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Abstract. Frost resistance in very cold areas is an important engineering issue for the durability of concrete, and the ef-
ficient and accurate prediction of the frost resistance of concrete is a crucial basis for determining reasonable design mix 
proportions. For a quick and accurate prediction of the frost resistance of concrete, a Bayesian optimization (BO)-random 
forest (RF) approach was used to establish a frost resistance prediction model that consists of three phases. A case study of 
a key national engineering project results show that (1) the RF can be used to effectively screen the factors that influence 
concrete frost resistance. (2) R2 of BO-RF for the training set and the test set are 0.967 and 0.959, respectively, which are 
better than those of the other algorithms. (3) Using the test data from the first section of the project for prediction, good 
results are obtained for the second section. The proposed BO-RF hybrid algorithm can accurately and quickly predict the 
frost resistance of concrete, and provide a reference basis for intelligent prediction of concrete durability.
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Introduction 

With continuous economic development, new infrastruc-
ture has become an important aspect of policy and local 
high-quality development in China. Due to its advan-
tages, high-performance concrete is increasingly used in 
many major infrastructure construction projects, such as 
the “Belt and Road Initiative”, the Northeast revitaliza-
tion project, the development of the Guangdong-Hong 
Kong-Macao Greater Bay Area, and the national three-
dimensional comprehensive transportation planning and 
construction initiative (Amran et  al., 2022). Due to the 
continuous construction of major projects, the number 
of special and complex projects, such as projects in cold 
environments and underground environments, which 
include the Zhonghai Heshan Grand View Project, the 
Taishan Station Snow Engineering Construction Project, 
and the Sichuan Tibet Railway, is increasing. Due to the 
particularity and complexity of the environments of these 
projects, the frost resistance of the concrete used must be 
higher than average. Frost resistance is an important in-

dicator of the durability of concrete. Improving the frost 
resistance of concrete is important for ensuring structural 
safety and reducing structural damage. Additionally, using 
the appropriate concrete can reduce the consumption of 
resources and energy and the environmental impact dur-
ing reconstruction or repair.

Concrete has cost and durability advantages compared 
with other construction materials; it is one of the most 
widely used building materials in China (Boukhatem 
et al., 2011). Durability is one of the most important prop-
erties of concrete during its use. However, with the broad 
application of concrete in engineering, the deterioration 
of concrete structures and the damage caused by insuffi-
cient durability have become increasingly prominent (Wu 
et al., 2022b). Given the complex, severe and cold work-
ing conditions and the effects of salt erosion, freezing, and 
melting, the frost resistance of concrete structures changes 
with the ratios of cement, water, aggregates, admixtures 
and other raw materials used. Such conditions greatly 
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impact the safety and service life of concrete structures 
(Yazıcı, 2008). Therefore, accurately and rapidly forecast-
ing the frost resistance of concrete has important applica-
tion value for civil engineering (DeRousseau et al., 2018).

The frost resistance of concrete is related to many 
factors, such as the internal pore structure, bubble con-
tent, water saturation degree, freezing age, and concrete 
strength. Yang et al. (2011) studied the permeability and 
frost resistance of aerated concrete for the Qingdao Bay 
Bridge. The results showed that proper air entrainment 
can greatly improve the frost resistance and impermeabil-
ity of concrete. Chen et  al. (2022) studied the influence 
of different curing conditions and construction methods 
on the frost resistance of concrete surfaces. The results 
showed that the frost resistance of concrete can be im-
proved by curing before the initial stages of freezing and 
salt application to ensure that the concrete is not in a dry 
shrinkage state and to avoid the loss of air through the 
concrete surface caused by surface disruption (Chen et al., 
2022). In addition, internal factors, such as the water bind-
er ratio, cement dosage, admixture, mineral admixture, 
and aggregate content, and external factors also influence 
the frost resistance of concrete. Environmental factors 
indirectly influence frost resistance, while internal fac-
tors are directly related to frost resistance. However, there 
are few studies that use relevant mathematical models to 
comprehensively evaluate the relationship between frost 
resistance and various constituent materials. Scholars have 
studied the relationships among various constituent ma-
terials through experiments, but those studies had certain 
shortcomings, including long study periods and heavy 
workloads (Gao et al., 2021). Emerging machine learning 
technology provides an opportunity to accurately predict 
the performance of concrete. In this paper, a prediction 
model of frost resistance is presented based on the ran-
dom forest (RF) method.

RFs provide good prediction performance and can 
rank the importance of influential factors (Wu et  al., 
2022a). Aulia et al. (2019) used an RF to investigate auto-
matic production history matching in reservoir engineer-
ing and ranked the importance of the input parameters. 
Liu et al. (2021b) used an RF model to rank the impor-
tance of relevant factors in engineering specialty selection. 
Ding et al. (2021) used an RF to rank the importance of 
the characteristic variables of artificial terraces. Marcos-
Pasero et al. (2021) established an RF model to evaluate 
and rank the importance of variables that affect child-
hood obesity. Wei et  al. (2021) used an RF to rank the 
importance of the input features of shale gas production 
and thereby improved the interpretability of the modeling 
results. The importance of factors can be evaluated with 
RFs to control the main influential factors and effectively 
reveal the underlying mechanisms (Zhou et al., 2016).

