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Abstract. In the context of sustainable buildings, an ecological study of building and insulating materials is critical since 
it may assist affirm or shift the path of new technology development. Utilising sustainable material is a part of the sustain-
able improvement. For this reason, material fabrication is the primary process for the energy usage and release of intense 
environmental gaseous. The fabrication of the insulation and building materials, as in every fabrication process, comprises 
an energy consumption of crude materials in addition to the pollutants’ release. In buildings, insulation is a relevant tech-
nological resolution for cutting energy usage. This study aims to assess the primary energy consumption and the environ-
mental effects of the fabrication of building and thermal isolation materials by using a new hybrid MCDM model. The 
proposed new hybrid MCDM model includes Fuzzy FUCOM, CCSD and CRADIS methods. While the subjective weights 
of the criteria were determined with the fuzzy FUCOM method, the objective weights of the criteria were determined with 
the CCSD method. Construction materials were listed with the CRADIS method. According to the fuzzy FUCOM method, 
the most important criterion was determined as the CR3 criterion, while the most important criterion according to the 
CCSD method was determined as the CR1 criterion. According to the combined weights, the most important criterion 
was determined as the CR3 criterion. According to the CRADIS method, the material with the best performance was de-
termined as Cement Plaster. The methodology used in this study is a novel approach therefore it has not been used in any 
study before. In addition, since the CRADIS method is a newly developed MCDM method, the number of articles related 
to this method is low. Therefore, this research gap will be filled with this study. 

Keywords: building and insulation materials, environmental effect, energy usage, material production, Fuzzy FUCOM, 
CCSD, CRADIS, sustainability.

Introduction 

The hazardous activities raised by humans is emerging in 
several critical harms such as flooding, wildfires, tsunami, 
and aridness owing to global warming, land use for waste, 
aquatic toxicity, photochemical smog, terrestrial toxic-
ity, resource depletion, eutrophication, ozone depletion, 
acidification, ozone layer’s depletion, sea level’s rising, and 
terrain loss. In particular, global energy consumption con-
tributes to dirtiness, worldwide greenhouse gaseous emis-
sions and ecological deterioration (Batouli et  al., 2014). 
Four main industries that conduce the most to power 

usage are the transportation, industrial, agriculture, and 
construction (commercial/residential) industries, a sig-
nificant fraction of it being explained through the build-
ings’ operation and construction. Construction sectors 
have a more significant role in causing these ecological 
problems. In the EU, the construction industry is liable for 
over 0.40 of all power usage, contributing to CO2 gaseous 
emissions (Rajagopalan, 2005; Swamy, 2006; Chatwal & 
Sharma, 2004). 
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The utilisation of building and insulation materials in 
large quantities has resulted in extensive resource deple-
tion. Building and insulation materials produce millions 
of tons each year waste in the world. These materials have 
high tangible energy, emerging in significant CO2 emis-
sions. For instance, the palpable energy of steel is ap-
proximately four times that of cement (Scientific and In-
dustrial Research Organization, 2019). Cement is one 
of the highest CO2 emitting materials. For this reason, a 
significant CO2 amount is generated in the processing of 
cement-based building materials. If global building and 
insulation materials usage remains constant, worldwide 
cement generation could reach 3500 million mt through 
2050. Therewithal, the cement’sannual generation could 
exceed 5000 million mt with about 4000 million mt of CO2 
gaseous emissions if the consumption and production of 
building and insulation materials increase. Because of the 
widespread use of building and insulation materials, the 
effect of these products outweighed the effect of other re-
sources. Due to the frequent variation in human demands 
and lifestyle, the mean life of construction is diminishing, 
and renovation or demolition of constructions concludes 
in more recycling or landfills each year.

Sustainability is now a focal point of the construction 
sector, and ecological relevance of buildings are increas-
ing amongst the generic potential and public construction 
buyers (Anjaneyulu, 2002). Given the importance of bal-
ancing ecological, economic, and social needs in project 
implementation, the maintainability principle must be 
integrated into the academic community and design ad-
ministration applications. The modern construction aims 
to manage and create a healthy artificial ecological source 
on design performance and ecological sources. To improve 
design value and quality, contemporary structure accentu-
ates the importance of incorporating stability into design 
planning, administration, decision-making, and evalua-
tion. The goals of sustainable construction are directly af-
fected by project planning and successful implementation. 
As a result, sustainable design planning projects use de-
sign management methodologies that promote financial, 
environmental, and social maintainability. Methodical 
strategies, the perspectives of overall partners, expertise 
and knowledge in applying a maintainable improvement 
design, and their capability to perform them correctly are 
essential success components for maintainable building.

In sustainable construction, there are several primary 
foundations of the lifecycle of a construction: source re-
use, quality of lifecycle, lesser utilised sources, elimination 
or reduction of adverse environmental effects, use of re-
cyclable sources, decrease in building life cycle expenses, 
elimination of toxic materials. Maintainable planning is a 
planning that seeks to maximise the artificial environment 
through minimising or eradicating negatory ecological 
effects. Green buildings entail increasing building per-
formance in order to utilise energy, materials, and water 
more effectively while minimising adverse effects on hu-
man health (Erdogan et al., 2019).

With an emphasis on environmental implications, life-
cycle evaluation has recently gained international admis-
sion in the construction industry (Bribián et al., 2009) and 
is utilised to select ecologically better materials as well as 
to evaluate and optimise structure operations (Asdrubali 
et  al., 2013). A greater understanding of the energy em-
bodied and ecological effects of construction materials 
may support the development and production of more 
maintainable materials and their precedence in the build-
ing industry and design (Cabeza et al., 2013).

As a result, less resource use will result in less emis-
sions, decreasing the ecological effects of building struc-
tures and defining development possibilities toward more 
maintainable resolutions. Furthermore, lifecycle evalu-
ation is broadly utilised in building design to crosscheck 
various options. Many researchers have concentrated on 
construction resolutions, such as diverse kinds of build-
ing envelopes (Gonzalez-García et  al., 2012; Islam et  al., 
2014; Monteiro & Freire, 2012), green roofs, and building 
construction (Pérez et al., 2012; Cerón-Palma et al., 2013). 
In these studies, the characteristics utilised to crosscheck 
diverse options are the formation of the construction 
mechanism, the materials utilised in every resolution, and 
the building’s location (Ramesh et  al., 2012; Marceau & 
VanGeem, 2006; Richman et al., 2009).

