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Abstract. The energy efficiency of buildings, including public buildings, is a major concern for all European govern-
ments, since they are responsible for a large share of the total energy bill of the states. School buildings play an im-
portant role in these costs. The best strategy for reversing this scenario includes efforts on buildings retrofit, seeking to 
optimize their energy efficiency and indoor environmental quality. However, in the unfavourable economic climate we 
are experiencing, which requires great prudence when it comes to public investment, special attention should be given 
to this multi-objective optimization process. In this research, a methodology to optimize the insulation thickness of the 
external walls and roof on school buildings retrofit is proposed. The procedure includes the optimization of the building 
performance considering the following objectives: the minimization of the annual heating load; the minimization of the 
discomfort in the classrooms due to overheating; and the minimization of the life cycle cost of retrofitting external walls 
and roof. This methodology was applied to two Portuguese school buildings.
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Introduction

The energy efficiency of buildings, including public build-
ings, is a major concern for all European governments 
(Communities 2003, 2010). In Portugal, public buildings 
are responsible for more than 50% of the total energy bill 
of the state and school buildings play an important role in 
these costs. The best strategy to reverse this scenario in-
cludes efforts on the rehabilitation of these buildings, im-
proving their energy efficiency, without sacrificing the 
indoor environmental quality. These interventions must 
be carefully prepared and the technical decisions must be 
scientifically supported to guarantee the economic sustain-
ability of the buildings, often neglected during the design 
process. The rehabilitation of a school building should be 
regarded as a procedure of combining a number of variables 
and objectives, sometimes conflicting, including energy, in-
door environmental quality and costs (initial, operational 
and maintenance), on a search for an ”optimum solution”.

The compatibility of conflicting objectives, in-
cluding economic aspects, in optimization procedures 
is the subject of interest and attention of numerous re-
searchers from various areas (Diakaki et al. 2008, 2010; 

 Mateus, Oliveira 2009; Calise et al. 2011; Calise 2012; 
Kumbaroğlu, Madlener 2012; Ozel 2012; Hamdy et al. 
2013). In building rehabilitation, it is often accomplished 
by the creation of a large number of construction scenar-
ios, which establish the decision space. These scenarios 
are simulated and evaluated, resulting in a ranking of the 
solutions (Santamouris et al. 2007; Calise 2010; Ochoa 
et al. 2012). This method is relatively fast and easy to 
implement. However, the final solution is restricted to 
the scenarios that were initially defined. This limitation 
can be overcome by other approaches, based on more 
complex numerical methods, where the decision space 
is extended and optimization procedures based on evo-
lutionary algorithms, such as the genetic algorithms, are 
employed. These methods, when applied to problems with 
more than one objective, result in a set of optimal solu-
tions, each of which represents a particular level of com-
promise between the objectives. To establish a criterion  
for the rejection of feasible solutions during the optimi-
zation process, these methods use the concept of domi-
nance and the final set of optimum solutions is called the 
Pareto front. The optimal Pareto solutions are situated 
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in a region where it is impossible to improve any of the 
objectives, without degrading at least one of the other 
objectives (Deb 2001; Konak et al. 2006).

Typically, these methods are applied in building 
energy optimization together with computer simulation 
software, such as EnergyPlus, TRNSYS or ESP-r, that 
are responsible for evaluating the effect of a particular 
solution (rehabilitation scenario) on each of the estab-
lished objectives, that should be quantitatively described 
by mathematical functions.

One of the first applications of genetic algorithms 
in the optimization of buildings energy consumption was 
made by Wright et al. (2002) in the identification of the 
optimum pay-off characteristic between the energy cost of 
a building and the occupants’ thermal discomfort. Magnier  
and Haghighat (2010) used a popular multi- objective ge-
netic algorithm (NSGA-II) for the optimization of thermal 
comfort and energy consumption in a residential house. 
Chantrelle et al. (2011) developed a multicriteria tool for 
the optimization of renovation  operations.

