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Abstract. Construction industry workers; are exposed to serious safety and health risks, hazardous work environments, 
and intense physical work. This situation causes fatal and non-fatal accidents, reduces productivity, and causes a loss of 
money and time. Construction safety management can use wearable sensors to improve safety performance. Since there 
are many types of sensors and not all sensors can be used in construction applications, it is necessary to identify suitable 
and reliable sensors. This requirement causes a sensor selection problem. The study aims to determine the priority order 
of physiological and kinematic sensors in preventing risks in the construction industry. Within the scope of this purpose, 
five criteria and seven alternatives were determined in line with the literature research and expert opinions. The criteria 
weights were calculated with the AHP method, and the alternatives were ranked with PROMETHEE and AHP. Providing a 
proactive approach to the use of sensors in the construction industry will provide safer working conditions, identify work-
ers at risk, and help identify and predict potential health and safety risks. It will contribute to the literature on improving 
construction health and safety management.
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Introduction

In the construction sector, which is considered a labor-
intensive and dangerous occupation, the number of oc-
cupational injuries that cause loss of life or not is higher 
than in other sectors (International Labour Organization, 
n.d.). As it has been for years in Turkey, the most acciden-
tal deaths occurred in the construction sector in 2019. The 
number of workers who lost their lives in the work acci-
dent of 47,701 insured was 368 (Gözüak & Ceylan, 2021). 
Researchers and practitioners must combat the threat 
of occupational injury by focusing on identifying safety 
hazards and recommending proactive injury measures 
(Antwi-Afari et  al., 2020). In the construction industry, 
employee fatigue, excessive physiological demands, and 
errors caused by physically demanding tasks can lead to 
potential risks such as injuries or accidents and a decrease 
in productivity in the long run (Gatti et al., 2014).

Workers can take precautions against hazards and ris-
ks by wearing appropriate personal protective equipment 
(PPE) (Kritzler et al., 2015). Many researchers have sug-
gested using wearable sensor-based systems in the field of 

construction health and safety (Awolusi et al., 2018; Ahn 
et al., 2019; Häikiö et al., 2020). Various applications in 
the field of safety and health; include prevention of mus-
culoskeletal disorders, prevention of falls, assessment of 
hazard recognition abilities, fatigue monitoring, and men-
tal and physical workload assessment (Ahn et al., 2019). 
The foundation of construction project success, which 
deals with the complex interaction between humans, ma-
chines, and the surrounding environments, provides safe 
and healthy working conditions (Sato & Coury, 2009). 
Wearable devices can record real-time information that a 
person monitors about their movement activities and phy-
siological state. Wearable sensor-based health monitoring 
systems can include flexible sensors that can be attached 
directly to the human body or different types of sensors 
that can be integrated into elastic bands, clothing, and tex-
tile fibers. Safety in the workplace is another area where 
wearable sensors and smart fabrics can play an essential 
precautionary role. Various risk situations through these 
systems, for example; it is possible to manage accidental 
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falls, wrong posture, handling of loads with the wrong 
hand, and monitor fatigue levels as well as the worker’s 
stress (Majumder et al., 2017). 

In construction activity classification for construction 
workers, it is essential to identify a reliable and suitable 
sensor that aids in developing health and safety monito-
ring systems (Bangaru et al., 2020). In this study, the prob-
lem of prioritizing the kinematic and physiological sensors 
to prevent risks in construction is discussed in Turkey. The 
weights of the criteria; are prevention of falls, prevention 
of musculoskeletal disorders, evaluation of physical work-
load and fatigue, evaluation of hazard recognition abilities, 
and monitoring of the mental status of employees. Alter-
natives are listed as IMU, EMG, PPG, EDA, Eye Tracker, 
EKG, and EEG in both AHP and PROMETHEE methods.

