internal forces ( )z

rΣS

Components of 
residual forces

Type of  
residual force

2z
p

=( )
Θ 2( )z

r
=

ΣS 3z
p

=( )
Θ 3( )z

r
=

ΣS 4z
p

=( )
Θ 4( )z

r
=

ΣS

1rS 1rM 0 1.841049 0 10.13261 0 54.30232

2rS 2rM 0 –3.90E-35 0 –9.80E-34 0 0

3rS 1rN 0 1.937425 0 4.099985 0 1.245481

4rS 3rM 0 –4.60E-32 0 5.79E-34 0 0

5rS 4rM 0 6.780987 0 14.34995 0 4.359184

6rS 2rN 0 –0.46026 0 –2.53315 0 –13.5756

7rS 5rM 0.001389 –6.78099 0.001389 –14.3499 0.001389 –4.35918

8rS 6rM 0 13.56197 0 28.69989 0 8.718368

9rS 3rN 0 –0.46026 0 –2.53315 0 –13.5756

10rS 7rM 0 9.93E–32 0 1.65E–31 0 –1.00E–31

11rS 8rM 0 1.851255 0 10.18878 0 54.60332

12rS 4rN 0 –3.34494 0 –5.28351 0 13.13881

13rS 9rM 0 –13.562 0 –28.6999 –0.0068496 –8.71837

14rS 10rM –0.001236 8.635661 –0.004732 24.55755 –0.018820 59.0634

15rS 5rN 0 –0.92308 0 –5.08035 0 –27.2264

16rS 11rM 0 –8.63566 0 –24.5575 0 –59.0634

17rS 12rM 0 3.70935 0 20.4152 0 109.4084

18rS 6rN 0 –0.92308 0 –5.08035 0 –27.2264

19rS 13rM 0 –3.70935 0 –20.4152 0 –109.408

20rS 14rM 0 0.017045 0 0.093811 0 0.502789

21rS 7rN 0 1.407518 0 1.183527 0 –14.3843

according to following technique of component selec-
tion: we pick the member from influence matrix of re-
sidual forces G , which is in  row m  and column n , 
i.e. ( ),G m n , and the member from vector ( )2z

r
=

ΣS  (see 
Table 2) in the position of ( )m  component, i.e. ( )2

,
z

r mS =
Σ :

 ( ) ( ) ( ) ( )2 2
7 14 1414,7 14,14, , ,

z z
p p rG G SΘ Θ = =

Σ⋅ + ⋅ = . (37)

In other words, having recalculated 2
14

( )
,
z

pΘ =  and ob-
tained actual component 2

14
( )

,
z

pΘ =
 , influence of unloaded

plastic deformations 7,pΘ  to residual force ( )2
14,

z
rS =
Σ  is 

evaluated.
Thus, we solve Eqn (37):

 
( ) ( ) ( )

( )

( )

2
14

2
14

2
14

14,7 0 001389 14,14 8.63566;

2165.14 0.001389 4554.53 8.63566;

8.63566 2165.14 0.001389 0.001236.
4554.53

,

,

,

. z
p

z
p

z
p

G G Θ

Θ

Θ

=

=

=

⋅ + ⋅ =

⋅ − ⋅ =

− ⋅
= = −

−







That way vector of actual plastic deformations 
2z

p
=( )

Θ  is formed, taking into account unloaded defor-
mations 7 0.001389,pΘ =  (see Table 3):

 

2 0 0 0 0 0 0 0.001389 0 0

0 0 0 0 0.001236 0 0 0 0 0 0 0

z
p

T

= = 

− 

( )
Θ

.

Similarly, at stage 3z = , component ( )3
14,

z
pΘ =
  of ac-

tual plastic deformation vector 3z
p

=( )
Θ  is determined from 

following equation:

 ( ) ( ) ( ) ( )3 3
7 14 1414,7 14,14, , ,

z z
p p rG G SΘ Θ = =

Σ⋅ + ⋅ = . (38)

It is obtained ( )3
14 0.004732,

z
pΘ = = − , i.e. actual plastic 

deformation, taking into account unloaded deformations 
7 0.001389,pΘ = , what were at stage 1z = . The result is 

vector 3z
p

=( )
Θ  (see Table 3).

Here plastic deformations should not be confused 
with their increments, what are determined during transi-
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tion, for example, from stage 2z =  to 3z = , i.e. incre-
ment 3

14
( )

,
z

pΘ =∆   is found as follows:

 
( ) ( ) ( )

( ) ( ) ( )

2
7 14

3 3
14 14

14,7 14,14

14,14 .