To obtain more accurate prediction results, a predic-
tion model for concrete frost resistance is proposed based 
on the RF algorithm. The main research questions are as 
follows: (1) How can a complex relationship be established 

between the input and output variables based on an RF 
model? (2) How can the importance of and correlations 
among the factors affecting the mix proportion of the raw 
materials in concrete be evaluated? The RF method is used 
to screen the important factors that affect the frost resis-
tance of concrete, and the dynamic modulus of elasticity 
is used as an index to accurately predict frost resistance. 
The main contributions of this research are as follows: (a) 
An effective and accurate RF prediction model is estab-
lished, providing a solid basis to design the concrete mix 
proportion and achieve frost resistance; (b) The impor-
tance of the variables that influence frost resistance are 
revealed, and the accuracy of the proposed method is veri-
fied through correlation analysis; and (c) The prediction 
performance of the RF is compared with that of a support 
vector machine (SVM) model, a back propagation (BP) 
model, and a gradient boost decision tree (GBDT).

Overall, the structure of the paper is as follows. In the 
third section, basic theoretical knowledge is presented. In 
the fourth section, the execution process for the RF pre-
diction model is introduced. In the fifth section, specific 
cases are analyzed. In the sixth section, a discussion and a 
comparison with the other methods are provided to high-
light the superiority of the proposed method. The seventh 
section summarizes the paper, and future research direc-
tions are identified.

1. Literature review 

1.1. Study of the frost resistance of concrete  
with traditional methods

Researchers mainly use experimental methods, formula-
based analysis approaches and statistical models to explore 
the frost resistance of concrete. Luan et al. (2020) and Wu 
et al. (2022b) found that the addition of mixed recycled 
aggregate and recycled cement enabled recycled con-
crete to resist an increased number of freeze–thaw cycles, 
thereby improving its frost resistance. Yuan et al. (2019) 
experimentally simulated the effects of freeze–thaw cycles 
and a sulfate environment on the durability of recycled 
concrete under the coupled effect of different aggregate 
replacement rates. However, the test method requires con-
siderable human and material resources, and it may nega-
tively influence the environment. Moreover, an insufficient 
number of samples and selection errors can affect the test 
results. Dvorkin (2019) obtained a formula to predict frost 
resistance based on a theoretical analysis of the structural 
parameters of concrete. Smith et al. (2018) used a devel-
oped limit state function to demonstrate how to quanti-
tatively select design variables that limit frost resistance. 
However, this method requires tedious calculations and 
a heavy workload and is characterized by low efficiency. 
Ashraf et al. (2018) developed a probability model to ana-
lyze the freeze–thaw performance of concrete. Keleştemur 
et al. (2014) used statistical methods to study the impact 
of marble dust and glass fiber on cement mortar for dif-
ferent numbers of freeze–thaw cycles. In summary, most 
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scholars have used traditional methods to study the 
changes in and effects of frost resistance. However, due to 
systematic errors, the randomness of measurement data 
and other factors, the level of discreteness of the experi-
mental observation data is high, and traditional methods 
often fail to provide reliable results (Koya et al., 2022). In 
addition, previous probabilistic evaluations and predic-
tions of the frost resistance of concrete mixtures have of-
ten only considered a limited amount of experimental data 
when establishing the “best fit” function. Therefore, the 
use of traditional methods to forecast the frost resistance 
of concrete has some limitations.

1.2. Studies of concrete using artificial intelligence

In recent decades, many machine learning algorithms 
have been applied to predict the compressive strength, 
durability, and service life of concrete, and these methods 
include artificial neural networks (ANNs) (Kewalramani 
& Gupta, 2006) and SVMs (Lakshmanaprabu et al., 2019; 
Liu et  al., 2020). Belalia Douma et  al. (2016) predicted 
the performance of fly ash self-compacting concrete using 
an ANN method. Özcan et al. (2009) used an ANN and 
fuzzy logic to predict the long-term compressive strength 
of silica fume concrete. Nguyen et al. (2021) studied the 
relationships between different input variables and the 
compressive strength of ordinary concrete and high-per-
formance concrete based on an ANN prediction model. 
Azimi-Pour et al. (2020) proposed appropriate linear and 
nonlinear SVM models with different cores to predict the 
compressive strength of self-compacting concrete with a 
high fly ash content. Sonebi et al. (2016) studied the fea-
sibility of using an SVM to predict the freshness of self-
compacting concrete. Cheng and Hoang (2016) proposed 
an adaptive fuzzy least-squares support vector machine 
inference model to predict the compressive strength of 
rubber concrete. These studies showed that models based 
on machine learning algorithms can provide better pre-
diction results than traditional models and that if the 
base predictor variables are correctly selected, the models 
based on integrated algorithms yield the highest accuracy 
(Cai et al., 2020).