The main limitation of these methodologies is the 
large number of computer simulations required by the 
genetic algorithm, making it almost impractical when  
applied directly to the thermal and energy computer sim-
ulation of complex models over extended periods. Sev-
eral researchers proposed alternatives to overcome this 
difficulty using statistical methods, such as time-series, 
Fourier series, regression models and Artificial Neu-
ral Networks (ANN) (O’Neill et al. 1991; Dhar et al. 
1998; Karatasou et al. 2006; Freire et al. 2008; Catalina 
et al. 2008). Statistical methods are prediction models 
that use functions to approximate the solutions and can 
be used both in continuum and discrete problems. ANN 
models are based on the central nervous system of the 
human brain. It is a network of interconnected neurons, 
which have the capacity for self-learning, when properly 
trained, and can respond to stimulus (inputs). ANN are 
already programmed on a Matlab Toolbox (2006), mak-
ing them easy to use, and they tend to perform better than 
other statistical methods in this kind of problems due to 
its ability to model non-linear patterns (Kreider 1991; 
Kawashima et al. 1995; Tso, Yau 2007; Kumar et al. 
2013). ANN were employed in a number of diverse ap-
plications. Ben-Nakhi and Mahmood (2004) used ANN 
to investigate the feasibility of this technology to opti-
mize HVAC thermal energy storage in public and office 
buildings. Indoor temperature of a residential building 
was predicted with auto regressive with exogenous input 
neural networks in a research by Mechaqrane and Zouak 
(2004). Aydinalp et al. (2004) used an ANN method to 
model residential energy consumption. Boithias et al. 
(2012a, b) used genetic algorithms and ANN with re-
gard to two objectives: energy consumption and indoor 
discomfort. Gossard et al. (2013) presented a method 
to optimize the equivalent thermophysical properties of 
the external walls of a dwelling in order to improve its 
thermal efficiency. The methodology included the use of 
ANN and the genetic algorithm NSGA-II. In this paper  

ANN were employed to approximate the pre-established 
performance functions that describe the objectives  
(heating load and overheating).

Another difficulty concerning the application of mul-
ti-objective optimization methodologies is related to the 
final choice of a single solution, since all the solutions 
belonging to the Pareto front are optimal and, therefore, 
theoretically, none is better than the other. These difficul-
ties are described in the work of Magnier and Haghighat 
(2010), Suga et al. (2010) and Chantrelle et al. (2011) and 
a possibility to overcome them is to employ the weighted 
sum method. This classical approach to solve a multi-
objective optimization problem consists in assigning a 
weight to each normalized objective function so that the 
problem is converted to a single objective problem with a 
scalar objective function (Konak et al. 2006). Despite de-
ficiencies with respect to depicting the Pareto optimal set, 
the weighted sum method for multi-objective optimization 
continues to be used extensively not only to provide mul-
tiple solution points by varying the weights consistently, 
but also to provide a single solution point that reflects 
preferences presumably incorporated in the selection of a 
single set of weights (Marler, Arora 2010). However, the 
final solution is highly dependent on the chosen weights.

This paper explores another possibility to obtain a 
single solution: the use of Life Cycle Cost (LCC) anal-
ysis as a final criterion for a unique solution. The use 
of LCC is common in buildings retrofit optimization.  
Gustafsson (2000) applied this method for the optimi-
zation of insulation measures in existing buildings and 
Hasan et al. (2008) have used LCC, combined with sim-
ulation, on the optimization of the U-values of typical 
Finnish constructions. Other economic approaches to the 
optimum thickness of insulation materials can be found 
in the literature (Ozel 2012, 2013).

In this research, a methodology to optimize the  
insulation thickness of the external walls and roof on  
school buildings rehabilitation is proposed. The first part of 
the paper includes the optimization of the building perfor-
mance considering two objectives: the minimization of the 
annual heating load and the minimization of the discomfort 
in the classrooms due to overheating. From this procedure 
the Pareto front of optimum solutions was defined. In the 
second part the LCC of the Pareto solutions was calculated 
and the minimum value corresponds to the economic opti-
mization of the insulation thickness. Two typical Portuguese 
school buildings constitute a base case where the opportuni-
ties and limitations of the methodology are discussed.

