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Abstract. The traditional scheduling tool Critical Path Method (CPM) exhibits limitations in computational insufficien-
cy due to exhaustive enumeration. Ant Colony Optimization (ACO) was therefore applied as a metaheuristic inspired by 
the ants behavior in foraging activities. A model development team was formed among construction engineers, IT pro-
fessionals, and Mathematicians to develop a schedule acceleration model by integrating ACO into CPM to ensure proper  
resources allocated on critical path. The developed model CSAM-ACO targets on schedule acceleration by allocating 
resources on the newly found critical path after two stages of computation. The trial run proved CSAM-ACO model 
more favorable compared with CPM.
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Introduction

In 1992, Marco Dorigo proposed an efficient metaheuris-
tic technique for solving computational problems to find 
good paths through graphs, which is called Ant Colony 
Optimization (ACO) inspired by the foraging behavior 
of real ant colonies (Duan, Liao 2010; Zundel 2013;  
Al Salami 2009). Due to its benefit in solving difficult 
combinatorial problems, many researchers have presented 
the application of ACO in management of construction 
projects especially in large and complex projects (Srour 
et al. 2013; Lopez-Ibanez, Blum 2010). ACO could be 
applied in resources management (Christodoulou 2009), 
determining project critical paths (Duan, Liao 2010), con-
struction site layout planning (Lam et al. 2007), optimiz-
ing construction time and cost (Ng, Zhang 2008), and 
management of time-cost-risk trade off (Lakshminaray-
anan et al. 2011). ACO is also proposed in construction 
project scheduling owing to the fact that the real ant colo-
nies exhibit a behavior that is suitable to optimal net-
work traversing and to find the longest path in scheduling 
(Mateos et al. 2013). Recently, the formulation of ACO 
algorithms in solving the resource-unconstrained sched-
ule and determining of project critical paths have great 
contributions to the scheduling technique (Hani et al. 
2007; Mubarak 2010; Kloppenborg 2009). The ACO al-
ternative provides powerful way in construction schedul-
ing with quick convergence to the final solution so that it 

can be applied to deal with more realistic project schedul-
ing problems to take into account the inevitable situation 
to make the construction works in faster track (Sauter 
2011; Naylor 1995).

Therefore, this research is focused on rescheduling 
critical tasks by integrating ACO into CPM in construc-
tion schedule acceleration. The aim of this study is to de-
velop a schedule acceleration model, based on ACO and 
CPM, to assist construction practitioner in schedule ac-
celeration to ensure proper resources allocated on critical 
path. Eventually, the developed model deems to increase 
the probability to complete a delayed project within the 
stipulated time and to satisfy the request of an earlier 
completion of project.

1. Ant Colony Optimization (ACO) and application 
in construction

Ants are undoubtedly one of the most successful species 
on the earth today and they have been so 100 million 
years (Dorigo, Stutzle 2004). It is not surprising that the 
increasing design of algorithms inspired from the be-
havior of ants. The first ACO system was introduced by 
Marco Dorigo from Italy in his PhD dissertation in 1992 
and it is also called as Ant System (AS) (Dorigo 1992). 
ACO transforms the model of collective intelligence of 
ants into optimization algorithms (Dorigo, Blum 2005). 
ACO has been applied in solving many combinatorial op-
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timization problems such as travelling salesman (Dorigo, 
Gambardella 1997), graph coloring (Costa, Hertz 1997), 
vehicle routing (Dorigo et al. 2000), feature selection 
(Duan, Liao 2010), and quadratic assignment problem 
(Wiesemann, Stutzle 2006).

In ACO, a colony of biological ants is typically 
modeled by a society of artificial agents and those agents 
build solutions by making path traversing on the directed 
acyclic network. Dorigo et al. (1999) defined ACO as a 
population-based general search technique for the solu-
tion of difficult combinatorial problems. This metaheuris-
tic technique is inspired by the behavior exhibited by 
real ant colonies proposed by Dorigo with the concept of 
pheromone trail laying (Dorigo, Stutzle 2004). The main 
idea of ACO is the cooperation of a number of artificial 
ants via pheromone laid on path where each ant contrib-
utes a little effort to the solution construction, while the 
final result is an emergence of the ants’ interaction (Ho-
seini, Shayesteh 2013; Kong, Tian 2006). This method is 
inspired by the foraging behavior of ants so that it pre-
sents a highly structured organization, which is able to 
accomplish complex tasks that is far exceed compared 
with the individual capabilities of a single ant. 