Lifecycle evaluation can also be used to help choosing 
which materials to contain in resolutions. Bribián et  al. 
(2011) utilised the operation-sourced lifecycle evaluation 
system to assess the various construction materials’ eco-
logical effects of utilised in various structure resolutions, 
such as roofs, floors, insulation, and structure materials 
(Bribián et al., 2011).

Furthermore, several researchers have concentrated on 
assessing the CO2 emissions and energy use in construc-
tion materials (Dixit et  al., 2012; Moncaster & Symons, 
2013).

The significance of insulating materials for heat have 
recently sparked considerable attention in the ecological 
realm among building materials (Papadopoulos, 2005; 
Anastaselos et  al., 2009; Baetens et  al., 2011; Balo, 2011, 
2015). These materials play a significant role because they 
also affect the ecological effects of structure and the build-
ing’s utilise phase. Insulation in the structure envelope, for 
instance, can decrease power need in buildings through 
upwards of 64% in the summer and up to 37% in the win-
ter, as well as CO2 emissions (Cabeza et al., 2010).

As a result, the first step toward more efficient func-
tioning energy use is to decrease the power needed to sus-
tain a comfortable internal temperature. With respect to 
the nearly zero-emission construction, using passive en-
velope resolutions will conclude in raised insulating thick-
nesses in structures. As a result, these materials’ support to 
the ecological effects of buildings over their life cycle are 
critical (Pargana et  al., 2014), and the ecological evalua-
tion of various insulating resolutions is a significant topic 
in construction sustainability. In general, present lifecycle 
evaluations of insulating materials compared the ecologi-
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cal effects of material an imparted amount with the exact 
thermal insulating needs (Schmidt et  al., 2004; Ardente 
et al., 2008; Kymäläinen & Sjöberg, 2008).

This study aims to evaluate the primary energy con-
sumption and the environmental effects of the fabrica-
tion of building and thermal isolation materials by using 
a new and strength hybrid MCDM model which consists 
of fuzzy FUCOM, CCSD and CRADIS. Therefore, both 
expert judgements and objective data will be taken into 
account while evaluating construction materials in this 
study. Thus, a strong MCDM model will be created. It is 
anticipated to obtain rigor results as objective and sub-
jective data are considered in this study. Fuzzy FUCOM 
method is used to achieve subjective weights of criteria 
and CCSD method is utilised to obtain objective weights 
of criteria. Furthermore, CRADIS method is used to rank 
construction materials. To the best our knowledge, there is 
no study that combined the MCDM methods employed in 
this study. Besides, there are not many publications related 
to the CRADIS method since it is a relatively new MCDM 
technique. Therefore, this research will fill this research 
gap. As a result, this study is original and contributes to 
the literature. 

1. Literature review

Material choice is one of the most significant yet challeng-
ing work that structure engineers face because it is im-
mediately concerned with all planning efficiency (Reddy, 
2004). Environmental building and insulation material 
choices should be made systematically, with each criterion 
being investigated for its impact on environment.

The product designer has the exclusive right to choose 
the materials. Numerous scholarly technics are being de-
veloped in most industries for choosing materials with a 
low ecologic impact. However, in the building sector, these 
technics lag. Choosing building and insulation materials 
is so important for construction. Nowadays, the primary 
causes for choosing materials in an unscholarly operation 
are a lack of norms and incompatible industry contribu-
tions. There are many contradictory statements in the 
material industry, which is one of the reasons for mate-
rial selection. For instance, the concrete sector demands 
that they use the most maintainable material because they 
are made from waste material and has low energy use. The 
timber industry claims that timber is the most maintain-
able material because it is entirely natural and renewable. 
According to the steel sector, steel is the most maintainable 
material because it is greatly recyclable. Different agencies 
in different countries have developed various assessment 
models and tools to assess the ecological effects of build-
ings. Even though this equipment has been meaningfully 
utilised and applied in their origin’s relevant zones, imple-
mentation issues arise, particularly in the course of local 
rapport in other nations owing to characteristics related 
to the climatic conditions, particular geographic location, 
materials, and construction methodologies.

While criteria-based assessment tools award credits for 
assessing a set of criteria for waste evaluation, research can 
also be considered a critical step in building applications. 
As seen below in Table 1, some efforts have been made in 
the field of environmental emissions evaluation and esti-
mation.

Besides, Balo (2017) used AHP technique which takes 
into account environmental impacts of the insulating ma-
terials’ production. Seo et al. (2016) investigated the CO2 
gaseous emissions generated during the material genera-
tion, structure, and transportation phases. They stated that 
the production stage accounts for 93.4% of CO2 emissions. 
Huang et  al. (2017) developed a method for calculating 
CO2 emissions of the urban constructions in the Chinese 
province of Xiamen. They concluded that the power utility 
and material generation stages account for 45% and 40% of 
the emissions, respectively. They stated that implementing 
lesser CO2 policies could conclude in a 2.98% reduction in 
energy consumption of urban buildings by 2020 (Huang 
et  al., 2017). Motuzienė et  al. (2016) assessed the three 
kinds of ecological effects of building external walls with 
AHP; timber frame, log, and masonry. A few factors were 
considered, including principal power usage, lifecycle ex-
pense, depletion of the ozone layer, and global warming.

Reza et al. (2011) evaluated environmental impacts of 
flooring mechanisms with AHP-based life cycle analysis. 
As a coarse-grained aggregate, Rashid et al. (2017) demon-
strated a preliminary and analytical investigation into ad-
vancing a maintainable mould off concrete through blend-
ing ceramic-sourced waste. Environmental impact of the 
feed stock use and CO2 footprint through concrete were 
carefully considered. TOPSIS and AHP were used by Zhou 
et al. (2009) to classify and identify maintainable products 
based on financial, mechanical, and ecological attributes. 
Mathiyazhagan et al. (2019) eliminated mechanic variants 
and replaced them with social attributes. This sorting is 
compatible with current research suppositions which sug-
gest assessing structure materials using three attributes; 
ecological, social, and financial (Diabat et al., 2014). Us-
ing financial and environmental criteria, Kim et al. (2009) 
used AHP to assess material recycling potency. Berardi 
(2012) compared the environmental performance of as-
sessed and certified buildings. Although no methodologi-
cal specifics, such as parameters or problems, were dis-
cussed in the research, the outcomes showed which fields 
of the structures performed the worst and best. Wallhagen 
and Glaumann (2011) presented that different approaches 
result in different results and recommended using differ-
ent approaches to increase the ecological efficiency of the 
building. In order to understand the reasons for the dif-
ferences in the results, it is also important to understand 
the topics addressed and the assessment procedures used. 