As a result of the literature review, we have not en-
countered a study with the integration of AHP and PRO-
METHEE methods by addressing the ranking problem 
of the sensors in the construction sector to the best of 
our knowledge. The fact that it will be included in the 
first studies is essential in terms of contribution to the li-
terature. Sensor selection is vital in construction, where 
labor-intensive production has more fatal and non-fatal 
accidents than in other industries. By determining the cri-
teria weights of the most critical risks encountered in the 
sector, sensor selection is made. A proactive approach is 
presented. It will be helpful to identify the employees at 
risk, identify and predict potential health and safety risks, 
and close a significant gap in the literature on creating safe 
working conditions.

This article is organized as follows: The relevant scien-
tific literature is included in Section 1, following the intro-
duction. In Section 2, the methods used in the study and 
their steps are introduced. In Section 3, the modeling of 
the AHP and PROMETHEE methods used in the study 
is included, and an application has been made. The final 
section includes the results of the study and suggestions 
for future work.

1. Scientific literature review

Abdelhamid and Everett (2002) presented a comprehen-
sive assessment of absolute physiological demands in 
construction work based on standardized work intensity 
tables to protect the safety and health of the workforce, 
increase productivity, and accept physiological limits to 
prevent long-term physical fatigue. Chang et  al. (2009) 
how construction workers manifest the extent of physi-
ological strain in different tasks before and after shifts at 
a high-rise construction site. They investigated steel fas-
teners, scaffolders, concrete workers, mold makers, elec-
trician-plumbers, and various workers by making some 
physiological measurements, using demographic data and 
determining subjective fatigue symptoms. Wu et al. (2010) 
investigated the performance and feasibility of the sensor 
network by meeting, verifying, and analyzing the autono-
mous information requirement of accidents using a Zig-
bee RFID sensor network to prevent possible near-misses 

at construction sites. Kim & Nussbaum (2013) investigat-
ed the ability of a commercially available inertial motion 
capture (IMC) system to quantify exposures during five 
simulated manual material handling to reduce the number 
of physical exposures in the workplace over the long term. 
In their study, Khusainov et al. (2013) presented a holistic 
expression of the literature on sensor-based monitoring 
of daily activities and mobility as four main axes, applica-
tions, sensor types, and tracking device framework. Re-
search gaps in the distribution of available studies by sen-
sor types and applications, data collection, processing, and 
analysis, are identified as limitations and difficulties. They 
aim to prioritize future research directions by systemati-
cally presenting the literature study in the field wholly and 
systematically, facilitating the identification of research 
gaps. They aim to prioritize future research directions by 
systematically presenting the literature study in the field 
wholly and systematically, facilitating the identification of 
research gaps.

Yang et al. (2016) aimed to develop a method that au-
tomatically detects and documents near-misses based on 
the kinematic data of an employee obtained from Wea-
rable Inertial Measurement Units (WIMU). Hwang et al. 
(2016) investigated the suitability of a PPG (Photoplethys-
mography; PPG) sensor embedded in a wristband tracker 
for construction use. Lee et al. (2017) aimed to monitor 
the usability and reliability of wearable sensors in the on-
duty and off-duty activities of roofing workers. Majumder 
et  al. (2017) presented a low-cost, non-invasive activity 
monitoring and health system. Maman et  al. (2017) ai-
med to develop a task-independent, data-driven method 
through inexpensive wearable sensors that could be used 
to model physical fatigue. Nath et al. (2017) presented a 
low-cost, ubiquitous approach that uses built-in smartp-
hone sensors to autonomously identify potential work-re-
lated ergonomic risks and discreetly monitor employee 
body postures.

Schal et al. (2018) investigated the potential benefits of 
using wearable sensors used by Occupational Health and 
Safety (OHS) specialists, especially personal activity mo-
nitors, in the workplace and the perceptions that hinder 
their adoption. Mardonova and Choi (2018) examined the 
classification of wearable devices and the characteristics 
of the sensors that can be attached to them. Cheung et al. 
(2018) aimed to improve the safety management of hazar-
dous gas by integrating Building Information Modeling 
(BIM) and Wireless Sensor Network (WSN) technologies 
at an underground construction site. Awolusi et al. (2018) 
reviewed various applications of wearable technology for 
personalized trending and construction safety monitoring. 
Hwang et al. (2018) investigated the feasibility of measu-
ring the emotions of field workers using a wearable EEG 
(electroencephalogram; EEG) sensor. Jebelli et al. (2018) 
proposed using a ready-to-use wristband-type wearable 
sensor to obtain the physiological signals of construction 
workers to assess their physical and mental state. In their 
study, they investigated the distinguishing power of three 
biosignals: skin temperature (ST), photoplethysmogram 