1.1. Variations of ACO algorithms
In general, the variants of the ACO algorithm are differed 
from each other in the pheromone update rule applied 
(Dorigo, Blum 2005). There are several extensions and 
improvements of the original algorithm introduced over 
the years for the adoption to more combinatorial optimi-
zation, namely: Elitist Ant System (EAS) (Dorigo et al. 
1996), Rank-based Ant System (RAS) (Bullnheimer et al. 
1997), MAX-MIN Ant System (MMAS) (Stutzle, Hoos 
2000), Ant Colony System (ACS) (Dorigo, Gambardel-
la 1997), Hyper-Cube Framework (FCF) (Blum, Dorigo 
2004), Ant System (AS) (Dorigo et al. 1996), and Best-
Worst Ant System (BWAS) (Cordon et al. 2002).

1.2. Application of ACO Algorithms
The ACO metaheuristic introduced by Dorigo has been 
successfully applied to a large number of combinatorial 
optimization problems. The travelling salesman problem 
(TSP) was the first problem tackled by the ACO algo-
rithm because this problem is suitable to adopt a real ant’s 
behavior to solve it with the constraint shortest path (Do-
rigo et al. 1999). ACO was also used for machine learn-
ing purposes, concretely to the design of learning algo-
rithms for knowledge representation structures such as 
classical logic rules (Parpinelli et al. 2002), fuzzy logic 
rules (Alcala et al. 2001), and Bayesian networks (Cam-
pos et al. 2002). Table 1 shows a summary of various 
ACO applications.

1.3. Ant Colony Optimization in construction  
scheduling
Christodoulou (2009) outlined the steps in finding the 
critical path by using ACO algorithms. Firstly, all the arcs 

or connectors in the network are initialized with phero-
mone, 0τ  which is the value of the inverse line-distance 
between the nodes or the inverse line-distance of the par-
ticular arc. After that, an artificial ant is launched from 
a start node and pseudo-randomly walking from a node 
to a successor node passed through the connecting arcs 
until it reaches the end-node or dead end. However, the 
previously selected arcs are excluded from the selection 
for “tree spanning” and avoid memorization. The artifi-
cial ant’s selection for the successor node to follow is 
probabilistic which is based on the stochastic assignment 
of each arc’s selection defined by Eqn (1):

 i i
i

i i
P

β

β

τ η
=
Στ η

, (1)

where iτ  is the pheromone concentration on the ith arc, 
iη  is a priori available heuristic value which allows in-

corporation of problem specific information for the ith arc, 
defined as the length of the inverse arc or the length of 
the inverse arc plus the line-distance between the nodes. 

iβ  is a parameter determining the relative influence of 
the heuristic information. Moreover, the selection is also 
assisted by the consideration of a randomly generated 
number (0 1)q q≤ ≤  to compare with a predefined value 
which is specific to the network topology q0. By using 
this network topology, if 0q q≤ , the arc with the highest 

Table 1. Various applications of ACO algorithms

Applications Authors Algorithm S
Travelling 
Salesman 
Problem 
(TSP)

Dorigo et al. (1996)
Gambardella and 
Dorigo (1996)
Dorigo and 
Gambardella (1997)
Stutzle and Hoos 
(2000)
Bullnheimer et al. 
(1997)
Blum and Lopez-Ibanez 
(2010)

AS
Ant-Q

ACS & ACS-3-opt

MMAS
RAS
Beam-ACO

Quadratic 
Assignment 
Problem 
(QAP)

Maniezzo and Colorni 
(1999)
Gambardella and 
Dorigo (1996)
Stutzle and Hoos 
(2000)
Maniezzo and Colorni 
(1999)
Wiesemann and Stutzle 
(2006)

AS-QAP

HAS-QAP

MMAS-QAP
ANTS-QAP & AS-
QAP
MMAS-QAP

Vehicle 
Routing 
Problem 
(VRP)

Bullnheimer et al. 
(1997)
Li and Tian (2006)

AS-VRP
ACS-OVRP

Connection-
oriented 
network 
routing

Schoonderwoerd et al. 
(1996)
Caro and Dorigo (1998)

ABC

AntNet-FS

Graph  
coloring

Costa and Hertz (1997) ANTCOL
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probability will be selected. Otherwise, the arc is selected 
randomly based on the distribution defined by Eqn (1). 
A local pheromone update rule is applied to update the 
pheromone concentration level of a given arc, when the 
ants crossing each of the arcs during the construct solu-
tion phase. The purpose of this update rule is to enable 
exploration of more paths or routes to give the already 
visited arcs less chance to be selected during the rand-
omization of the arc selection process. The local update 
pheromone is defined by Eqn (2):