The machine learning algorithms currently being used 
are mainly classical methods, such as ANNs and SVMs, 
that can obtain better prediction results than traditional 
methods, although they still have several limitations. For 
example, the structure of ANNs must be determined based 
on experience, and ANNs heavily rely on samples; more-
over, SVMs struggle to support large-scale sample train-
ing, rely heavily on typical samples and are inefficient (Liu 
& Zhang, 2020). Therefore, superior methods are needed 
to predict the frost resistance of concrete. As an emerging 
machine learning ensemble approach, the RF algorithm 
can solve complex nonparametric and nonlinear classifica-
tion problems and reduce the complexity of calculations 
under the premise of improving accuracy. This approach 
requires fewer parameters than traditional methods and 
provides strong generalization ability, strong antioverfit-

ting ability and other advantages (Zhang & Min, 2016). 
Therefore, in recent years, the use of RFs for forecasting 
and ranking the importance of influential factors has be-
come common in many industries (Lundström & Verikas, 
2013). Li et  al. (2020) used an RF model for the crime 
analysis. Chun et al. (2020) used an RF to evaluate the in-
ternal loss of reinforced concrete. On the basis of existing 
concrete data, Nilsen et al. (2019) obtained high-accuracy 
predictions of the coefficient of thermal expansion (CTE) 
and the relative elastic modulus of concrete with an RF. 
Benedet et  al. (2021) used an RF to quickly predict soil 
fertility. Lee et al. (2021) developed an RF model to pre-
dict pediatric mortality within 72 hours of ICU admission. 
Niu et al. (2020) applied an RF to short-term photovoltaic 
power generation forecasting. RFs are superior to many 
other prediction methods, so applying an RF to forecast 
the frost resistance of concrete is worthwhile.

Based on the above literature studies, it can be found 
that concrete durability is a very important indicator. Cur-
rently, experiments and numerical simulation are used in 
more researches, while machine learn-based researches 
are few. Among the prediction models adopted in exist-
ing research, RF has better prediction performance. There-
fore, an RF frost resistance prediction model is developed 
in this paper considering the ratio of raw materials used. 
According to this model, the frost resistance of concrete is 
predicted and analyzed, and the corresponding influential 
factors are ranked based on importance. The prediction 
results are compared with those of three other prediction 
models to verify the reliability of the proposed RF model.

2. Preliminary information

2.1. Bayesian optimization

If appropriate hyperparameters are set, the predefined loss 
function can be simplified, thus improving the predic-
tion or classification accuracy for given independent data 
(Chen et al., 2023b). The search for the best combination 
of hyperparameters requires experienced insight, which 
can be difficult to obtain. Two-hyperparameter optimi-
zation in a prediction model is used as an example. The 
parameter search processes, such as grid searches, random 
searches and Bayesian optimization, are shown in Figure 1.  
The black dots represent unsearched points, the blue dots 
represent searched points, and the red arrows represent 
the search directions. Suppose hyperparameter 1 is associ-
ated with n selectable items and hyperparameter 2 is as-
sociated with m selectable items. Figure 1a shows the grid 
search process. A grid search should traverse all nodes in 
the grid plane, which may require a long training time and 
consume excessive resources. Figure 1b shows the random 
search process. In the random search method, a general 
search range is first determined; then, the points within 
this range are randomly compared, and an upper limit is 
set regarding the number of iterations. If the optimal value 
is found within the set number of iterations, the search 
process is terminated; otherwise, the number of iterations 
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is increased, and the iteration process restarts (Lin & Liu, 
2006). However, this approach can easily be influenced 
by local optimality. Figure 1c shows the search process of 
Bayesian optimization. The Bayesian optimization algo-
rithm searches the superparameter candidates according 
to historical observations to determine the next evaluation 
location to obtain the global optimal solution at the fastest 
speed possible (Jones et al., 1998).

In Bayesian optimization, Bayes’ theorem is used in 
the optimization process (Puga et al., 2015):
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where f represents either the unknown objective function 
(or the parameters in the parametric model), D1;t = {(x1, 
y1), (x2, y2), ..., (xt, yt)} represents the observed set, xt is the 
decision vector, yt = f(xt) + εt is the observed value, εt is 
the observed error, P(D1;t | f) is the likelihood distribution 
of y considering the observation error (this parameter is 
also known as the noise), p(f) represents the prior prob-
ability distribution of f, that is, the assumption regarding 
the state of the unknown objective function, and P(D1;t) is 
the marginal likelihood distribution, or “evidence”, of mar-
ginal f. Since the marginal likelihood is determined from 
the product and integral of probability density functions, 
it is often difficult to obtain an explicit analytical expres-
sion. This marginal likelihood is mainly used to optimize 
hyperparameters in Bayesian optimization. P(f | D1;t) rep-
resents the posterior probability distribution of f .

The Bayesian optimization framework consists of two 
primary parts: the probability in the agent model and the 
acquisition function. The probabilistic proxy model is used 
to replace the unknown objective function. The model be-
gins with the assumed prior function and then modifies 
it by iteratively increasing the amount of information to 
provide the best possible representation of the unknown 
objective function in the proxy model. The sampling func-
tion is constructed according to the posterior probabil-
ity distribution, the next-most-likely evaluation point is 
selected by maximizing the acquisition function, and the 
optimal sample point is finally selected to minimize the 
value of the objective function (Nguyen et al., 2018).