The construction sector minimizes the ecological foot-
print by creating waste and exploiting resources, despite 
the fact that environmental issues are essential to its sus-
tainability. It gradually modifies its conventional methods 
to take environmental considerations into account while 
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making decisions. Building and insulation materials are 
detrimental to the ecology; their effects are growing as the 
use of these materials grow. With raised knowledge and 
awareness of these effects, endeavours are being made to 
prevent these adverse consequences and to mitigate their 
effect. Environmental considerations are routinely disre-
garded while planning building projects. As a result, ma-
terials are chosen without taking the environment into 
account. Sustainable construction material choice is one 
of them. Building and insulation material choice is a sig-
nificant consideration in building construction and design 
decisions, and ecological concerns must be factored into 
the assessment operation.

This study will evaluate construction materials with 
fuzzy FUCOM, CCSD, and CRADIS methods. The sub-
jective weightings of the evaluation attributes will be ob-
tained with the fuzzy FUCOM methodology. The objective 
weights of the evaluation attributes will be obtained by the 
CCSD method. Construction materials will be listed with 
the CRADIS method in terms of ecological effects. 

Many decision-making problems have been solved 
with the fuzzy FUCOM method, such as assessment of 
fuel vehicles (Pamucar et  al., 2021), evaluation of road 
sections (Mitrović Simić et al., 2020), assessing strategies 
to enhance the resilience of the healthcare sector (Khan 
et  al., 2022) and prioritizing occupational safety risks 
(Golcuk et al., 2022). The CCSD is a method used to de-
termine the objective weights of the criteria. This method 
has been used many times in the literature, such as stacker 
selection (Ulutaş et  al., 2020), technological forecasting 
method selection (Dahooie et  al., 2019a), wind turbine 
selection (Zavadskas et al., 2022) and corporate financial 
performance evaluation (Dahooie et al., 2019b). Since the 
CRADIS method is a newly developed method, the num-
ber of articles related to this method is few. Studies us-
ing this method are as follows: market assessment (Puška 
et al., 2022a), green supplier selection (Puška et al., 2022b), 
selection of IoT service provider (Krishankumar & Ecer, 
2023), sustainable supplier selection (Puška et  al., 2023) 
and occupational risk evaluation (Wang et al., 2023).

Table 1. Research in the field of environmental emissions evaluation and estimation

Methodology Research issue Refs.
TOPSIS The decision-support mechanism for optimum roof material choice Rahman et al. (2012)
AHP Material choice in produce planning Desai et al. (2012)
GRA As commercial present materials choice in maintainable planning Zhao et al. (2016)
VIKOR Material choice implementation Prasenjit et al. (2009)
ANP and TOPSIS Choice of the proper material usage equipment Onut et al. (2009)
AHP and TOPSIS The sluice material choice in small-scale hydropower facilities Kumar and Singal (2015)

Material choice for sugar sector Anojkumar et al. (2015)
Material choice for a dedicated engineering planning Rao and Davim (2008)

TOPSIS and DOE Robot choice problem İç (2012)
DANP and VIKOR Material choice with target-sourced attributes Liu et al. (2014)

The most efficient vendor choice for conductive the material recycled Hsu et al. (2012)
VIKOR and TOPSIS The produced mass non-heat treated cylindrical cap produce choice Huang et al. (2009)
Fuzzy TOPSIS Ecological material choice Mayyas et al. (2016)

Grinding wheel corrosive material choice Maity and Chakraborty 
(2013)

Finite element analysis and 
ELECTRE

Gas turbine elements’ materials choice Shanian et al. (2012)

Fuzzy ANP and 
PROMETHEE

Material usage tool choice problem Tuzkaya et al. (2010)

Interval 2-tuple linguistic 
VIKOR

Material choice for planning at engineering Liu et al. (2013)

Fuzzy AHP and VIKOR Pipe-material choice in sugar sector Anojkumar et al. (2014)
Fuzzy AHP, VIKOR and 
TOPSIS

Material choice in sugar sector Anojkumar et al. (2015)

Fuzzy extended AHP Maintainable materials choice for construction designs Akadiri et al. (2013)
Fuzzy VIKOR A car element’s material choice Girubha and Vinodh (2012)
PCI and Grey CoCoSo Pavement Condition Assessment Elmansouri et al. (2022)
Fuzzy AHP and TOPSIS The choice of phase-change material Rathod and Kanzaria (2011)

Material choice operation and the most efficiency planning method Aly et al. (2013)
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2. Methodology

The proposed methodology has been shown in Figure 1 
and explained steps of developed algorithm.

After preliminary discussions, experts were brought 
together to form an expert team which represents the first 
step of the proposed methodology research flow. This ex-
pert team was asked to evaluate criteria gathered from the 
literature and to determine which of these criteria would 
be used in the study. Expert team has determined 6 crite-
ria. These criteria are as follows.

 – EmbEn [MJ]: All the energy used to produce the ma-
terials that make up the building (transporting and 
manufacturing the materials, in addition to the ser-
vices in the financial that support this activity).

 – Kg SO2eq: If this compound increases, the acidifica-
tion potential rises.

 – Kg CO2eq: If this compound increases, global warm-
ing potential rises.

 – Kg C2H4eq: If this compound increases, photochemi-
cal oxidant creation potential rises.

 – Kg PO4eq: If this compound increases, eutrophica-
tion potential rises.

 – About Recycling Potential: Reuse and recycling of 
waste material decreases the need of virgin and fresh 
materials in structure of novel buildings. It aids in 
conserving embodied energy correlate with building 
materials and decreasing their carbon footprints.

After determining the criteria, the expert team was 
asked to determine the material alternatives. Finally, since 
data on some materials determined by experts could not 
be found, these materials were removed. In that way has 
been formed MCDM model that consist of 15 alternatives 
and 6 criteria. In the next stage, we have applied subjec-
tive-objective (Fuzzy FUCOM and CCSD) model for 
determining criteria weights. CRADIS method has been 
used for evaluation 15 materials, and finally sensitivity and 
comparative analysis were performed.

2.1. Fuzzy FUCOM method

The stages of the fuzzy FUCOM methodology are briefly 
explained below (Pamucar & Ecer, 2020).

Stage 1: Evaluation attributes are identified by experts. 
These criteria are denoted as a set C = {C1, C2, ..., Cn}.