 0(1 ) ,i iτ = −ρ τ +ρτ  (2)

where ρ is another network topology parameter (0 1)≤ ρ ≤ . 
In this procedure, stochastic decision process and local 
pheromone update rule will be repeated for all ants in 
the colony and the most successful ant is used in global 
pheromone update to update the pheromone level of the 
network defined by Eqn (3):

 (1 ) ,i i Lτ = −α τ + ατ  (3)

where α is used to determine the level of evaporation 
of pheromone concentration and Lτ  is a value that in-
versely proportional to the path length of the best solution 
in case of an arc visited by the best ant or zero for other 
ants (0 1)≤ α ≤ . Here, the global pheromone update rule 
can be applied by using either “global-best” or “iteration-
best” ant. In “global-best” ant, the ant that obtained the 
best solution which is the longest path in the network dur-
ing optimization process is the one who perform the up-
date. In the other hand, the “iteration-best” is performed 
by the ant who reaching the best solution during each it-
eration. All the steps from the probabilistic rule to phero-
mone update rule that include the local pheromone update 
and global pheromone update are repeated until a fixed 
number of iteration or a predefined conditions is met, and 
upon the termination of the algorithm the pheromone trail 
is used to determine the solution where the arc with the 
highest pheromone concentration level is defined as the 
longest path in the network. 

2. Research procedures and model development

Owing to the nature of the research where people’s expe-
riences, perceptions, opinions and knowledge are neces-
sities to the development of the model, qualitative ap-
proach is employed in this study, which consists of the 
following five stages. The first stage reasoned the selec-
tion of ACO algorithms in schedule acceleration. The sec-
ond stage worked out the ACO algorithm processes used 
for the development of the final CSAM-ACO accelera-
tion model. In the third stage, each step of the final model 
was developed and outlined. The complete CSAM-ACO 
acceleration model associated with its main components 
was finalized on the fourth stage. The final but significant 
stage is the trial run of the developed CSAM-ACO model 
using a real high rise building project. This qualitative 
technique enables any misunderstanding or intangible is-
sues to be avoided so that the model development pro-

cess can be rectified immediately. A development team 
was formed among experts from various fields such as 
construction engineers, IT professionals, and Mathemati-
cians, whose profiles are presented in Table 2. Extensive 
data are collected through the development process. A 
trial run of the CSAM-ACO model was conducted to test 
how it works in a real situation. Prior to the commence-
ment of trial run, a pilot study was carried out to identify 
the most commonly delay activity for high rise buildings. 
The ACO algorithm processes for the final CSAM-ACO 
acceleration model consists of 7 steps as follows.

Step 1: Establish network topology
Network topology is used in presenting the prec-

edence relationship of the construction activities. In a 
construction project, the network topology provides a 
comprehensive layout for project schedule with a set of 
activities related to one another. There are two types of 
network diagrams, namely: activity-on-node (AON) and 
activity-on-arrow (AOA). For an AON network, the node 
represents the activity and the arc represents the prec-
edence relationship among the activities. On the other 
hand, the node in an AOA network represents the event 
and the arc represents the activity. In this study, the ac-
tivities in a real construction are represented by letters in 
the network diagram and the purpose of using different 
letters to represent the activities is to show a real sce-
nario of various activities in the construction process. The 
project network topology in this study is defined by an 
AON graph G = (N, A) where a finite set of components 
is given, where N = {1, 2, 3, ..., n} is the set of nodes 
representing the activities, and A is a set of arcs repre-
senting the relationship among the nodes. The established 
network topology is analyzed to initialize the topology 
parameters in the next step.

Step 2: Initialize topology parameters
The choice of topology parameters is based on a 

sensitivity analysis on other randomized topologies and 
the observed accuracy of convergence to an optimal solu-
tion. There are four common parameters for ACO algo-
rithm in finding the critical path, namely: i) 0q , which as-
sists the selection of path based on probability or random 
selection; ii) ρ, which determines the level of evaporation 
of pheromone concentration for local update; iii) α, which 
determines the level of evaporation of pheromone con-
centration for global update, and iv) β, which determines 
the relative influence of the heuristic information. The 
established network diagram shows the complexity of the 
project by sequencing out the activities.