Journal of Civil Engineering and Management, 2023, 29(7): 577–586 579

(PPG), and electrodermal (EDA), in detecting the phy-
sical and mental states of workers while working on the 
construction site. Their results confirmed the applicability 
of the wristband-type wearable sensor to assess the mental 
and physical condition of construction workers.

Ahn et al. (2019) examined wearable applications in 
construction health and safety. Bangaru et al. (2020) eva-
luated the data quality and reliability of the inertial mea-
surement unit IMU (Inertial Measurement Unit; IMU) of 
the armband and forearm EMG (EMG) sensors for cons-
truction efficiency classification. Antwi-Afari et al. (2020) 
proposed a non-invasive approach to identify safety ha-
zards among construction workers to examine the feasi-
bility of using workers’ gait interruption models. Bangaru 
et al. (2021) proposed an automatic construction worker 
activity recognition method based on an Artificial Neural 
Network (ANN) that can recognize complex constructi-
on activities. Marra et  al. (2021) proposed an innovati-
ve technique to demonstrate the feasibility of producing 
sensor fabrics. The strain sensor they made was found to 
engage in monitoring heart and respiratory rates. Stefana 
et al. (2021) investigated the wearable devices recommen-
ded for ergonomic purposes in the scientific literature 
and analyzed how they could support the improvement 
of ergonomic conditions. Antwi-Afari et al. (2022) aimed 
to automatically recognize and classify different types of 
inappropriate working postures in construction using 
deep learning-based networks and wearable insole sensor 
data. The study’s findings revealed that it improves the he-
alth and safety of construction workers. Lee et al. (2022) 
developed a model to assess workers’ exposure to slip, trip, 
and fall hazards by predicting abnormal gait patterns from 
a series of steps from a waist-mounted IMU sensor.

As a result of the literature review, we have not found 
a study in which the MCDM was applied, and the sensors 
were sorted to the best of our knowledge.

2. Materials and methods

In the study, which deals with the selection problem of 
kinematic and physiological sensors, alternatives and cri-
teria were determined according to expert opinion and 
literature review. The criterion weights were made from 
MCDM with AHP, and the ranking of the alternatives was 
determined by AHP and PROMETHEE methods.

2.1. AHP method

It is concerned with information gathering, evaluation, 
decision making, and exchanges to analyze complex prob-
lems at all levels of an organization. Often these decisions 
are made through individual or collective judgment after 
weighing the advantages and disadvantages of policy op-
tions under conditions of uncertainty and risk (Saaty & 
Niemira, 2001). In the 1980s, Saaty developed AHP, one of 
the MCDM methods. AHP, a systematic decision-making 
method, includes qualitative and quantitative techniques. 
It helps obtain a single evaluation value based on differ-
ent criteria or indicators. It simplifies the decision-making 
process by dividing a complex problem, where each ele-
ment must be independent of the others, into a series of 
structural stages in the hierarchy of criteria (Saaty, 1980).

Decision-making is a process that includes the fol-
lowing steps (Saaty, 1990, 1994, 2008; Saaty & Niemira, 
2001).

(1) Structuring the problem with a model that shows 
the essential elements of the problem and their re-
lationships
A decision hierarchy is a structuring of goals from a 

broad perspective, by structuring above with the goal of 
the decision, then through the middle levels (criteria on 
which the next items depend) to the lowest level (usual-
ly a set of alternatives). Figure 1 shows the hierarchical 
structure.