2.2. Regression and prediction  
with the random forest model

RFs use a randomly split feature set to construct decision 
trees based on the bagging algorithm (Q. Wu et al., 2014;  
X. Wu et al., 2023), which is used to randomly replace the 
original dataset and form multiple sample sets. First, based 
on the bagging algorithm, training samples are randomly 
selected, and the original dataset is randomly replaced to 
generate multiple training data subsets. Small sample sizes 
in all categories are used to generate training sets in each 
step, and data are randomly extracted from large samples 
in categories and combined with small samples to form 
training sets. In this way, many training sets and training 
models can be obtained after repeated iterations. There-
fore, the RF algorithm can solve problems related to an 
unbalanced data distribution. The data distribution deter-
mines the accuracy of the model, and the ability of the RF 
model to solve the data imbalance problem ensures rela-
tively accurate predictions. The probability of each sample 
not being extracted is 1(1 )np

n
= −  and unused samples are 

called out-of-bag (OOB) data, which can later be applied 
to calculate the model generalization error (Liu et  al., 
2021a). The RF generalization error can be expressed as

( )( )*
, , 0X YE P M X Y=  .   (2)

The subscripts X and Y indicate that the probability 
of inclusion in the X and Y spaces, respectively. Thirty-
six percent of the samples in the original dataset are 
not included in each new dataset. Then, a decision tree 

( )( ), , 1, 2, 3,i kh x k Kθ = …
 
is established for every sample 

set. As the model is generated, the inner nodes of each 
decision tree are stochastically divided based on certain 
characteristics. Multiple split decision trees form an RF in 
the classification and regression tree (CART) algorithm. 
The trees then output the results. For regression algo-
rithms, the final forecasting result is the average value of 
the output results of all decision trees. The final regression 
result is given in Eqn (3) (Rayal et al., 2017):
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i
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a) Grid search b) Random search c) Bayesian optimization

Figure 1. Hyperparameter searches based on three methods
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where ( )H x  represents the prediction result, k is the num-
ber of decision trees in the RF model, hi is a single deci-
sion tree, and Y is the output variable (target variable).

2.3. Importance evaluation of the random forest

The characteristics of indices can be ranked by using the 
RF model (Wu et al., 2022b). By randomly changing the 
order of the input variables of each decision tree, that is, 
by adding noise or interference, the effect of each input 
variable is evaluated by calculating the OOB mean square 
error. The average error of all decision trees represents the 
importance of the input variables. Compared with other 
methods, this method not only separately considers the 
degree of influence of each variable but also estimates the 
relationships among the other variables. The importance 
of the input variable X is expressed by Eqn (4):
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where MSEj represents the mean squared residual for the 
jth sample and SE represents the standard deviation. The 
larger the value of VIMi is, the greater the influence of 
the characteristic variable on the output. If the relation-
ship between the characteristic variable and the prediction 
target is strong, the forecasting precision of the decision 
tree will decrease after random arrangement. Additionally, 
the stronger the relevance of the variable is, the greater the 
decrease observed.

Once the importance of each feature has been ob-
tained, a reasonable ranking is established; that is, an im-
portant analysis based on the RF is realized. The selection 
of the target seeds is mainly based on the literature, rel-

evant specifications and engineering experience. Based on 
standard concrete structures (GB/T 50476-2019) (People’s 
Republic of China, 2019), a large number of studies and 
practical project experience, 6 factors that influence the 
relative dynamic elastic modulus of concrete are selected.

3. Methodology

The flow chart of our proposed model for RF-based con-
crete frost resistance prediction is depicted in Figure 2. 
The model includes three main steps: establishing a sam-
ple dataset, establishing a prediction model, and evaluat-
ing the model.

3.1. Dataset acquisition

Many factors, such as the type of cement, additives used, 
and water-binder ratio, affect the frost resistance of con-
crete. The relationships among these factors and the 
RDEM are nonlinear and greatly impact the performance 
of concrete (Yaseen et al., 2018). In this paper, the com-
monly used parameters that influence the frost resistance 
of concrete are selected (Łaźniewska-Piekarczyk, 2013). 
The output index is the RDEM, which is used to con-
struct an initial index system. Then, related experiments 
are conducted, data are collected, and these data are used 
to establish an original dataset.

To increase the reliability of the prediction results, a 
primitive sample is generally divided into two parts: a 
training set used to train the model and a test set used 
to test the prediction effect. The primitive sample is ran-
domly and equally assigned to K, and K – 1 is the training 
sample set of the RF model; the other sample set is the test 
sample set of the RF model used to test the prediction ef-
fect of the model.