Step 3: Set initial pheromone level
At this step, the artificial ants are expected to search 

the path randomly because no previously visited arc with 
higher pheromone concentration can be detected by them. 
Hence, the initial levels of pheromone concentration of 
all arcs are set to an equal small constant value as the  
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initial pheromones laid on the connections. The phero-
mone level of all arcs in the network topology is initial-
ized with small amounts of pheromone τ0. 

Step 4: Construct best solution
After the initial pheromone level is set, an ant popu-

lation is allocated. The ant population starts to walk ran-
domly from the initial node to the end node or dead end 
via the connecting arcs. The artificial ants moving on the 
directed cyclic graph will build either feasible or infea-
sible solutions but in general, the feasible solutions will 
try to be built. At each node, the artificial ants will select 
the edge to move from one node to any other nodes fol-
lowing the probability defined by Eqn (1). 

Step 5: Local pheromone update rule
After crossing each arc of the network, the local 

pheromone update rule is applied to update the level of 
pheromone at the given arc. The evaporation of phero-
mone is updated by the means of local pheromone update 
applied to all paths. The local pheromone update rule is 
defined by Eqn (2).

Step 6: Global pheromone update
Global pheromone update applies to the best path of 

the iteration. The longest path made by an ant in the par-

ticular iteration is the best path plus an amount of phero-
mone concentration on the travelled path where the line-
distance of that path is increasing. The most frequently 
chosen path of the iterations has the highest pheromone 
concentration. Therefore, the longest path can be found 
when reaching the fixed number of iterations after the 
global pheromone update rule is applied. The global pher-
omone update is defined by Eqn (3).

Step 7: Reach number of iterations and termination 
The ACO algorithm process comes to the end when 

a fixed number of iterations are reached after repeating 
step 4 to step 6. The best solution is found from the final 
pheromone level and the chosen probability of the nodes. 
The ACO algorithm processes for the development of the 
final CSAM-ACO acceleration model is summarized in 
Figure 1.

3. Appearance of developed CSAM-ACO  
acceleration model

Step 1: Finding critical path of project
The critical path of a project is identified through 

the calculation of total float. CPM is performed to calcu-
late the forward pass and the backward pass. Eqn (4) to 
Eqn (7) are applied in the computational process of CPM:

Table 2. Profiles of CSAM-ACO development team

No Age Gender Specialty/area Roles in model development

i 34 Male Project  
Monitoring

Stage  
1 & 5

Reasoning the selection of ACO algorithms in schedule acceleration. 
Developer i examined the limitation of traditional CPM a) CPM is unable 
to calculate the longest or shortest paths from a node to any node; b) CPM 
does not take into consideration the resource-driven relationships for 
the activities; and c) The computational insufficiency of CPM due to 
exhaustive enumeration. He was also in charge of the CPM calculation part 
in the trial run. The critical path of the project was identified by both the 
traditional CPM and the new ACO approach to verify the application of 
ACO in finding the critical path.

ii 46 Male Construction 
IT Application

Stage  
1 & 5

Reasoning the selection of ACO algorithms in schedule acceleration. 
Developer ii was in charge of finding the critical path of the project by 
calculating the total float.

iii 31 Female Mathematician Stage  
2

Worked out the ACO algorithm processes for the development of the 
final CSAM-ACO acceleration model. She was in charge of establishing 
network topology, initializing topology parameters, setting initial 
pheromone level, and constructing best solution.

iv 57 Male ACO  
algorithms

Stage  
2 & 5

He was in charge of local pheromone update rule, global pheromone 
update, and reach number of iterations and termination.

v 42 Male Mathematician Stage 3 Each step of the final CSAM-ACO acceleration model was developed. He 
was in charge of selecting critical activities and splitting critical activities.

vi 29 Female Mathematician Stage  
3 & 5

She was in charge of finding critical path from critical tasks. He was also 
the main programmer of the model trial run.

vii 35 Male Modelling Stage  
4

The complete CSAM-ACO acceleration model associated with its main 
components was graphed and finalized by him.

viii 38 Male Project  
Manager

Stage  
5

He is the project manager of the high rise building project used for CSAM-
ACO trial run. All the on-site data were provided by him. He supervised 
the trial run of the developed CSAM-ACO model on a high rise building 
project.

ix 43 Male
Cartographer 
& ACO  
algorithms

Stage  
4 & 5

All the on-site data provided by the Developer viii were translated and 
inputted by Developer ix into the CSAM-ACO. He is the cartographer of 
the iteration diagrams.
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 EFi = ESi + duration of activity;  (4)

 LSi = LFi – duration of activity;  (5)

 TF = LF – EF/LS –ES; (6)

 TF = LF – ES – duration. (7)

In the developed model, ACO algorithm was applied 
to tackle the computational problem of CPM. The first 
step of the developed CSAM-ACO acceleration model 
is to find the critical path using ACO algorithm process 
and to compare the computational time and result with 
that of using CPM. 