(2) Creating a pairwise comparison matrix

In AHP calculations, pairwise comparisons are made 
between the decision elements in each component in ter-
ms of their importance according to the control criteria. 
The components are also compared in pairs for their cont-
ribution to the goal. Relative importance values are evalua-
ted using the preference scale listed from 1 to 9 in Table 1.  

Figure 1. A hierarchy with interdependence  
(Saaty & Vargas, 1998)

Table 1. Significance scale values and definitions (Saaty, 2008)

Importance Level Definition Description
1 Equally important Both options are equally important
3 Moderately important Experience and judgment make one criterion slightly superior to the other
5 Strongly important Experience and judgment favor one criterion over the other
7 Demonstrated dominance One criterion is considered superior to the other
9 Extreme dominance Evidence showing that one criterion is superior to another has great credibility

2, 4, 6, 8 Intermediate values Values between two consecutive judgments to be used when reconciliation is 
needed

Goal

Criteria  

Alternatives
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In the AHP method, the consistency ratio should be less 
than 0.10. If the value found is more significant than 0.1, 
the binary comparison matrix should be rechecked, and 
the steps should be repeated after the corrections are 
made.

(3) Determination of weights and ranking of alterna-
tives
With the principle of hierarchical structure, the al-

ternatives at the lowest level are ranked according to the 
general purpose of the highest level by obtaining their 
available weights.

2.2. PROMETHEE method

One of the MCDM methods is the PROMETHEE method. 
Jean Pierre Brans developed it in 1982. The partial ranking 
of the alternatives is presented with PROMETHEE I, while 
the full ranking is presented with PROMETHEE II (Brans 
& Mareschal, 2005). Advantages of this method over oth-
ers; include the ability to determine qualitative quantities, 
the amounts of data that can be processed, configuring the 
problem, presentation on the GAIA plane, and good soft-
ware support (Stefanović et al., 2019). The PROMETHEE 
method, which has been used for decades, continues to 
be renewed, and its ease of use has made it a standard 
method (Velasquez & Hester, 2013). 

The method consists of five steps (Brans & Vincke, 
1986):

1. The set of alternatives, the value of the alternative 
for each criterion, and the relative weight of each of 
the criteria are determined.

2. Based on criteria, the appropriate one of the stand-
ard preference functions are determined for the 
pairs of alternatives.

3. Preference indices are determined for each pair of 
alternatives.

4. Partial ranking is determined by PROMETHEE 
I, and positive and negative advantages are deter-
mined for alternatives.

5. PROMETHEE II determines the exact ranking for 
alternatives. The net advantage values and a full 
ranking for all alternatives are made by performing 
a total ranking for each of the alternatives.

3. Application

In the study in which the selection problem of kinematic 
and physiological sensors is discussed, the methodology 
of the problem is given in Figure 2.

3.1. Problem definition

Construction projects; exposes workers to intense physi-
cal exertion, hazardous work environments, and serious 
safety and health risks. These risks cause an increase in the 
number of fatal and non-fatal accidents, paralyzing safety 
(Ahn et al., 2019). Poor occupational health and injuries 
caused by inadequate working conditions also affect the 

country’s economy and the welfare of the working popula-
tion (Valero et al., 2017). Ensuring high job security for 
employees is a top priority for employers (Bangaru et al., 
2021). Within this priority, it is important to take proac-
tive measures by preventing potential risks such as fatigue, 
injury, or accident for workers in the construction sector, 
which is a labor-intensive industry.

The construction workforce is exposed to life-threa-
tening and non-life-related injuries due to the lack of ap-
propriate safety training and monitoring systems. Various 
researchers have stated that wearable sensor-based sys-
tems would be suitable for use in construction health and 
safety to cope with the existing challenges (Hwang et al., 
2018). Determining the priority order of physiological and 
kinematic sensors, which are among the sensor types, in 
preventing risks in construction has been considered a 
problem. Alternatives and criteria were determined in 
line with expert opinions and literature review. Calcula-
ting the criterion weights was done by the AHP method, 
and the ranking of the alternatives was made by the AHP 
and PROMETHEE methods.