The following sections of this paper are organized 
as follows: the next section presents the methodology ap-
plied; Section 2 contains the description of the case stud-
ies; Section 3 presents the multi-objective optimization; 
the life cycle cost implementation is included in Section 4  
and; finally, the main conclusions are exposed.

1. Methodology
The main objective of this work is to propose an insu-
lation thickness optimization methodology for school 
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buildings rehabilitation, based on criteria of energy  
efficiency, occupants’ thermal comfort and life cycle 
cost. Therefore, the definition of decision variables (pa-
rameters to be optimized) and objective functions is re-
quired, in order to start the multi-objective optimization 
procedure. Two mathematical functions (performance 
functions), whose calculation implies an annual simula-
tion of the building performance, were created to quan-
tify the objectives. The building models were generated  
with DesignBuilder and the software chosen for the 
simulations was EnergyPlus. Since these simulations are 
time consuming and an optimization procedure requires 
a large number of data, it was decided to use ANN to 
approximate the value of the performance functions. The 
ANN were then optimized, using the NSGA-II genetic 
algorithm. The result was the Pareto front of optimum 
solutions. Additionally, the LCC of wall and roof rehabil-
itation was computed and minimized, in order to achieve 
the optimum insulation thickness.

1.1. Decision variables and objective functions
The selected decision variables are properties of the 
constructive elements of the building envelope, whose  
performance is typically improved in a rehabilitation in-
tervention, namely the heat transfer coefficient of external 
walls (Uwall), roof (Uroof) and windows (Uwindow) and the 
total solar energy transmittance of windows (Gwindow).  
Since building ventilation represents a major contribu-
tion for both energy performance and thermal comfort, 
the air change rate (ACR) was also considered as a deci-
sion variable.

Previous studies (Guedes et al. 2009; Almeida, 
Freitas 2010) have concluded that, in terms of thermal 
comfort, the Portuguese climate allows the use of natural 
ventilation systems in schools, combined with a heating 
system, such as hot water radiators, which guarantee ad-
equate temperatures during the winter season. However, 
some difficulties might be found related to the indoor 
air quality and, during summer, overheating could be a 
problem in some classrooms.

Hence, two performance functions were created. 
The first is the annual heating load, defined as the nec-
essary energy to guarantee a minimum temperature of 
20 ºC inside the classrooms and the second function in-
tends to assess the discomfort in the classrooms due to 
overheating, by quantifying the time with temperatures 
above 25 ºC, both considering only the theoretical pe-
riod of occupation (8:30 to 18:00). The functions are ob-
viously dependent on the five decision variables stated 
before and were computed from the results of the annual 
simulations of the building, performed with Energy Plus, 
as defined in Eqns (1) and (2):

 

 (1)

 

 (2)

where: H.L. – hourly heating load (kWh); A – net floor area 
of the building (m2); Tint – hourly average interior tempera-
ture (ºC). H.L. and Tint are outputs of the simulation.

1.2. Artificial neural networks
The main concept of ANN is learning. After the definition 
of the internal architecture, the ANN starts an iterative 
self-learning procedure of a function by adjusting the in-
ternal weights. This training process requires the definition 
of input data, and respective outputs, in a sufficient num-
ber to cover all the variables space, in order to achieve 
reliable approximations. After training, the ANN should 
be validated with a different set of input/output data.

The architecture of the networks employed in this 
research was of the multi-layer feedforward type with 
backpropagation, 20 neurons (receives n inputs plus a 
bias term, which allows to shift the activation function), 
5 inputs (I1 to I5) and 1 output (Out), as schematically 
described in Figure 1. The training algorithm was the 
Levenberg-Marquardt, with Bayesian regulation. The  
required training sample was defined using the Latin  
Hypercube Sampling method, which guarantees an ef-
fective distribution of the data over the variables space.