, ,

, ,

z
p p

z z
p r

G G

G S

Θ Θ

Θ

=

= =
Σ

⋅ + ⋅ +

⋅ ∆ =





 
(39)

Then 

 
( ) ( ) ( )3 2 3

14 14 14

0.001236 0.003496 0.004732.
, , ,
z z z

p p pΘ Θ Θ= = == + ∆ =

− − = −

  

At the last stage 4z = , vector of actual plastic 
deformations 4z

p
=( )

Θ  is formed after solving following 
equation system:

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

4
7 13

4 4
14 13

4
7 13

4 4
14 14

13,7 13,13

13,14 ;

14,7 14,13

14,14 .

, ,

, , ,

, ,

, ,

z
p p

z z
p r

z
p p

z z
p r

G G

G S

G G

G S

Θ Θ

Θ

Θ Θ

Θ

=

= =
Σ

=

= =
Σ

 ⋅ + ⋅ +
 ⋅ =

 ⋅ + ⋅ +

 ⋅ =







  (40)

Then ( )4
13 0.0068496,

z
pΘ = = −  and ( )4

14 0.018820,
z

pΘ = = −  
are obtained. And the vector of actual plastic deforma-
tions for stage 4z =  is formed as follows:

 

4 0 0 0 0 0 0 0.001389 0 0 0 0

0 0.0068496 0.018820 0 0 0 0 0 0 0

z
p

T

= = 

− − 

( )
Θ

.

Vectors of forces ( )2z
r

=
ΣS , ( )3z

r
=

ΣS  and ( )4z
r

=
ΣS  present-

ed in Table 3 are obtained by solving extreme problem 
(27)–(28) for each distribution of actual plastic deforma-
tions 2z

p
=( )

Θ , 3z
p

=( )
Θ  and 4z

p
=( )

Θ  separately.
Let’s stress statement of Melan’s theorem: at shake-

down, the dependence of residual forces rS  on loading 
history is not valid for unloaded sections (in this case for 
the 9th and the 10th sections), like it is shown in Table 3.

In the Example 1, following vector of residual dis-
placements , mr p

∗ ∗=u HΘ is obtained at shakedown:

 
0.0021 - 0.00212

0.00997 0.00426 0.00561 1.60 -06 0.00563  

0.00564 - 0.00568 0.025925 0.00571 1.88 -05 .T

r

E

E

− − − −

− − − − − −

− − − −





= E

E

u* 0.0002 5.20 05 0.000392

0.00053

1.0 05

In the Example 2, for 4z
p

=( )
Θ  (see Table 3), the other

vector of residual displacements ( )4 , mz
r p

== 

u HΘ  is 
determined:

 
[

]

0.0021 . 0.00212

0.00997 0.00426 0.00561 1.60 -06 0.00563

0.00564 0.00568 0.025925 0.00571 1.88 -05- .

r

E

TE

− −

− − − − −

− − −−

−=

E

u 0 000495 0.000643 0.0003

0.001903

1.70 05



.

We see that some components of vectors r
∗u  and 

ru  are different, for example 3 5.20 -05 mr E∗ = −u , but 
3 0.000643 m.r =u  It is obvious that this difference be-

tween components of residual displacement vectors will 

have influence for defining variation bounds ,r supu  and 
,r infu of displacements. It is important to note, that both 

of the vectors r
∗u  and ru represents the state of shake-

down. Therefore definition of bounds ,r supu  and ,r infu  is 
crucial for checking the serviceability requirements when 
solving shakedown optimization problems.

Conclusions

1. Residual displacements of structures at shakedown 
depend on loading history. 

2. For structures which cross-sections experience un-
loading during shakedown process, the principle of 
total potential energy minimum should not be di-
rectly applied for determination of residual displace-
ments. 

3. Scanning technique enables registering unloading 
phenomenon only within limits of chosen strategy. 
Reliability of determining variation bounds of re-
sidual displacements can be increased by increasing 
number of strategies.

4. In contrast to traditional “step by step” methods, the 
proposed technique does not require to change de-
sign scheme for each scanning strategy. 

5. Presented technique enables precise implementation 
of structural safety and serviceability requirements 
(by estimating the variation bounds of the residual 
displacements ,r supu  and ,r infu ) in mathematical 
models of optimization at shakedown problems.
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