Stage 2: The evaluation criteria are ranked by each ex-
pert. The assessment attributes are sorted by each specialist 
from the most significant one to the least important one.

Stage 3: The evaluation criteria are compared by each 
expert. Experts use fuzzy linguistic expressions presented 
in Table 2 to compare criteria; then, fuzzy comparative sig-
nificance is computed using Eqn (1):
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The evaluation criteria’ fuzzy vector of comparative 
significance is determined by Eqn (2):

( )1/2 2/3 / 1, , ,  ,k k+θ = j j … j  (2)

where jk/k+1 denotes the importance that the criterion of 
Cj(k) rank has in relation to the criterion of Cj(k+1) rank.

Stage 4: The fuzzy weights of attributes are calculated. 
Two conditions should be satisfied in this process. 

Condition 1: Comparative significance of criteria (Cj(k) 
and Cj(k+1)) jk/k+1 should be equal to their weight coeffi-
cients’ ratio. This condition is presented in Eqn (3): 
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 Figure 1. Proposed methodology
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This condition is shown in Eqn (4):
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Depending on the settings described, linear modelling 
for obtaining fuzzy weights of criteria. Equation (5) indi-
cates this linear model. 
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Table 2 presents the linguistic terms and their fuzzy 
number equivalents used to compare the criteria.

Table 2. Fuzzy linguistic scales (Guo & Zhao, 2017)

Linguistic Terms Fuzzy Numbers
Equally Significant (ES) (1, 1, 1)
Weakly Significant (WS) (2/3, 1, 3/2)
Moderately Significant (MOS) (3/2, 2, 5/2)
Very Significant (VS) (5/2, 3, 7/2)
Absolutely Significant (AS) (7/2, 4, 9/2)

The fuzzy weights ( )jsw  found through the fuzzy FU-
COM method are transformed to crisp weightages (wjs) 
with the following formula:

4
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w w w

w
+ × +

= . (6)

2.2. CCSD method

CCSD is a technique to identify the objective weight-
ages of the evaluation attributes. This method’s steps are 
indicated as follows (Wang & Luo, 2010; Dahooie et al., 
2019a).

Stage 1: A decision matrix (T) involving m options, B1, 
..., Bm based on the n criteria, C1, ..., Cn is organised: 

ij m n
T t

×
 =   . (7)

In Eqn (7), tij indicates ith alternative’s performance on 
the jth criterion.

Stage 2: Eqn (8) (for BN (beneficial attributes)) and 9 
(for NBF (non-beneficial attributes)) are utilised to nor-
malise the matrix:
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Stage 3: The criterion Dj is removed for taking into 
account its impact on decision-making. Equation (10) is 
used to compute the performance value (Hwang & Yoon, 
1981): 
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Stage 4: Eqn (11) is used to obtain the correlation coef-
ficient (CCj) between Fij and the value of Dj criterion: 
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Stage 5: In order to determine weightages (wj) of at-
tributes, the below non-linear optimisation modelling is 
solved: 2

1
1

1
Minimise ;

1

n
j j

jCC n
j k kk

CC
J w

CC=
=

 
s − 

= − 
 s −
 

∑
∑

  (14)

1

. . 1.
n

jCC
j

s t w
=

=∑  

In Eqn (14), sj indicates Dj criterion’s standard devia-
tion. This value is computed by Eqn (15): 
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With Eqn (16), the criteria weights obtained through 
the Fuzzy FUCOM methodology and the criteria weight-
ages found through the CCSD method are combined, and 
thus the weightages integrated of the attributes are com-
puted (Zavadskas & Podvezko, 2016): 
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2.3. CRADIS methodology

The CRADIS methodology will be utilised to sort the ma-
terials. The stages of the CRADIS methodology are ex-
plained below (Puška et al., 2022c).

Stage 1: The decision matrix is created. The decision 
matrix is displayed in Eqn (7). 

Stage 2: The values in the decision matrix are normal-
ised by Eqn (17) (for BN) and Eqn (18) (for NBF):

( )max
ij

ij
ij

t
u

t
=  ; (17)
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( )min ij
ij

ij

t
u

t
= . (18)

Stage 3: The decision matrix aggravated is achieved 
through Eqn (19):

. .ij ij jINs u w=    (19)

Stage 4: The anti-ideal and ideal resolutions are deter-
mined with Eqns (20) and (21): 

max ; i ijv s=  (20)
min . ai ijv s=  (21)

Stage 5: Deviations from ideal and anti-ideal resolu-
tions are calculated through Eqns (22) and (23): 

max ;i ijd v s+ = −  (22)

minij aid s v− = − . (23)

Stage 6: The degrees of the deviations for each of the 
options from anti-ideal and ideal resolutions are comput-
ed as: 

1

;
n

i
j

o d+ +

=

=∑   (24)

1

.
n

i
j

o d− −

=

=∑  (25)

Stage 7: The utility function for each of the alternatives 
pertaining to the deviations from the optimal options is 
computed as: 

opt
i

i

o
K

o

+
+

+
= ; (26)

.i
i

opt

o
K

o

−
−

−
=   (27)

In Eqn (26), opto+  denotes the optimum option having 
the minimum distance from the ideal resolution. In Eqn 
(27), opto−  denotes the optimum option having the biggest 
distance from the anti-ideal resolution.

Stage 8: The average deviation value (Qi) for each of the 
alternatives is calculated as: 

.
2

i i
i

K K
Q

+ −+
=   (28)

The option with the maximum Qi is identified as the 
best alternative. 

3. Application and results

First of all, experts who have worked in the construction 
industry for years were contacted to determine the insu-
lation material with the best performance for optimising 
energy usage and environmental effect in production fo-
cus. 12 experts with at least 10 years of experience in the 
construction industry were reached. Two of these experts 
could not attend face-to-face meetings due to their work-
load. Therefore, face-to-face preliminary interviews were 
conducted with 10 experts. The education and experiences 
of the experts are shown in Table 3. 

Table 3. Education and experiences of the experts

Experts Education Experience
Expert 1 BD: Civil Engineering

MD: Civil Engineering
15 Years

Expert 2 BD: Civil Engineering 12 Years
Expert 3 BD: Material Engineering  

and Civil Engineering
11 Years

Expert 4 BD: Civil Engineering 17 Years
Expert 5 BD: Civil Engineering

MD: Civil Engineering
PhD: Civil Engineering

22 Years

Expert 6 BD: Chemical Engineering  
and Civil Engineering

14 Years

Expert 7 BD: Civil Engineering 16 Years
Expert 8 BD: Civil Engineering 14 Years
Expert 9 BD: Civil Engineering 12 Years

Expert 10 BD: Civil Engineering
MD: Civil Engineering

12 Years

The decision matrix showing the values in other mate-
rial alternatives and criteria is shown in Table 4.