3.2. Determination of criteria

According to the literature and expert opinion, the cri-
teria in the prevention and evaluation of risks of sensors 
used in construction safety and health; are preventing 
falls, evaluating physical workload and fatigue, preventing 
musculoskeletal disorders (improper posture, repetition, 
vibration, etc.), monitoring of the mental status of em-
ployees, evaluation of hazard recognition abilities (Schall 
et al., 2018; Awolusi et al., 2018; Jebelli et al., 2018; Ahn 
et al., 2019).

Figure 2. Flow chart of the problem
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3.3. Identifying alternatives

In the study, in which the kinematic and physical sensors 
used to prevent risks in construction are considered as 
the selection problem, Inertial Measurement Unit (IMU), 
electrocardiogram (ECG), photoplethysmogram (PPG), 
electrodermal activity (EDA), eye tracking, which is 
widely used especially in construction safety and health, 
electromyography (EMG), electroencephalogram (EEG) 
alternatively according to the literature (Hwang et  al., 
2016; Majumder et al., 2017; Awolusi et al., 2018; Mardo-
nova & Choi, 2018; Ahn et al., 2019; Bangaru et al., 2021) 
determined.

Inertial Measurement Unit (IMU) Sensor:  IMU is 
widely used in the construction industry as a wearable 
sensor to measure the kinematic motion of objects, inc-
luding construction workers, equipment, and tools (Ban-
garu et  al., 2021). IMU sensors are worn on employees’ 
bodies; they are used to determine workers’ body posture, 
acceleration, and orientation (Kim & Nussbaum, 2013).
The application of IMUs to monitor human movement 
is becoming popular as part of the ergonomic evaluation 
that does not significantly disrupt employees’ work perfor-
mance (Stefana et al., 2021). Gait analysis has been used to 
assess fall risk in construction environments. Given that 
trips, falls, and slips can be caused by poor interactions 
between the ground and the foot surface, monitoring a 
worker’s foot movement during successive walks provides 
information on the impact of internal (e.g., fatigue) and 
extrinsic (e.g., job site hazard) factors. On a worker’s fall 
risks, IMUs placed at waist level or the lower body provi-
ded gait parameters (e.g., distance, stride duration) or gait 
stability metrics to capture disruptions in a worker’s gait 
pattern (Ahn et al., 2019).

Photoplethysmography (PPG) Sensor: A PPG sen-
sor is used for heart rate monitoring, which consists of 
light-emitting diodes (LEDs) based on spectrographic te-
chnology and a photodetector for optical detection of blo-

od flow rate caused by heart activity (Hwang et al., 2016).
Electromyography (EMG) Sensor: It captures muscle 

load used for ergonomic evaluation and muscle activity 
used to evaluate forces (Nimbarte et al., 2010).

Electrocardiogram (ECG) Sensor: Cardiac activity 
measurement facilitates the determination of the physi-
ological status of workers. Measurements of heart rate 
variability, heart rate variability, and heart rate reserve 
derived from heart rate are vital in determining emplo-
yees’ physical and mental state (Hwang et al., 2016; Jebelli 
et al., 2018).

Electroencephalogram (EEG) Sensors: It is used to 
assess the mental state of workers in the workplace and 
the effectiveness of training programs (Jebelli et al., 2019).

Electrodermal Activity (EDA): EDA has been widely 
used in security research to measure perceived risk beca-
use activities in the sympathetic nervous system stimulate 
perceived risk (Herrero-Fernández, 2016; Schmidt-Daffy 
2013).

Eye Tracking: Using eye-tracking to measure eye mo-
vements and positions relative to the participant’s head 
helps evaluate hazard recognition skills and construction 
safety training (Hasanzadeh et al., 2017).

3.4. Ranking the alternatives by finding  
the criterion weights with AHP

The AHP method was used in the study in which five crite-
ria and seven alternatives were determined. Super Decision 
V.2.6.0-RC1 program was used in AHP calculations. The 
display of the hierarchical structure is given in Figure 3.