Step 2: Selection of critical activities
The duration of the critical path equals to the duration of 
the entire project, hence shortening of project duration 
can be achieved by shortening the duration of the criti-

cal path. To shorten the duration of the longest path, the 
duration of the critical activities can be reduced by using 
the method of crashing or splitting of task. If a project 
is delayed, more additional works need to be completed 
within the stipulated time, or same amount of works need 
to be performed in a shorter duration. 

Step 3: Splitting of critical activities
This step is to rearrange activities by splitting or 

crashing them into smaller tasks. The smaller tasks are 
presented in a new network topology which represents 
the relationship of the tasks and the durations, respec-
tively. The crashing of critical activities has an advantage 
in reducing the total completion period by rescheduling 
all the possible tasks that can be completed concurrently. 
By doing this, more successor tasks can be completed 
without waiting for the completion of predecessor task if 
it is an independent task.

Fig. 1. ACO algorithm processes for the development of CSAM-ACO acceleration model
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Step 4: Find critical path from critical tasks
The critical path of a project is determined in Step 1 

and is splitting into smaller tasks or is compressed in 
Step 3. A new critical path is then determined from the 
smaller tasks that indicate the shortest duration of its par-
ticular critical activity. The project managers would pay 
more attention to the new critical path when conducting 
resource and cost allocation to ensure the tasks in the 
critical activity not to be delayed; otherwise it will lead 
to the delay of the whole activity and thus the entire pro-
ject. The detailed activities help resources be allocated 
precisely. The final developed CSAM-ACO acceleration 
model is illustrated in Figure 2.

4. Trial run of developed CSAM-ACO model

A high rise construction project in the urban area was 
chosen for the trial run of the developed CSAM-ACO. 
The case is concerned with a top level construction com-
pany dealing with the client to construct an office build-
ing at Subang Jaya, Malaysia, and time is one of the main 
concerns. The goal is to find the critical path and to split 
down the critical activities into smaller tasks by taking 
into consideration the resource allocation to shorten the 
project duration.

Step 1: Find the critical path
In the trial run, the critical path of the project was 

identified by both the traditional CPM and the ACO ap-
proach. Activities are graphed in the network topology. 
Table 3 shows the activities in the high rise project and 
Figure 3 illustrates the network diagram. The trial run is 
based on the topology with 8 nodes and 12 nodal con-
nections. Among the 8 nodes in the network topology, there 
are 2 ant nests, 1 food source and 5 regular nodes. The 

node with no predecessor node represents ant nest whereas 
food source with no successor node. A generated network 
is based on unidirectional nodal connections, which is an 
acyclic graph to imitate the real life of construction activity. 

By Traditional Method: CPM
The earliest start (ES), earliest finish (EF), latest 

start (LS), and latest finish (LF) were calculated. All the 
possible paths were found along the way. The activity 
with zero total float is the critical activity. The calcula-
tion using traditional CPM is shown in Table 4. The re-
sults of calculated ES, EF, LS, LF and total float by using 
CPM method are tabulated in the Table 5. The critical 
path formed by the critical activities 0–2, 2–3, 3–7 with 
zero total float. Thus, the longest project total duration is 
70 + 70 + 67 = 207 which equals to the shortest duration 
to complete the entire project.

By ACO Algorithm
Applying the developed ACO algorithm process, the 

network topology parameters are identified in Table 6.
The pheromone level of all the arcs are same at this 

stage since there is no path yet travelled by ants so far. 
However, each arc has a small value of pheromone con-
centration to initialize the selection process where the ant 
moves randomly to choose the path to travel. The value 
of the initial pheromone level was set according to the 
line-distance between the nodes. It is either the inverse 
line-distance between two nodes or the inverse line-dis-
tance of the arc between the nodes. The line-distance in 
the construction network topology represents the duration 
of the activity. The path chosen is based on the probabil-
ity calculated by Eqn (1). Ten iterations were completed 
and the final pheromone level was established in Table 7. 
The highest probability indicates the longest path of the 
network which is the critical activity, and the highest 