First of all, 10 managers were asked to prioritise the 
criteria. Expert 1 listed the criteria as follows:

 CR2 > CR3 > CR5 > CR1 > CR4 > CR6 .

Table 5 shows the linguistic evaluations of Expert 1.
According to Expert 1, attribute weightages are found 

through resolving the modelling in Eqn (5). Table 6 shows 
the criteria weights according to Expert 1. 

As can be seen, the J value is close to zero, so the re-
sults of Expert 1 are said to be consistent. The fuzzy FU-
COM methodology is performed by taking the opinions 
of other experts. The attribute weightages according to all 
experts are shown in Table 7. 

As can be seen from Table 7, the x value of all experts 
is close to 0, so the results of all experts are consistent. The 
fuzzy weights of the attributes are transformed to crisp 
weights by Eqn (6). These crisp weights are then combined 
with the arithmetic mean. Table 8 shows the crisp weights 
and arithmetic means of the criteria.

By applying Eqns (7)–(15) to the decision matrix in 
Table 3, criteria weights are calculated according to the 
CCSD (wjCC) method. Then, using Eqn (16), the criteria 
weights obtained by the Fuzzy FUCOM (wjs) methodology 
and the criteria weights found through the CCSD method 
are combined. Table 9 shows the attributes weights above-
mentioned and the integrated weights (wjIN).

As can be seen from Table 9, the CR3 criterion was 
determined as the most important criterion according to 
the Fuzzy FUCOM method, and the CR1 criterion was 
determined as the most important criterion according to 
the CCSD method. According to the combined weights, 
the CR3 criterion was determined as the most important 
criterion. Using Eqns (17) and (18), the decision matrix is 
normalised. The normalised decision matrix is displayed 
in Table 10.
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Table 4. The energy usage and environmental effect of some common building and insulation materials throughout the lifecycle 
(Giama & Papadopoulos, 2015; Gardezi et al., 2015; Sun et al., 2022; Wang et al., 2018; Bolden et al., 2013)

Criteria
Building Materials

EmbEn
[MJ]

(CR1)

Kg SO2eq
(CR2)

Kg CO2eq
(CR3)

Kg C2H4eq
(CR4)

Kg PO4eq
(CR5)

About Recycling 
Potential

(CR6)
Stonewool 24.90 0.01303 2.17293 0.00059 0.00132 28%
Glasswool 60.10 0.01904 3.30205 0.00105 0.00158 25%
Expanded Polystyrene 76.16 0.01268 3.24197 0.00054 0.00096 27%
Acrylic Plaster 4.96 0.00087 0.20961 0.00009 0.00007 2%
Plasterboard 6.03 0.00167 0.39033 0.00007 0.00019 7%
Brick 2.76 0.00070 0.23595 0.00005 0.00007 32%
Cement Plaster 1.42 0.00050 0.22134 0.00002 0.00005 2%
Steel 9.76 0.00395 0.63761 0.00016 0.00018 90%
Polyurethane Foam 92.30 0.01934 4.42797 0.00212 0.00279 20%
Ceramic Tiles 15.72 0.00418 0.95001 0.00021 0.00031 20%
Cement Portland 3.33 0.00131 0.85807 0.00005 0.00018 0.2%
Extruded Polystyrene 92.38 0.01646 4.04462 0.00088 0.00125 27%
Reinforced Concrete 0.48 0.90673 0.34 0.03596 0.08972 25.9%
Common Plaster 1.45 0.00036 0.26146 0.00003 0.00005 2%
Stone 16.73 0.00671 1.01494 0.00024 0.00057 95%

Table 5. Expert 1’s linguistic assessments

Criteria CR2 CR3 CR5 CR1 CR4 CR6

Linguistic Variables ES WS MOS VS VS VS

Table 6. The criteria weights w.r.t. Expert 1

Criteria Fuzzy Weights
CR1 (0.038, 0.109, 0.111)
CR2 (0.142, 0.292, 0.292)
CR3 (0.161, 0.278, 0.278)
CR4 (0.058, 0.123, 0.123)
CR5 (0.061, 0.138, 0.138)
CR6 (0.082, 0.152, 0.152)
J 0.050

Table 7. The results of Fuzzy FUCOM

             Experts
Criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

CR1 (0.038, 0.109, 0.111) (0.100, 0.173, 0.173) (0.037, 0.105, 0.112) (0.061, 0.132, 0.143) (0.065, 0.101, 0.101)
CR2 (0.142, 0.292, 0.292) (0.052, 0.10 0, 0.100) (0.056, 0.141, 0.141) (0.135, 0.164, 0.164) (0.075, 0.127, 0.127)
CR3 (0.161, 0.278, 0.278) (0.130, 0.165, 0.165) (0.167, 0.261, 0.266) (0.212, 0.362, 0.372) (0.145, 0.176, 0.176)
CR4 (0.058, 0.123, 0.123) (0.202, 0.372, 0.372) (0.150, 0.261, 0.261) (0.078, 0.133, 0.133) (0.065, 0.141, 0.153)
CR5 (0.061, 0.138, 0.138) (0.054, 0.140, 0.140) (0.205, 0.205, 0.205) (0.070, 0.119, 0.119) (0.227, 0.388, 0.399)
CR6 (0.082, 0.152, 0.152) (0.080, 0.126, 0.126) (0.047, 0.092, 0.092) (0.090, 0.157, 0.157) (0.082, 0.130, 0.130)
J 0.050 0.046 0.055 0.033 0.036

             Experts
Criteria Expert 6 Expert 7 Expert 8 Expert 9 Expert 10

CR1 (0.046, 0.141, 0.154) (0.103, 0.121, 0.121) (0.151, 0.178, 0.178) (0.115, 0.172, 0.172) (0.304, 0.420, 0.469)
CR2 (0.050, 0.126, 0.126) (0.077, 0.148, 0.148) (0.231, 0.393, 0.414) (0.092, 0.180, 0.180) (0.127, 0.132, 0.132)
CR3 (0.183, 0.183, 0.183) (0.086, 0.137, 0.137) (0.072, 0.113, 0.113) (0.210, 0.335, 0.335) (0.078, 0.111, 0.112)
CR4 (0.142, 0.232, 0.237) (0.273, 0.392, 0.392) (0.051, 0.108, 0.114) (0.046, 0.091, 0.091) (0.082, 0.118, 0.118)
CR5 (0.134, 0.232, 0.232) (0.085, 0.149, 0.149) (0.077, 0.129, 0.129) (0.079, 0.185, 0.185) (0.067, 0.118, 0.131)
CR6 (0.062, 0.159, 0.159) (0.070, 0.114, 0.114) (0.091, 0.139, 0.139) (0.060, 0.117, 0.117) (0.094, 0.137, 0.137)
J 0.049 0.029 0.037 0.048 0.025
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As a calculation example, the value of Stonewool mate-
rial in CR1 is normalized as follows:

( )
11

11

min 0.48  
24.9

ijt
u

t
= = = 0.0193.