Figure 2. Flowchart of the frost resistance regression model based on an RF
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3.2. Selection of RF hyperparameters

The setting of the RF parameters directly affects the re-
gression fitting performance of the model. Therefore, 
when using the RF regression algorithm to train samples, 
the important parameters of the model must be set (Chen 
et al., 2023a). The parameters that must be set mainly in-
clude the parameters of the bagging framework and the 
parameters of the CART framework (Ala’raj & Abbod, 
2016). The most important parameter in the RF bagging 
framework is the maximum number of iterations n_esti-
mators. The value of this parameter has a direct impact 
on the prediction performance of the RF model. If this 
number is too small, the fitting performance will be poor, 
and a number that is too large will increase the computing 
cost. The important parameters of the CART algorithm 
include the maximum number of features max_features 
and the maximum depth max_depth, which affect the 
establishment of the decision tree model and thereby af-
fect the regression fitting performance of the model. The 
larger the max_features value is, the more information 
the model can learn, but the algorithm speed will also de-
crease. The max_depth value is related to the complexity 
of the decision tree. After determining the parameters of 
the RF model, training and testing sample sets for the RF 
regression model can be established according to the RF 
algorithm.

3.3. Bayesian optimization of hyperparameters

The values of hyperparameters in the modeling process di-
rectly affect the prediction effect of the model. It is neces-
sary to optimize these hyperparameters. In extreme cases, 
the model relearns all hyperparameters during each itera-
tion based on the present data. Although this method can 
ensure modeling accuracy, the learning of hyperparam-
eters requires a high computational load, and it is often 
inefficient. Thus, Bayesian optimization methods, such 
as the Bayes optimization of hyperparameters (Martinez-
Cantin, 2014), usually involve relearning hyperparameters 
after multiple iterations, such as 100 iterations. The RF hy-
perparameters optimized with the Bayesian method are 
shown in Table 1.

3.4. Validation of the prediction model

The final forecasting outcome is the average value of the 
output results of all decision trees according to Eqn (1). 
To evaluate the prediction performance of the RF regres-

sion model, the prediction accuracy of the RF model is 
comprehensively evaluated in terms of its precision and 
stability, and the commonly used average is selected (Liu 
et al., 2022; Qian et al., 2021). The root mean square error 
(RMSE) and goodness of fit (R2) are the two parameters 
used to assess the accuracy of the prediction results. The 
RMSE is used to describe the bias between the forecasted 
value and the measured value, thereby reflecting the rate 
of divergence of the sample. As the RMSE approaches 0, 
the model deviation decreases, and the precision increases. 
R2 reflects the fitting degree between variables; if the value 
is close to 1, the fit is good, and the interpretability of the 
model is high. R2 reflects the grade of agreement between 
the forecasted value and the real value. These two indica-
tors should be comprehensively considered when evaluat-
ing RF models. Additionally, the prediction results of the 
RF model are compared with the prediction results of an 
SVM model, a BP neural network and a GBDT, and the 
results verify the superiority of the RF model. Equations 
(5) and (6) show the expressions for the RMSE and R2:
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where yobs represents the measured value and ypred repre-
sents the forecasted value for sample i.

4. Case study

4.1. Project context

As one of the important provincial highways in Jilin, 
the Yulin-Changchun Highway is an important national 
construction project. The main line is 208 kilometers in 
length and passes through eight bridges and six tunnels. 
The project is located in an alpine and high-salt-alkali 
area in Northeast China. The area has long winters, re-
ceives little snowfall, and is characterized by cold, dry, and 
relatively harsh geographic and climatic conditions. The 
project environment is shown in Figure 3a. To mitigate 
the issues caused by freeze–thaw cycles and salt-alkali 
corrosion, concrete must provide high frost resistance, 
and many projects now require high-durability concrete. 
The concrete freeze resistance grade is now greater than 
300 (based on the number of freeze-thaw cycles) in most 

Table 1. Search ranges of RF hyperparameters

ML model Hyperparameter Description Search range

RF

n-estimators Number of tree models [1, 800]
max-depth Maximum depth of tree models [1, 15]
min-samples-split Minimum number of samples required to split a node [2, 20]
min-samples-leaf Minimum number of samples required in a leaf [1, 20]
min-impurity-decrease Criterion for node splitting, which results in a decrease in impurity [0, 10]
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projects, and the slump limit is 10–30 mm. To design the 
concrete mix proportion in the early stage of construction, 
a raw material mix proportion test for expressway con-
crete was performed to obtain test data and RDEM data 
samples (where the RDEM is the 300 freeze–thaw cycle 
RDEM) according to the Durability Design Standard for 
Concrete Structures, GB/T 50476-2019 (People’s Republic 
of China, 2019). For C50 concrete and with the proposed 
machine learning algorithm for forecasting concrete frost 
resistance, durability tests of concrete were performed, as 
shown in Figure 3.

4.2. Establishment of a sample data set

Based on a large number of previous studies and a sum-
mary of practical engineering experience (Tumidajski, 
2005), the freeze–thaw mechanism of concrete was ana-
lyzed (Ben Chaabene et al., 2020), and the water-binder 
ratio, cement content, fly ash content, fine aggregate con-
tent, coarse aggregate content and six factors influencing 
the frost resistance of the water reducer were used as input 
variables. A primary indicator system for frost resistance 
was constructed by selecting the RDEM as the independ-
ent variable. Based on an actual project, 100 sets of or-
thogonal test data were obtained, among which 80 sets 
of sample data were used as the training sample set and 
20 sets of data were used as the inspection sample set. 
The training set was used to select the RF parameters and 
build the RF model, and the test set was used to evaluate 
and validate the prediction performance of the model. Ta-
ble 2 shows the detailed sample data. Due to space limita-
tions, details for all the datasets are not provided. The full 
datasets are available upon reasonable request from the 
corresponding authors.