1.3. Multi-objective optimization
The most common multi-objective optimization proce-
dures are the evolutionary algorithms, inspired by Dar-
win’s theory of natural selection. These algorithms are 
based on stochastic approaches and their main advantage 
is that a large number of solutions (population) is used in 
each iteration, instead of improving one single solution.  

Fig. 1. Artificial neural networks architecture
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Furthermore, in these algorithms, the spreading of the so-
lution front is ensured by internal operators, such as the 
Crowding Distance. The multi-objective algorithm cho-
sen for this research was the NSGA-II, developed by Deb 
(2001). Figure 2 schematically describes the proposed 
multi-objective optimization methodology.

1.4. Life cycle cost
LCC is the sum of the present value of investment and 
operating costs for the building and service systems, in-
cluding those related to maintenance and replacement, 
over a specified life span.

In the context of this investigation, the absolute val-
ue of the LCC of each retrofitting solution is not required. 
It can be substituted by the difference dLCCi, between the 
LCC for any case i and that for the reference case. This 
way, there is no need to include cost data for all compo-
nents of the building, but only the differences produced 
by the variation on the insulation thickness between the 
reference case and any other case. This methodology was 
proposed and applied by Hasan et al. (2008). Thus, the 
LCC difference, dLCCi, for this situation is:

  (3)

where: dIc – difference in the initial investment cost (€); 
dOc – difference in the operating cost (€).

The dLCCi was separately computed for wall and 
roof retrofit.

The difference in the initial investment cost of a ret-
rofit scenario i can be computed from:

  (4)

where: Cins – cost of insulation (€/m3); λins – thermal con-
ductivity of the insulation (W/(mK)); S – area of the con-
structive element, wall or roof (m2); Ure – heat transfer 
coefficient of the retrofitted element (W/(m2K)); Uini –  
heat transfer coefficient of the element before retrofit  
(W/(m2K)).

dOc is due to the difference in the annual heating 
load. dOc calculated to present value, for scenario i, is:

  (5)

where: df – discount factor which takes into account the 
effect of inflation and variation of energy price (this way 
one can use current or constant dollars analysis); ce – ener-
gy price (€/kWh); HDre – annual heat demand after retrofit 
(kWh); HDini – annual heat demand before retrofit (kWh).

The discount factor, df, is calculated from:

  (6)

where: r – real interest rate; n – period of analysis (years).
HDre and HDini are the output of the first perfor-

mance function (Eqn (1)) and can be estimated from the 
respective ANN.

2. Case studies
2.1. Models
The methodology was applied to two typical Portuguese 
school buildings (model A and model B). The building 
models were created with DesignBuilder and simulated 
with EnergyPlus. Four types of zones were considered, 
each with specific metabolic rates, occupation density 
and schedules:

 – Classroom: 95 W/person; 0.40 person/m2;
 – Circulation: 110 W/person; 0.60 person/m2;
 – Storage: 110 W/person; 0.10 person/m2;
 – Toilet: 110 W/person; 0.60 person/m2.
The simulations were performed on annual bases, 

with hourly outputs, and 10 time steps per hour. A sum-
mer holiday period of two months (July and August) and 
a two weeks break at Christmas were considered. Simu-
lations were performed on an Intel Pentium I5 750 (8M 
Cache, 2.66 GHz) computer and the time needed for one 
simulation run by EnergyPlus was 25 minutes for build-
ing model A and 35 minutes for building model B.

The schools original walls and roof have no insula-
tion, the windows are single glazed, there are no heating 
systems and the ventilation is natural, dependent on the 
window opening and infiltrations. The values considered  
in the simulation for the most relevant  construction 

Fig. 2. Multi-objective optimization methodology
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 elements properties were defined after a complete survey 
carried out on 20 similar school buildings. Blinds with 
medium reflectivity slats were considered as shading de-
vices, with operation by solar radiation control with a set 
point of 120 W/m2. This way passive measures of protec-
tion from solar heat are included in the model. This is a 
very simple approach to the problem that deserves fur-
ther investigation. The main difference between the mod-
els is the roof U value, which is lower in model B. The 
air change rate was evaluated experimentally, by tracer 
gas measurements, considering different envelope sce-
narios. The simulation models were validated with in situ 
measurements, as stated in Almeida and Freitas (2010).