Pairwise comparisons were made with the group deci-
sion of 7 expert decision-makers, consisting of a class A 
occupational safety specialist, an academician in the field 
of occupational health and safety, and five academicians 
working in the field of occupational health and safety ex-
pert decision-makers were asked to respond to pairwise 
comparisons according to Saaty’s 1–9 scale in Table 1.  

Figure 3. Hierarchical structure of the decision problem
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In all paired comparisons created, the condition that the 
consistency ratio is less than 0.1 was met. An example 
comparison from the pairwise comparisons made in Fig-
ure 4 is given.

In Figure 5, the weights of the criteria obtained by the 
AHP method using the Super Decision Program and the 
ranking of the alternatives are given.

3.5. Ranking of alternatives with  
the PROMETHEE method

In our study, EMG, IMU, EDA, ECG, Eye Tracker, PPG, 
and EEG will be determined as alternatives and ranked 

by the PROMETHEE method. The criteria weights ob-
tained by the AHP method were entered into the Visual 
PROMETHEE Academic Version Program. Table 2 con-
tains the preference functions for problem-solving (Brans 
& Mareschal, 2005). In our study, the First Type (Ordi-
nary) Function, one of the preference functions, was used. 
While PROMETHEE Data Entry is presented in Figure 6, 
the alternatives are listed in Figure 7.

With the PROMETHEE Method in Figure 7, which 
is the result of the solution, phi+ positive superiority val-
ues, phi- negative superiority values, and the difference 
of positive and negative superiority values in the rank-
ing of the alternatives show the phi net priority value.  

Figure 5. Criterion weights and ranking of alternatives Figure 6. PROMETHEE data entry

Figure 4. Pairwise comparison
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Table 2. Preference functions (Brans & Mareschal, 2005)
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Alternatives are ranked according to their net priority val-
ues. Ranking by positive superiority was ranked as IMU, 
EMG, Eye tracker, PPG and EDA, ECG, and EEG. Accord-
ing to negative superiority, ECG and EEG, Eye tracker, 
PPG and EDA, EMG, and IMU are ranked. The final rank-
ing is obtained with the net priority value. In this order, 
the alternatives are; IMU, EMG, PPG, and EDA are listed 
as Eye tracker, ECG, and EEG.

Conclusions

This study discusses the problem of determining the 
priority order of physiological and kinematic sensors in 
preventing risks to construction safety and health. Five 
criteria and seven alternatives were identified. AHP and 
PROMETHEE methods were used to solve the prob-
lem. The weights of the criteria obtained following the 
expert opinion with the AHP method; prevention of 
falls (0.39564), prevention of musculoskeletal disorders 
(0.27846), assessment of physical workload and fatigue 
(0.13558), assessment of hazard recognition abilities 
(0.10819), monitoring of the mental status of employees 
(0.08211) sorted as. Alternatives are listed as IMU, EMG, 
PPG, EDA, Eye Tracker, ECG, and EEG with both AHP 
and PROMETHEE methods. IMU sensors have emerged 
as the most crucial alternative for preventing falls with the 
highest criterion weight and preventing musculoskeletal 
disorders. The EMG sensor, essential in evaluating muscle 
load and forces used for ergonomic evaluation, followed 
the IMU. PPG and EDA sensors, which are particularly 
effective in assessing physical workload and fatigue, and 
preventing many risks by monitoring the mental state 
of employees, ranked third and fourth. The eye tracker, 
which helps assess hazard recognition skills and construc-
tion safety training, ranked fifth. This sensor was followed 
by ECG and EEG sensors used to evaluate the physical 
and mental states of the employees.

Safety and health; Ensuring quality and productivity 
is indispensable for positively affecting business perfor-
mance. The data obtained through sensors for health and 
safety must be processed and used to prevent employee in-
jury. By providing safer working conditions with the study, 
using sensors to detect employees at risk in this sector will 
help identify and predict potential health and safety risks 
by providing a proactive approach. In the future, a com-
parative ranking can be made using different MCDMs for 
environmental and location monitoring sensors in the 
construction industry.
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