Fig. 2. Appearance of Final CSAM-ACO

Table 3. Activities with precedence relationships and durations

Activity 
code

Activity 
name

Durations 
(days) Predecessor Successor

A: 0–2 Mobilize on 
site 10 – F, G, H

B: 0–3 Factory  
fabrication 70 – I

C: 0–4
Demolition 
and site  
clearing

33 – J

D: 1–4 Earthworks 29 – E, J
E:1–5 Install utilities 43 – K
F: 2–3 Frame 70 A I
G: 2–6 Foundation 67 A L

H: 2–7 Doors and 
windows 78 A –

I: 3–7 Roofing 67 B, F –
J: 4–6 Excavation 37 C, D L
K: 5–7 Plastering 11 E –
L: 6–7 Piling 29 G, J –
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pheromone concentration is the shortest distance where 
the ant moves on. 

The ACO algorithms generated different states of 
topology at the end of each iteration, because each suc-
cessive iterative is selective based on the previously se-
lected arc. Therefore, the critical path may change a few 
times before the last iteration. The network topologies for 
iteration 1 to iteration 6 are illustrated in Figure 3 and 

Fig. 3. Network topology for Iteration 1 to Iteration 6

Table 4. Calculation using traditional CPM for trial run

Calculation of forward pass Calculation of backward pass: Calculation of total float
EFi = ESi + duration of activity LSi = LFi – duration of activity TF = LF – EF/LS –ES

or  TF = LF – ES – duration
Activity A:
The ES for activity A is zero because the 
node with no predecessor. Thus, 
EFA = ESA + duration = 0 + 70 = 70

Activity L:
LF of activity L is the largest value of 
the EF since activity L is one of the last 
activities that has the largest value of EF. 
Thus,
LSL = LFL – duration = 207 – 29 = 178

Activity A:

TF = LF – EF/LS –ES
 = 70 – 70/0 – 0 = 0

Activity F:
For the activity with only one predecessor, 
the ES of activity F is the EF of the 
predecessor. Thus, 
EFF = ESF + duration = 70 + 70 = 140

Activity J:
Activity J with only one successor, the LF 
of the activity J is the LS of the successor. 
Thus,
LSj = LFj – duration = 178 – 37 = 141

Activity B:

TF = LF – ES – duration   
= 140 – 0 – 10 = 130

Activity J:
For the activity with more than one or more 
predecessor, the smallest value was chosen. 
There are two choices of EF for activity J: 
33 and 29, the smallest EF 29 was chosen as 
the ES of activity J. Thus,  
EFJ = ESJ + duration = 29 + 37 = 66

Activity A:
For the activity with more than one or 
more successor, the smallest value of the 
LS was chosen. There are three choices 
of EF for activity A: 10, 41 and 79, the 
smallest EF is chosen as the LF of activity 
A. Thus,
LSA = LFA – duration = 70 – 70 = 0

It shows that the activity B is 
not critical activity with total 
float of 130 whereas the activity 
A is the critical activity with 
zero value of the total float.

the final result is presented in Figure 4. The pheromone 
concentration is used to indicate the criticality of the ac-
tivities as shown in Table 8. The “final pheromone level” 
or “probability” is the value to decide which activities are 
critical. The longest continuous path was identified and 
the activities of 0–2, 2–3, and 3–7 are the critical activi-
ties with the critical path duration at 207.
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Table 5. Critical path using CPM

No Start node End node Duration Successor ES EF LS LF TF Critical activity
A 0 2 70 F, G, H 0 70 0 70 0 YES
B 0 3 10 I 0 10 130 140 10 No
C 0 4 33 J 0 33 108 141 48 No
D 1 4 29 E, J 0 29 112 141 52 No
E 1 5 43 K 0 43 153 196 93 No
F 2 3 70 I 70 140 70 140 0 YES
G 2 6 67 L 10 77 111 178 31 No
H 2 7 68 – 10 78 139 207 89 No
I 3 7 67 – 140 207 140 207 0 YES
J 4 6 37 L 29 66 141 178 52 No
K 5 7 11 – 43 54 196 207 93 No
L 6 7 29 – 66 95 178 207 52 No

Table 6. The identified network topology parameters

q0 = 0.3 assist the selection of path  based on the probability or random selection
ρ = 0.5 determine the level of evaporation of pheromone concentration for local update
α = 1.0 determine the level of evaporation of pheromone concentration for global update
β = 1.0 determine the relative influence of the heuristic information