The rehabilitation proposal comprises the introduc-
tion of insulation in walls and roof, improvement of the 
windows properties and inclusion of hot water radiators 
as heating systems. Since the measurements performed 
in these buildings revealed that, in winter conditions,  
temperature is below comfort limits, it is considered in 
this study that the introduction of heating systems is es-
sential and, as so, even when the current performance of 
the building is referred, we are assuming the inclusion of 
the hot water radiators.

The study included the analysis in three locations, A, 
B and C, each with a climate that is considered charac-
teristic of its region and that together represent the differ-
ent climatic conditions in Portugal. Were also considered 
four different predominant orientations for the buildings.

For the five decision variables a range of variation 
(variables space) was considered as presented in Table 1. 
The minimum value of the ACR, despite being far from 
guaranteeing an adequate indoor air quality, was selected 

given the current conditions of the buildings (Almeida, 
Freitas 2010). The maximum limits for the exterior walls, 
roof and windows were defined in accordance with the 
current characteristics of the school buildings.

2.2. Artificial neural networks validation

The calculation of the performance functions implies an 
annual simulation of the building. Since these simulations 
are time consuming and the NSGA-II requires a large num-
ber of inputs, it was decided to use ANN to approximate  
the functions. However, the ANN must be properly 
trained, in order to have an adequate  performance. Thus, 
for each ANN, 150 cases for training and 10 cases for 
validation were created. The study included 3 locations 
and 4 orientations, so 1920 annual simulations were nec-
essary for each building model, in order to obtain the 
input/output data set for the ANN training. A total of  
96 ANN (48 for each model) were produced, as sche-
matically illustrated in Figure 3.

To automatize the calculation procedure of the per-
formance functions, a Visual Basic program was de-
veloped and employed in the training and validation of  
the ANN.

The ANN validation accuracy was confirmed with 
the respective coefficient of determination R2:

  

(7)

Table 1. Decision variables limits – variables space

Uwall
[W/(m2K)]

Uroof
[W/(m2K)]

Uwindow
[W/(m2K)]

Gwindow
[–]

ACR
[h–1]

Maximum
Minimum

1.80
0.25

3.00
0.25

6.10
1.00

0.90
0.20

5.00
0.10

Table 2. ANN R2 for model A

LOCATION A LOCATION B LOCATION C
f1 f2 f1 f2 f1 f2

N
GF 0.9990 0.9727 0.9989 0.9800 0.9990 0.9252
1st F 0.9976 0.9949 0.9969 0.9832 0.9983 0.9865

E
GF 0.9990 0.9766 0.9989 0.9784 0.9990 0.9045
1st F 0.9979 0.9840 0.9969 0.9864 0.9979 0.9899

S
GF 0.9990 0.9323 0.9988 0.9711 0.9990 0.9818
1st F 0.9980 0.9871 0.9963 0.9865 0.9978 0.9995

W
GF 0.9990 0.9751 0.9988 0.9719 0.9989 0.9868
1st F 0.9980 0.9886 0.9966 0.9670 0.9983 0.9962

0.9984 0.9764 0.9978 0.9781 0.9985 0.9417

MEAN VALUES
0.9874 0.9879 0.9701

0.9818
N – North; E – East; S – South; W – West; GF – ground-floor; 1st F – first floor.

Fig. 3. ANN combinations
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where: R2 – coefficient of determination; yi – exact value 
of the function computed from the annual simulation; pi – 
predicted value of the function computed from the ANN; 
ym – mean value of the yi.

Tables 2 and 3 show the R2 results, for models A 
and B, respectively. Very accurate approximations were 
obtained, with overall mean values of 0.9818 and 0.9892.