Table 2. Concrete frost resistance data

x1 x2 x3 x4 x5 x6 y

380 48 1106 706 1.1 0.34 95.66

358 45 1190 670 1.3 0.32 94.48

372 47 1174 661 1.3 0.32 94.81

... ... ... ... ... ... ...

408 72 1160 652 1.1 0.33 99.94

435 24 1165 656 1.1 0.31 96.28

406 24 1160 652 1.2 0.33 93.84

377 22 1237 637 1.3 0.3 91.50

4.3. Bayesian optimization of hyperparameters

Based on a theoretical study, the generalizability of the RF 
regression model is directly affected by the RF parameters, 
so important parameters such as max_features, n_estima-
tors, and max_depth, which affect the establishment of the 
decision tree model and the regression fitting ability of the 
model, must be adjusted. Because the number of selected 
training sample characteristics is low, only 6 max_features 
could be automatically set by default, and the goodness 
of fit was used as the performance evaluation index. The 
range of n_estimators was set to 1~100, and the step size 
was 10. Max_depth was set to 5~8 according to the sam-
ple size, the step distance was 1, and the two parameters 
were cross-combined and modeled. The parameters of RF 
model were optimized by BO method and 5-fold cross-
validation method. The optimization result is shown in 
Figure 4. After calculations, the values of n_estimators and 
max_depth that minimized the error of the frost resist-
ance prediction model were max_depth = 5 and n_estima-
tors = 54, with R2 = 0.9674.Figure 3. Concrete durability test

a) Expressway project

b) Test block of concrete

c) Dynamic elastic modulus test of concrete



Journal of Civil Engineering and Management, 2023, 29(6): 516–529 523

4.4. Evaluation of the regression prediction results

Based on the Bayesian optimization of hyperparameters, 
the regression test results were obtained by modeling the 
training samples and test samples. Figure 5a and Figure 
5b show the regression fitting curve of the training sam-
ple set and the prediction result of regression fitting with 
the test sample set, respectively. The following results were 
obtained.

(1) The discrepancy between the forecasted and actual 
values of the RDEM predicted with the BO-RF model is 
small. The RMSE between the real and predicted values 
for the RDEM for the training set is 0.04504, and the 
RMSE for the test set is 0.09578. The closer the RMSE is 
to 0, the higher the prediction precision of the model is.  
(2) The BO-RF prediction model displays a good fitting 
effect. The goodness of fit R2 of the actual and predicted 
values of the RDEM for the training set is 0.9674, and the 
goodness of fit R² for the test set is 0.9592. The closer R² 
is to 1, the better the fitting effect of the model is. (3) The 
predictive performance of the BO-RF model is good. Sim-
ilar to the conclusions of this study, Abou Elassad et  al. 
(2020) used an RF model to accurately predict the shear 

strength of reinforced concrete beams. Mai et al. (2021) 
used a BO-RF model to determine the best compressive 
strength of concrete containing ground granulated blast 
furnace slag (GGBFS). Studies have shown that the BO-
RF output is an excellent predictor that can improve the 
prediction accuracy of subsequent models.

5. Discussion

5.1. Importance evaluation and correlation analysis

(1) Importance evaluation
The significance of influential factors on the RDEM 

can be confirmed by importance evaluation. The impor-
tance score of each influential factor in the training set 
was calculated, the RF package in R software was used 
for the computation, and a significance ranking of every 
variable in the training model was obtained, as shown in 
Figure 6.

The water-binder ratio and the amount of cement have 
the greatest influence on the frost resistance. If the im-
portance score is high, the effect of the variable on the 
evaluation indicator is correspondingly high, as is the im-
portance of the variable. As shown in Figure 6, the im-
portance ranking is as follows: water-binder ratio, cement 
content, fine aggregate content, coarse aggregate content, 
water reducer content and fly ash dosage. Similar to this 
conclusion, Ke and Duan (2021) found that the water-
binder ratio has an important influence on the perfor-
mance of high-performance concrete. Yang et al. (2012) 
showed that the water-binder ratio is a key factor affecting 
the compressive strength of concrete. Therefore, in actual 
projects, to ensure frost resistance, attention should be 
given to controlling the amounts of the most important 
raw materials mixed into concrete.

(2) Correlation analysis
The Pearson correlation coefficient (PCC) was used 

to analyze the linear relationships between various mix 
proportion factors and frost resistance. The PCC is the 

 Figure 4. Selection of the number of decision trees

Figure 5. Prediction results

a) Fitting results for training samples  b) Fitting results for test samples
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product of the mean difference and the mean difference 
sum of squares between two variables, so it is also called 
the correlation coefficient of product differences. The for-
mula for the overall PCC is expressed as follows (Nápoles 
et al., 2020):

( ) ( )( )cov , X Y

X Y X Y

X Y E X Y
p

−m −m
= =

s s s s
,
 
  (7)

where cov(X, Y) represents the covariance of quantities X 
and Y, mX and mY represent the average values of variables 
X and Y, and sX and sY are the deviations of variables X 
and Y, respectively.