Utilising Eqn (19), the aggravated value for each mate-
rial is obtained. Aggravated value of Stonewool material in 
CR1 is calculated as follows: 

s11 = u11×v1IN = 0.19 × 0.0193 = 0.0037.

Table 11 indicates the aggravated decision matrix, in-
cluding these values.

Ideal and anti-ideal resolutions were determined with 
Eqns (20) and (21), and then deviations from ideal and an-
ti-ideal resolutions were computed by Eqns (22) and (23). 

As an example, deviations from ideal and anti-ideal 
resolutions are calculated for Stonewool material in CR1:

d + = maxvi – s11 = 0.223 – 0.0037 = 0.2193;
d  – = s11 – minvai = 0.0037 – 0.0001 = 0.0036.

Table 8. Criteria crisp weights

              Experts
Criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 A.M.

CR1 0.098 0.161 0.095 0.122 0.095 0.156
CR2 0.267 0.092 0.127 0.159 0.118 0.168
CR3 0.259 0.159 0.246 0.339 0.171 0.201
CR4 0.112 0.344 0.243 0.124 0.130 0.184
CR5 0.125 0.126 0.205 0.111 0.363 0.168
CR6 0.140 0.118 0.085 0.146 0.122 0.123

              Experts
Criteria Expert 6 Expert 7 Expert 8 Expert 9 Expert 10 A.M.

CR1 0.127 0.118 0.174 0.163 0.409 0.156
CR2 0.113 0.136 0.370 0.165 0.131 0.168
CR3 0.183 0.129 0.106 0.314 0.106 0.201
CR4 0.218 0.372 0.100 0.084 0.112 0.184
CR5 0.216 0.138 0.120 0.167 0.112 0.168
CR6 0.143 0.107 0.131 0.108 0.130 0.123

Table 9. Integrated weights of attributes

              Criteria
Weights CR1 CR2 CR3 CR4 CR5 CR6

wjCC 0.204 0.133 0.186 0.13 0.203 0.144
wjs 0.156 0.168 0.201 0.184 0.168 0.123

wjIN 0.190 0.134 0.223 0.143 0.204 0.106

Table 10. The normalised matrix

                                              Criteria
Building Materials CR1 CR2 CR3 CR4 CR5 CR6

Stonewool 0.0193 0.0276 0.0965 0.0339 0.0379 0.2947
Glasswool 0.008 0.0189 0.0635 0.019 0.0316 0.2632
Expanded Polystyrene 0.0063 0.0284 0.0647 0.037 0.0521 0.2842
Acrylic Plaster 0.0968 0.4138 1.0000 0.2222 0.7143 0.0211
Plasterboard 0.0796 0.2156 0.537 0.2857 0.2632 0.0737
Brick 0.1739 0.5143 0.8884 0.4 0.7143 0.3368
Cement Plaster 0.338 0.72 0.947 1.0000 1.0000 0.0211
Steel 0.0492 0.0911 0.3287 0.125 0.2778 0.9474
Polyurethane Foam 0.0052 0.0186 0.0473 0.0094 0.0179 0.2105
Ceramic Tiles 0.0305 0.0861 0.2206 0.0952 0.1613 0.2105
Cement Portland 0.1441 0.2748 0.2443 0.4 0.2778 0.0021
Extruded Polystyrene 0.0052 0.0219 0.0518 0.0227 0.04 0.2842
Reinforced Concrete 1.0000 0.0004 0.6165 0.0006 0.0006 0.2726
Common Plaster 0.3310 1.000 0.8017 0.6667 1.000 0.0211
Stone 0.0287 0.0537 0.2065 0.0833 0.0877 1.000
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Table 11. The aggravated decision matrix

                                              Criteria
Building Materials CR1 CR2 CR3 CR4 CR5 CR6

Stonewool 0.0037 0.0037 0.0215 0.0048 0.0077 0.0312
Glasswool 0.0015 0.0025 0.0142 0.0027 0.0064 0.0279
Expanded Polystyrene 0.0012 0.0038 0.0144 0.0053 0.0106 0.0301
Acrylic Plaster 0.0184 0.0554 0.2230 0.0318 0.1457 0.0022
Plasterboard 0.0151 0.0289 0.1198 0.0409 0.0537 0.0078
Brick 0.0330 0.0689 0.1981 0.0572 0.1457 0.0357
Cement Plaster 0.0642 0.0965 0.2112 0.1430 0.2040 0.0022
Steel 0.0093 0.0122 0.0733 0.0179 0.0567 0.1004
Polyurethane Foam 0.0010 0.0025 0.0105 0.0013 0.0037 0.0223
Ceramic Tiles 0.0058 0.0115 0.0492 0.0136 0.0329 0.0223
Cement Portland 0.0274 0.0368 0.0545 0.0572 0.0567 0.0002
Extruded Polystyrene 0.0010 0.0029 0.0116 0.0032 0.0082 0.0301
Reinforced Concrete 0.1900 0.0001 0.1375 0.0001 0.0001 0.0289
Common Plaster 0.0629 0.134 0.1788 0.0953 0.2040 0.0022
Stone 0.0055 0.0072 0.0460 0.0119 0.0179 0.1060