3. Multi-objective optimization

The first multi-objective optimization procedure was 
the minimization of the two performance functions, f1 
 (energy) and f2 (overheating), described in Eqns (1)  
and (2). The evolutionary algorithm, specifically the ge-
netic algorithm NSGA-II, available in a Matlab  Toolbox, 
was employed. The parameters chosen for the optimiza-
tion were the following:

 – Population: 100;
 – Selection function: Tournament;
 – Reproduction: 80% crossover and 20% mutation;
 – Crossover function: Intermediate;
 – Pareto front population fraction: 1.
The optimization task included the analysis of both 

school models, considering the three locations and the 
four possible predominant orientations. Consequently, a 
large number of outputs (Pareto front) were produced. 
As an example, Figure 4 shows the Pareto front obtained 
for the building model A, with east orientation, and for 
the three locations under study. The point that represents 
the current performance of the building is also included.

Results revealed that there is a significant improve-
ment potential for all locations and, it was also clear, that 
it is directly related to the climate: location B is condi-
tioned by function f2, since in this location summer con-
ditions are decisive; location C is strongly conditioned 
by function f1, since in this location winter conditions are 
more severe; location A has the mildest climate.

However, it is evident that the results are highly de-
pendent on the minimum and maximum limits imposed on 

the variables. In fact, most of the optimal solutions corre-
spond to unrealistic constructive scenarios, especially for 
the ACR, with very low values that cannot be considered 
valid, since that would lead to inadequate air quality in-
side classrooms. Therefore, it was decided to proceed to a 
new multi-objective optimization, establishing a minimum 
ACR of 1.5 h–1, which, for typical occupation of the class-
room, corresponds to 3.125 l/(s.person). Figure 5 shows 
the results of this  optimization, for the same scenario.

Results are significantly different from those 
 obtained initially, since Pareto fronts are now less  

Table 3. ANN R2 for model B

LOCATION A LOCATION B LOCATION C
f1 f2 f1 f2 f1 f2

N
GF 0.9953 0.9618 0.9939 0.9756 0.9973 0.9839
1st F 0.9959 0.9876 0.9953 0.9839 0.9961 0.9912

E
GF 0.9956 0.9444 0.9949 0.9854 0.9971 0.9864
1st F 0.9961 0.9767 0.9960 0.9955 0.9964 0.9892

S
GF 0.9956 0.9790 0.9952 0.9907 0.9936 0.9899
1st F 0.9960 0.9955 0.9943 0.9873 0.9968 0.9937

W
GF 0.9955 0.9772 0.9951 0.9823 0.9971 0.9759
1st F 0.9954 0.9779 0.9949 0.9822 0.9967 0.9904

0.9957 0.9750 0.9949 0.9854 0.9964 0.9876

MEAN VALUES
0.9853 0.9902 0.9920

0.9892
N – North; E – East; S – South; W – West; GF – ground-floor; 1st F – first floor.

Fig. 4. Multi-objective optimization output

Fig. 5. Multi-objective optimization output
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dispersed. In fact, the initial variability of the optimum 
solutions resulted from the possibility of considering low 
ACR, allowing for constructive scenarios with unrealistic 
heating energy demands.

Another important feature that arises from the impo-
sition of a minimum ventilation rate is that the  solution 
adopted for the rehabilitation will always lead to an  
increase in the annual heating load. As described in Almei-
da and Freitas (2010), current Portuguese school build-
ings do not provide their users with appropriate indoor 
air quality conditions, allowing, this way, a minimization 
of the heating energy demand. In short, the necessary  
improvement of the indoor air quality will correspond to 
an increase in the operational cost of the building.

4. Life cycle cost

The methodology described in Section 1.4 was implement-
ed for the calculation of the optimum insulation thick-
ness of walls and roofs in school buildings rehabilitation.  
With this objective, a software tool, written in Excel 
VBA, was developed. This application allows optimizing 
the life cycle cost of the insulation, after the definition of 
the economic scenario and of the period of analysis.