Table 7. Probability & pheromone level of 0–2, 0–3, 0–4

No. of 
iteration

0–2 0–3 0–4
Probability,  

P02

Global pheromone 
update, τ02

Probability, 
P03

Global pheromone 
update, τ03

Probability, 
P04

Global pheromone 
update, τ04

1 0.3322 0.5071 0.3354 0.5500 0.3324 0.5152
2 0.3868 0.1455 0.2577 0.2125 0.3555 0.1864
3 0.4768 0.0799 0.2288 0.1563 0.2944 0.1083
4 0.5516 0.0471 0.1468 0.1281 0.3016 0.0693
5 0.6252 0.0307 0.0856 0.1141 0.2892 0.0498
6 0.6881 0.0225 0.0504 0.1070 0.2615 0.0401
7 0.7352 0.0184 0.0328 0.1035 0.2319 0.0352
8 0.7661 0.0163 0.0244 0.1018 0.2094 0.0327
9 0.7842 0.0153 0.0204 0.1009 0.1954 0.0315

Table 8. Solution of Critical Path using ACO

NETWORK RELATIONSHIP RESULT

No Start node End node Duration Original pheromone 
level

Final pheromone level 
(after iteration) Probability Critical 

activity
A 0 2 70 0.0143 0.0148 0.7941 YES
B 0 3 10 0.0100 0.1004 0.0185 No
C 0 4 33 0.0303 0.0309 0.1875 No
D 1 4 29 0.0345 0.3185 0.0350 No
E 1 5 43 0.0232 0.6815 0.0237 No
F 2 3 70 0.0143 0.0148 0.3486 YES
G 2 6 67 0.0149 0.0154 0.3211 No
H 2 7 68 0.0147 0.0152 0.3302 No
I 3 7 67 0.0149 0.0154 1 YES
J 4 6 37 0.0270 0.0275 1 No
K 5 7 11 0.0909 0.0914 1 No
L 6 7 29 0.0345 0.3495 1 No
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Fig. 4. Network topology result in Step 1 using CSAM-ACO 
acceleration model

Step 2: Selection of critical activities
After the critical path was found in Step 1, the 2nd 

step was to select the critical activity in the critical path. 
The critical activity is splitting down to be scheduled in 
a more detailed form. In order to accelerate the construc-
tion process, the duration of the critical activity has to be 
shortened. The selected critical activity was to be acceler-
ated from the original duration at 70.

Step 3: Splitting down of selected critical activity
The list of splitting tasks is shown in Table 9. 

Table 9. Activity table for splitting tasks

No Activity

D
ur

at
io

ns
 

(d
ay

s)

Pr
ed

ec
es

so
r

Su
cc

es
so

r

A: 0–1 Stripping form 4 – C, D
B: 0–2 Precast façade fixing 13 – E
C: 1–5 Beam and slab steel fixing 21 A I, J
D:1–4 Semi–precast slab fixing 28 A H
E: 2–3 Wall steel fixing 12 B F, G
F: 3–5 Wall form fixing 12 E I, J
G: 3–7 Wall concreting 11 E –
H: 4–7 Slab form fixing 15 D –

I: 5–6 Electrical conduit installation 
phase 1 13 C, F K

J: 5–7 Electrical conduit installation 
phase 2 10 C, F –

K: 6–7 Beam and slab concreting 13 I –

After splitting down the critical activity into smaller 
tasks, the original duration of the activity was shortened 
from 70 to 63. It was scheduled to repetitive tasks or 
separate tasks which could be conducted concurrently. 
Eventually, the duration was shortened with more de-
tailed tasks, which provide a clearer picture of the tasks 
sequences. Same as the previous session, a network to-
pology for these tasks was constructed. The topology was 
made up with 8 nodes and 11 nodal connections. In the 
8 nodes, there are 1 ant nest, 1 food source and 6 regular 

nodes. The constructed new network topology for the de-
tailed activity in the framing work is shown in Figure 5.

Step 4: Finding new critical path
After the new network topology was constructed 

with the splitting tasks and durations, a new critical path 
was found requiring higher attention for resource alloca-
tion. The calculation in this step was similar as that in 
the Step 1. 

By Traditional CPM
The calculated ES, EF, LS, LF, and total float were 

tabulated in Table 10. The critical path with zero total 
float is determined. The determined critical path iden-
tified by CPM was compared with the result of ACO. 
The critical path was formed by 0–2, 2–3, 3–5, 5–6 and 
6–7. Thus, the longest duration of the task of the framing 
works is 13 + 12 + 12 + 13 + 13 = 63. It indicates that 
the original duration of 70 was reduced to 63, which is 
the longest duration of the activity.