Table 12. The deviations from ideal solutions

                                              Criteria
Building Materials

CR1 CR2 CR3 CR4 CR5 CR6

Stonewool 0.2193 0.2193 0.2015 0.2182 0.2153 0.1918
Glasswool 0.2215 0.2205 0.2088 0.2203 0.2166 0.1951
Expanded Polystyrene 0.2218 0.2192 0.2086 0.2177 0.2124 0.1929
Acrylic Plaster 0.2046 0.1676 0 0.1912 0.0773 0.2208
Plasterboard 0.2079 0.1941 0.1032 0.1821 0.1693 0.2152
Brick 0.1900 0.1541 0.0249 0.1658 0.0773 0.1873
Cement Plaster 0.1588 0.1265 0.0118 0.08 0.019 0.2208
Steel 0.2137 0.2108 0.1497 0.2051 0.1663 0.1226
Polyurethane Foam 0.2220 0.2205 0.2125 0.2217 0.2193 0.2007
Ceramic Tiles 0.2172 0.2115 0.1738 0.2094 0.1901 0.2007
Cement Portland 0.1956 0.1862 0.1685 0.1658 0.1663 0.2228
Extruded Polystyrene 0.2220 0.2201 0.2114 0.2198 0.2148 0.1929
Reinforced Concrete 0.0330 0.2229 0.0855 0.2229 0.2229 0.1941
Common Plaster 0.1601 0.089 0.0442 0.1277 0.019 0.2208
Stone 0.2175 0.2158 0.177 0.2111 0.2051 0.117

Table 12 and Table 13 present the deviations from anti-
ideal and ideal resolutions, respectively. 

The grades of the deviations for each of the alternatives 
were calculated with Eqns (24) and (25). Using Eqns (26) 
and (27), iK + and iK −  were computed. As an example, iK + 
and iK −  values of Stonewool material are calculated: 

1
1

 opto
K

o

+
+

+
= = 0.338  

1.2654
= 0.2671;

1  i

opt

o
K

o

−
−

−
= = 0.0724  

0.9997
= 0.0724.

Finally, the average deviation value for each alternative 

was computed by Eqn (28). As an example, the average de-
viation value of Stonewool material is calculated:

1 1
1  

2
K K

Q
+ −+

= = 0.2671 0.0724  
2
+ = 0.1698.

All results are given in Table 14.
According to Table 14, the order of construction mate-

rials is as follows: Cement Plaster, Common Plaster, Brick, 
Acrylic Plaster, Reinforced Concrete, Steel, Plaster Board, 
Cement Portland, Stone, Ceramic Tiles, Stonewool, Ex-
panded Polystyrene, Extruded Polystyrene, Glasswool and 
Polyurethane Foam. With reference to the results, the best 
construction material is identified as Cement Plaster. 
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4. Sensitivity analysis

The next part of the paper has analysed the effect of the 
changing criteria weights through 60 scenarios. Each value 
of criteria CR1–CR6 has been modified using the Eqn (29) 
(Tripathi et al., 2022; Biswas et al., 2022):

( ) ( )
1 .

1n n
n

W
W W

W
b

b a= −
−

 (29)

In Eqn (29), Wnb represents the corrected values of 
overall attributes values, Wna indicates the lowered values 
of the attribute CR1 in scenarios S1–S10, CR2 in scenarios 
S11–S20, etc., concluding with scenarios S51–S60. Wb is 

the original value of each of the attributes considered, and 
Wn is the initial value of the attribute CR1 in scenarios 
S1–S10, CR2 in scenarios S11–S20, etc., concluding with 
scenarios S51–S60.

Criteria weights can be changed with different percent-
ages (Puška & Stojanović, 2022; Badi et al., 2022), and in 
this paper have been modified in interval 5–95%. Simu-
lated criteria values are shown in Figure 2.

After reproducing CRADIS method in 60 scenarios, 
results have been obtained and shown in Figure 3. These 
results confirm the best solution in the formed MCDM 
model but also show differences among alternatives with 
the separate influence of simulated criteria weights.

Table 13. The deviations from anti-ideal solutions

                                              Criteria
Building Materials CR1 CR2 CR3 CR4 CR5 CR6

Stonewool 0.0036 0.0036 0.0214 0.0047 0.0076 0.0311
Glasswool 0.0014 0.0024 0.0141 0.0026 0.0063 0.0278
Expanded Polystyrene 0.0011 0.0037 0.0143 0.0052 0.0105 0.0300
Acrylic Plaster 0.0183 0.0553 0.2229 0.0317 0.1456 0.0021
Plasterboard 0.015 0.0288 0.1197 0.0408 0.0536 0.0077
Brick 0.0329 0.0688 0.198 0.0571 0.1456 0.0356
Cement Plaster 0.0641 0.0964 0.2111 0.1429 0.2039 0.0021
Steel 0.0092 0.0121 0.0732 0.0178 0.0566 0.1003
Polyurethane Foam 0.0009 0.0024 0.0104 0.0012 0.0036 0.0222
Ceramic Tiles 0.0057 0.0114 0.0491 0.0135 0.0328 0.0222
Cement Portland 0.0273 0.0367 0.0544 0.0571 0.0566 0.0001
Extruded Polystyrene 0.0009 0.0028 0.0115 0.0031 0.0081 0.03
Reinforced Concrete 0.1899 0 0.1374 0 0 0.0288
Common Plaster 0.0628 0.1339 0.1787 0.0952 0.2039 0.0021
Stone 0.0054 0.0071 0.0459 0.0118 0.0178 0.1059

Table 14. The proposed modelling’s results

                                               Results
Building Materials io+ io− iK +

iK − Qi Rankings

Stonewool 1.2654 0.0720 0.2671 0.0724 0.1698 11
Glasswool 1.2828 0.0546 0.2635 0.0550 0.1592 14
Expanded Polystyrene 1.2726 0.0648 0.2656 0.0652 0.1654 12
Acrylic Plaster 0.8615 0.4759 0.3924 0.4764 0.4344 4
Plasterboard 1.0718 0.2656 0.3153 0.2659 0.2906 7
Brick 0.7994 0.5380 0.4229 0.5385 0.4807 3
Cement Plaster 0.6169 0.7205 0.5479 0.7210 0.6345 1
Steel 1.0682 0.2692 0.3164 0.2696 0.2930 6
Polyurethane Foam 1.2967 0.0407 0.2607 0.0411 0.1509 15
Ceramic Tiles 1.2027 0.1347 0.2811 0.1351 0.2081 10
Cement Portland 1.1052 0.2322 0.3058 0.2325 0.2692 8
Extruded Polystyrene 1.2810 0.0564 0.2639 0.0567 0.1603 13
Reinforced Concrete 0.9813 0.3561 0.3444 0.3564 0.3504 5
Common Plaster 0.6608 0.6766 0.5115 0.6771 0.5943 2
Stone 1.1435 0.1939 0.2956 0.1942 0.2449 9
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Obtained results display that Cement Plaster is the 
best material in 59 scenarios, while in one scenario (S40), 
Common Plaster showed the best performance. A conse-
quence of such results is reducing the value of the fourth 
criterion for 95% (from 0.143 to 0.07). In a total of 34 sce-
narios no changes among all 15 alternatives, while 26 have 
changes that are not high. For example, when reducing 
weights of CR1 in interval 45–95%, changes are as follows: 