The Pearson function can be used to analyze the corre-
lations between influential factors and frost resistance. The 
stronger the factor correlation is, the greater the degree of 
influence. Figure 7 shows the PCCs between the calculated 
characteristic variables and frost resistance and a correla-
tion graph of the results obtained with R software. The 
range of PCCs is from –1 to 1. Blue represents a positive 
correlation between two variables, and red represents a 
negative correlation. The darker the color of the square is 
and the larger the size is, the greater the absolute value of 
the PCCs between the two variables is, and the higher the 
correlation. The opposite is true for weaker correlations.

Figure 7 shows that (1) the results of the correlation 
analysis are roughly the same as the importance ranking 
results obtained with the RF algorithm. The water-binder 
ratio is the most important factor, and its correlation with 
the relative elastic modulus is significantly higher than 
that of the other factors. This verifies the accuracy of the 
RF algorithm. (2) Reducing the water-binder ratio and 
increasing the amount of cement can improve the frost 
resistance of concrete. Figure 7 shows that the correla-
tion coefficients between the water-binder ratio and the 
cement dosage and the relative elastic modulus are –53% 
and 49%, respectively, indicating that the relative elas-
tic modulus of concrete is negatively correlated with the 
water-binder ratio and positively correlated with the ce-
ment dosage. Therefore, in actual projects, priority can be 
given to reducing the water-binder ratio and increasing 
the amount of cement to improve the frost resistance of 
concrete. (3) The correlations between the input param-
eters are weak, and no coupling phenomenon exists. The 
correlation coefficient among the six parameters in Fig-
ure 7 is low, indicating no obvious coupling phenomenon 
among the parameters that would affect the reliability of 
the prediction results.

5.2. Prediction accuracy analysis

To further verify the credibility of the RF, BO-RF, SVM, 
BO-SVM, BP, BO-BP, GBDT and BO-GBDT models were 
used to forecast the frost resistance of concrete. Overall, 
the forecasting results were similar to those obtained with 
the RF model. For comparative analysis, the RMSE and 
certainty coefficient were chosen to assess the prediction 
abilities of the models. Comparisons of the prediction per-
formance of the various models are shown in Table 3 and 
Figure 8.

Table 3 and Figure 8 show that (1) the RMSE of the 
BO-RF prediction model is the lowest and the closest to 0 
among those of all models. For the training set, the RMSE 
of the BO-RF model is 0.045. For the test set, the RMSE 
of the BO-RF model is only 0.096, which is significantly 
lower than the values obtained for the other models. The 
results of the BO-RF prediction model are the closest to 
the actual values, and the prediction accuracy is the high-
est. (2) The R² value of the BO-RF model is the largest and 
closest to 1. For the training set and test set, the R² values 
of the BO-RF prediction model are 0.967 and 0.959, which 
are higher than those of the other three models, indicat-
ing that the BO-RF model yields the highest degree of fit 
to the data and the best prediction effect. (3) The BO-RF 
algorithm displays stronger adaptability than other mod-
els and is superior in forecasting concrete frost resistance. 
This conclusion has been verified by other scholars. For 
instance, by comparing the prediction performance of five 
machine learning algorithms, Yan and Shen (2022) found 
that the prediction precision of the BO-RF model was bet-
ter than that of other algorithms.

Figure 6. Importance scores for influential factors

Figure 7. Correlation results
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To further verify the advantages of BO optimization, 
the GS, RS and BO methods were selected to combine 
with the RF algorithm in this study. The corresponding 
prediction performance results obtained for the test set 
are shown in Table 4 and Figure 9.

Three hyperparameter optimization methods, RS, GR 
and BO, are used with the RF prediction model, and the 
BO-RF model displays the best prediction performance 
for the training set and the test set. The goodness-of-fit 
values are 0.967 and 0.959, respectively, which are bet-
ter than those of the other algorithms. Additionally, the 
RMSE and MAE of the proposed algorithm are lower than 
those of other algorithms for concrete performance and 
cost. Thus, in terms of model hyperparameter optimiza-
tion, the BO-RF algorithm yields the best prediction ef-
fect, indicating that BO provides excellent hyperparameter 
optimization ability.