By ACO Algorithm
The new network topology for Iteration 1 to Itera-

tion 4 is shown in Figure 5. The new topology solution 
was calculated using the same equations as in Step 1. The 
computational result using ACO is tabulated in Table 11. 
The longest continuous path of these activities was iden-
tified and the activities of 0–2, 1–4, 3–5, 5–6 and 6–7 
are the critical activities with the critical path duration 
at 63. The network topology of final solution was shown 
in Figure 6. It proved that the splitting down of framing 
works into smaller tasks reduced the duration by 7 days.

5. Discussion and comparison of CSAM-ACO with 
CPM and previous studies

Though Adeli and Karim (2001) believe, that the tradi-
tional CPM tool performs well in construction schedul-
ing, the trial run conducted in this study proved that the 
developed CSAM-ACO model is more favorable com-
pared with CPM. CSAM-ACO is able to calculate the 
longest node-to-node path, and the calculation can be 
done concurrently for different nodes and a big number 
of activities and resource allocation. In addition, the du-

Fig. 5. New network topology for Iteration 1 to Iteration 4
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ration of the activity is shortened by splitting down the 
critical activity so that the resources allocated on the new 
found critical path could assist in accelerating the entire 
schedule. Besides, compared with the previous study con-
ducted by Christodoulou (2009) who introduced ACO for 
project scheduling, this study developed a construction 
schedule acceleration model using the self-developed 
ACO algorithm processes. The concepts of both ACO 
and CPM in finding critical path were integrated in the 
schedule acceleration model for a more precise resource 
allocation. The uniqueness of this study was also incar-

nated by the trial run of CSAM-ACO under a real case. 
Besides its prominent advantages, the developed CSAM-
ACO has yet some limitations, for instance the splitting 
down process of the critical activities is rather time-con-
suming. Furthermore, CSAM-ACO involves two stages 
of computation in finding the critical path which causes 
double calculation. 

Conclusions and recommendations

The developed model CSAM-ACO targets on schedule 
acceleration by allocating resources on the newly found 
critical path after two stages of computation. The trial 
run proves CSAM-ACO is not only able to increase the 
probability of completing a delayed project within the 
stipulated time but also able to satisfy the request of 
earlier completion of a project. It accelerates the sched-
ule and shortens the project duration where time is con-
straint. Breaking down of the critical activity provides a 
clear picture of the construction process so that it pro-
vides more precise resource allocation than CPM does by 
working on those smaller tasks in the critical activity. In 
further study, the splitting down process of critical activi-
ties in CSAM-ACO is to be optimized. Besides, by taking 
into consideration that the Industrialized Building System 
(IBS) is highly implemented in the construction sector, 

Table 10. Solution of new critical path for splitting tasks using CPM

Code Start node End node Duration Successor ED EF LS LF TF CA
A 0 1 4 C, D 0 4 12 16 12 No
B 0 2 13 E 0 13 0 13 0 YES
C 1 5 21 I, J 4 25 16 37 12 No
D 1 4 28 H 4 32 20 48 16 No
E 2 3 12 F, G 13 25 13 25 0 YES
F 3 5 12 I, J 25 37 25 37 0 YES
G 3 7 11 – 25 36 52 63 27 No
H 4 7 15 – 32 47 48 63 16 No
I 5 6 13 K 37 50 37 50 0 YES
J 5 7 10 – 37 47 53 63 16 No

Table 11. Solution of splitting tasks using ACO

Network Relationship Result

No ID Start node End node Duration Original pheromone  
level

Final pheromone 
level Probability Critical  

activity
A 1 0 1 4 0.2500 0.2504 0.0924 No
B 2 0 2 13 0.0769 0.0774 0.9076 YES
C 3 1 5 21 0.0476 0.0481 0.3638 No
D 4 1 4 28 0.0357 0.0362 0.6362 No
E 5 2 3 12 0.0833 0.0838 1 YES
F 6 3 5 12 0.0909 0.0838 0.5426 YES
G 7 3 7 11 0.0833 0.0914 0.4574 No
H 8 4 7 15 0.0667 0.0671 1 No
I 9 5 6 13 0.1000 0.0774 0.6259 Yes
J 10 5 7 10 0.0769 0.1004 0.3741 No
K 11 6 7 13 0.0769 0.0774 1 YES

Fig. 6. New network topology for final solution
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which is for the same purpose of time saving, a tailored 
CSAM-ACO is highly recommended to be developed for 
IBS projects.
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