A5 = 7»6, A8 = 6»5, A11 = 8»7, A13 = 5»6 (S5), A13 = 5»7 
(S6 and S7), A13 = 5»8 (S8 and S9), A13 = 5»9 (S10), and 
A15  = 9»8 (S10). Reducing the second criterion weight 
does not influence ranking alternatives. When reducing 
weights of CR3 in interval 45–95% changes are as follows: 
A5 = 7»8, A11 = 8»7. When reducing weights of CR4 in 
interval 85–95% changes are as follows: A7 = 2»1 (S40), 
A11 = 8»9, A14 = 2»1 (S40), and A15 = 9»8 (S10). When 

Figure 3. Results of sensitivity analysis

Figure 2. Values of simulated criteria weights in 60 scenarios
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the reducing weights of CR5 in interval 85–95% chang-
es are as follows: A4  = 4»5, A13  = 5»4. When reducing 
weights of CR6 changes are as follows: A5 = 7»6 (S51–S60), 
A8 = 6»7 (S51–S53), A8 = 6»8 (S54–S60), A11 = 8»7 (S54–
S60), A15 = 9»10 (S58–S60), A2 = 14»13 (S59–S60), A12 = 
13»14 (S59–S60).

Comparisons were made with the results of other 
MCDM methods (MARCOS (Stević et  al., 2020), CO-
PRAS (Zavadskas et  al., 2007) and ARAS (Zavadskas 
et al., 2010)) to confirm whether the proposed methodol-
ogy achieves accurate results. The results of other MCDM 
methodologies and the results of the proposed modelling 
are indicated in Table 15.

As can be seen from Table 15, while the results of 
MARCOS, ARAS and the proposed methodology are the 
same, the results of the COPRAS methodology are differ-
ent from the results of these three methods. However, the 
correlation coefficient between the results of COPRAS and 
the results of the proposed methodology was identified as 
0.796. Therefore, it is concluded that the proposed method 
obtains accurate results.

Conclusions

A high ratio of resource use is comprised worldwide as a 
consequence of the enormous consumption of embodied 
energy and building-insulation materials.

Unfavourable environmental effects can be reduced 
to a degree through reducing construction material con-
sumption or reducing the effects due to each construction 
material. This can be accomplished in two ways to reduce 
environmental risks. First, construction material usage 
may be decreased. Natural resources are gradually deplet-
ing due to rising population and demand. Reusing and 
recycling building and insulation materials avoids the re-
quirement for new sources, decreasing construction mate-

rial usage or conserving natural sources. Second, material 
selection can be done considering environmental impacts. 
The designer plays a significant part in material selection. 
To evaluate the judgment, the designer should have access 
to a technique for material selection in order to achieve the 
goal of minimising environmental impacts.

In this research, building and insulation materials were 
evaluated with fuzzy FUCOM, CCSD, and CRADIS meth-
ods. The subjective weights of the evaluation criteria were 
obtained with the fuzzy FUCOM method. The objective 
weights of the evaluation criteria were found by the CCSD 
method. These materials were listed with the CRADIS 
method. As a result of analysis, cement plaster was ob-
tained as the best construction material in terms of eco-
logical effects. By comparing the proposed method with 
the MARCOS, COPRAS and ARAS methods, it has been 
tried to determine whether the proposed method reaches 
the correct results. According to the comparison results, it 
is concluded that the proposed method achieves correct 
results. In addition, sensitivity analysis was performed in 
this study. The weights of the criteria were changed for 
the sensitivity analysis. 60 scenarios were created for the 
change of weights. As a result of the sensitivity analysis, it 
has been determined that the proposed method is sensitive 
to the change in criteria weights.

According to the results of the proposed model, con-
struction companies will harm the environment less by us-
ing cement plaster material in their construction. Due to 
the rapid increase in global warming and environmental 
pollution today, construction companies are also required 
to use environmentally friendly construction materials in 
construction. Therefore, it would be appropriate for con-
struction companies to prefer cement plaster construction 
material, which are more environmentally friendly and of-
fer good performance in terms of optimization of energy 
use. 

Table 15. The results of MCDM methods

                                      Results of MCDM methods 
Building Materials MARCOS ARAS COPRAS Proposed Model

Stonewool 11 11 10 11
Glasswool 14 14 12 14
Expanded Polystyrene 12 12 11 12
Acrylic Plaster 4 4 4 4
Plasterboard 7 7 5 7
Brick 3 3 3 3
Cement Plaster 1 1 1 1
Steel 6 6 6 6
Polyurethane Foam 15 15 14 15
Ceramic Tiles 10 10 9 10
Cement Portland 8 8 7 8
Extruded Polystyrene 13 13 13 13
Reinforced Concrete 5 5 15 5
Common Plaster 2 2 2 2
Stone 9 9 8 9
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This study has some limitations. Only 15 materials 
were examined in this study. In addition, only 10 experts 
were consulted. Fifteen materials examined were evaluated 
on the basis of only five criteria. Since only 5 criteria were 
taken into consideration in this study, as a result of this 
study, cement plaster material was determined as a mate-
rial that is less harmful to the environment than other ma-
terials. However, it will be possible to change the results 
by increasing the number of criteria, especially consider-
ing other environmental criteria. In this study, most of the 
criteria, which were considered, affects the ozone layer. 
As it is known, there are more factors that affect global 
warming. This is also one of the limitations of this study. 
Therefore, future studies may focus on criteria related to 
other global warming and environmental pollution. They 
can also add financial criteria to the assessment alongside 
more environmental criteria. Thus, they could choose 
materials with a wider perspective. Besides, future stud-
ies can get different ideas by meeting with more experts 
or meeting with experts in different fields (environmental 
engineering and ecological engineering etc.) and transfer 
them to their studies. Additionally, future studies can ob-
tain different studies by using fuzzy extensions of MCDM 
methods.

While decisions done along the construction life-cycle 
have an effect on the environment, material selection done 
in the pre-utilize stage dedicate to the greatest environ-
mental impacts that consists during the utilize stage. To 
mitigate these environmental impacts, using new materi-
als with less environmental impacts be beneficial.
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