The results are consistent with the conclusion of Liang 
(2019), who found that a hyperparameter optimization 

method based on Bayesian optimization performed well 
(Liang, 2019; Yang & Shami, 2020). Bayesian optimiza-
tion was also noted by Y. Xia to be an excellent hyper-
parameter optimization approach that can be applied in 
the engineering field. In specific performance scenarios, 

Table 3. Comparison of the prediction performance of the eight algorithms

Model
RMSE R2

Training set Test set Training set Test set
BO-RF 0.045 0.096 0.967 0.959
RF 0.069 0.120 0.901 0.896
BO-GBDT 0.057 0.125 0.932 0.910
GBDT 0.098 0.156 0.891 0.821
BO-SVM 0.390 0.422 0.880 0.842
SVM 0.421 0.562 0.821 0.819
BO-BP 0.470 0.457 0.851 0.806
BP 0.791 0.812 0.801 0.801

a) Comparison between the RMSE values predicted  
    by the eight models

b) Comparison between the R2 values predicted  
    by the eight models

Figure 8. Comparison of the prediction performance of the eight algorithms

Table 4. Comparison of the prediction performance of the three optimization algorithms

Model
RMSE R2

Training set Test set Training set Test set
RS-RF 0.061 0.118 0.911 0.906
GS-RF 0.059 0.110 0.921 0.921
BO-RF 0.045 0.096 0.967 0.959

Figure 9. Comparison of the prediction performance of the 
three optimization algorithms

https://www.sciencedirect.com/topics/engineering/random-search-method
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the prediction accuracy of BO models is higher than that 
of other hyperparameter optimization methods (Xia et al., 
2017). Therefore, BO is the best choice for optimizing the 
hyperparameters of the model in this paper.

The set of mix proportions that yielded the largest 
RDEM (99.94%) in Table 2 was applied to the second 
section of the project, and experimental verification was 
performed. After 300 dynamic melting cycles, the RDEM 
was 99.84%, the deviation was only 0.1%, and the concrete 
design and application were effective.

The results of the above study indicate that the estab-
lished BO-RF prediction model yields the best prediction 
effect among all studied models.

Conclusions

In complex and extreme environments, the frost resistance 
requirements of concrete are very high. To study the im-
portance of relevant factors and accurately and efficiently 
predict the frost resistance of concrete, an intelligent pre-
diction model based on the RF algorithm is proposed, six 
factors that have the greatest impact on frost resistance 
are selected, and the dynamic elastic modulus is used as 
the evaluation index. With a key national project as an 
example, the effectiveness of the method is verified. The 
main conclusions of this study are as follows.

(1) The proposed RF model can be used to effectively 
screen the factors that influence concrete frost resistance. 
The results show that the most important variable is the 
water-binder ratio, followed by the amounts of cement, 
fine aggregate, coarse aggregate, water reducing agent and 
fly ash. This conclusion is consistent with the specification 
requirements in actual applications.

(2) BO provides excellent model hyperparameter op-
timization ability. Notably, BO is used to optimize the 
hyperparameters of the RF prediction model, and the R2 
values of the BO-RF model for the training set and the test 
set are 0.967 and 0.959, respectively, which are better than 
those of the other algorithms.

(3) The proposed BO-RF hybrid algorithm can accu-
rately and quickly predict the frost resistance of concrete. 
Using the test data from the first section of the project 
for prediction, the R2 values are between 0.959 and 0.967, 
and the MAEs are between 0.045 and 0.096. Additionally, 
good results are obtained in an application involving the 
second section. Thus, the proposed approach can reduce 
the requirements of engineering tests in similar cases and 
save time and effort.

The frost resistance of concrete in the project is good, 
and the algorithm displays good potential application 
value for engineering projects. In addition, the model can 
be applied to a wide range of concrete research projects 
(such as those involving concrete strength, the concrete 
mix proportion and other factors). However, the study 
has some limitations. The common principles affecting 
the frost resistance of concrete are selected based on the 
concrete material mix proportion. In fact, concrete cur-
ing measures, climate and environmental all have a certain 

impact on the frost resistance of concrete. Additionally, in 
this study, the RF algorithm was adopted to establish the 
prediction model of concrete frost resistance, improve the 
durability of concrete, optimize the concrete mix design, 
and preliminarily explore the cross-integration of comput-
er and material disciplines. However, other performance 
indicators that influence the application of concrete, such 
as strength and resistance to chloride ion permeability, 
must be further analyzed. 
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APPENDIX
Abbreviation

RF Random forest
RDEM Relative dynamic elastic modulus
SVM Support vector machine
BP Back propagation
GBDT Gradient boosting decision tree
ANN Artificial neural network
CTE Coefficient of thermal expansion
OBB Out-of-bag data
CART Classification and regression tree
GGBFS Ground granulated blast furnace slag
PCCs Pearson correlation coefficient

Nomenclature
p Out-of-bag data
n The number of samples
E* The generalization error of the RF model
PX,Y The probability for the X and Y spaces

1(1 )np
n

= − The prediction result

Hi A single decision tree
Y The output variable
K The number of decision trees in the RF model
MSEj The mean square residual of the j-th sample
SE The standard error
VIMi The variable importance of input variables
K The quantity of original data
RMSE The root mean square error
R2 The goodness of fit
yobs The observed value of sample i
ypred The predicted value of sample i

Cov(X, Y) The covariance of the quantity X and the 
quantity Y

mX The average value of the variable X
mY The average value of the variable Y
sX The deviations of the variable X
sY The deviation of the variable Y
x1 The cement content
x2 The fly ash dosage
x3 Coarse aggregate
x4 Fine aggregate
x5 Water reducer
x6 The water-binder ratio
Y The relative dynamic elastic modulus