Software computes the LCC of each rehabilitation 
scenario that belongs to the Pareto front and for the refer-
ence case. Then the dLCCi is determined and minimized. 
The minimum value corresponds to the optimum solution. 

To make the application as comprehensive as pos-
sible, the user can define all the variables required for the 
complete characterization of the problem. The input data 
can be gathered into three groups: initial options, which 
include model type, location, orientation and air change 
rate; investment, which includes insulation price and its 
thermal conductivity; and economic analysis, which in-
cludes period of analysis, energy price, real interest rate, 
inflation and the expected variation on the energy price.

The main objective of this paper is the description 
of the methodology, rather than the presentation of a  
particular example. However, an example case of a school 
building located in Porto (location A), with west orien-
tation, whose constructive characteristics correspond 
to the simulation model A (Figure 6), was performed 
in order to illustrate the applicability and capabilities  

of the methodology and of the software tool. An air 
change rate of 2.0 h–1 was considered. Table 4 includes 
the values considered for the investment and economic 
analysis inputs.

The software output is presented in Figure 7. Current 
building performance, Pareto front and LCC  optimum 
are graphically represented. For the optimum  solution 
the decision variables value are also indicated. It can be 
observed that the optimum solution corresponds to a sit-
uation near to maximum roof insulation (Uroof = 0.28), 
since according to the decision space defined (Table 1) 
its minimum value is 0.25.

From these results it is possible to calculate the 
 optimum insulation thickness of external walls and roof. 
The software performs this task automatically. For this 
example, the optimum insulation thickness achieved by 
the LCC minimization was 3.9 cm and 10.9 cm for walls 
and roof, respectively.

Conclusions

An insulation thickness optimization methodology for 
school buildings rehabilitation combining artificial neu-
ral networks and life cycle cost was proposed. To this 
end five decision variables were defined and two math-
ematical functions were created to evaluate the building 
performance, one related to the heating energy demand 
and the other with the classrooms thermal discomfort due 
to overheating.

Since the optimization procedure is based on evo-
lutionary algorithms, which require a large number of 
computer simulations, approximation methods were 
employed. ANN was the choice. The ANN proved to 
be effective and useful to approximate complex func-
tions and, after being properly trained, can be used to Fig. 6. Example case: school building in Porto (location A)

Table 4. Example case inputs

Insulation price [€/cm]
Thermal conductivity [W/(mK)]
Period [years]
Energy price [€/kWh]
Real interest rate [%]
Inflation [%]
Variation of energy price [%]

2.0
0.037

50
0.14
4.0
2.0
1.0

Fig. 7. Example case: output
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 replace the annual computer simulations. In this study, 
96 ANN were created and validated with 10 cases. 
For the  validation the respective R2 was computed. 
The mean values obtained were R2 = 0.9818 and R2 = 
0.9892, for models A and B, respectively. Still, it was 
verified that ANN require a large number of input data 
for their training, in order to achieve a good approxi-
mation. For each, 160 cases were used, 150 for training 
and 10 for validation.

As expected, the optimization procedure revealed 
that Pareto fronts, i.e. the set of optimal solutions, are 
highly dependent on the minimum and maximum limits 
imposed for the variables space. In this particular case it 
was found that this is particularly important for the mini-
mum limit of the air change rate.

The interpretation of Pareto fronts and subsequent 
definition of a criterion for the selection of a single 
 solution is very complicated when dealing with problems 
such as the one presented. In this paper the inclusion  
of LCC as a decision criterion was proposed. For each 
 solution belonging to the Pareto front the respective 
LCC was computed. The minimum LCC value was the 
 decision criterion. This procedure allow the posterior  
calculation of the optimum insulation thickness of walls 
and roof. With this methodology the economic impact of the  
rehabilitation was implicitly introduced in the optimiza-
tion. The method revealed that the LCC is a simple and  
appropriate instrument for this kind of problems.

The implementation was accomplished by the 
development of a software tool that automatizes the  
procedure. An example case of a typical Portuguese 
school building is presented.
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