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Abstract. The model presented here is based on fuzzy arithmetic techniques and the MIVES method, which is based, in 
turn, on requirement trees, value analysis and the Analytic Hierarchy Process. Even though it encompasses the approach 
for assessing sustainability adopted by the Spanish Structural Concrete Code (EHE), the model can also be applied 
to concrete structures designed according to other structural codes. The EHE model serves to estimate the Structure’s 
Contribution to Sustainability Index (ICES) and constitutes the first sustainability model included in a structural code. 
The ICES crisp model is inadequate in terms of managing the structural sustainability objective of medium and high 
uncertainty projects. In such cases, a method not only has to assess the potential sustainability index at the end of the 
project, but also the degree of uncertainty affecting compliance with the sustainability objective laid down by the client 
or promoter. The paper compares this model with a Monte Carlo simulation method conceived for the same purpose.  
The fuzzy method could be a better solution in specific cases of limited time or budget for creating the model.
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Introduction

There are many methods and publications  regarding spe-
cific issues of sustainability, yet very few on  integrating 
environmental, social and economic sustainability indi-
cators. The MIVES method (Integrated Value Model for 
Sustainability Assessment, in translation from Spanish) 
(San-Jose, Cuadrado 2010; San-Jose, Garrucho 2010; 
Cuadrado et al. 2012; Gómez et al. 2012; Pons, Aguado 
2012; Reyes et al. 2014) is a technique based on require-
ment trees (as per Fig. 1), value analysis (Alarcón et al. 
2011) and the Analytic Hierarchy Process (AHP) (Saaty 
1980, 2006). It serves to transform any group of quantita-
tive and qualitative variables into a set of non-dimensional  
variables to facilitate their use in sustainability assess-
ment and corresponding decision making. This is helpful 
when integrating the different environmental, social and 
economic factors to be incorporated into a sustainability 
assessment.

MIVES has been applied in the creation of the  
sustainability assessment model of the Spanish Code 
on Structural Concrete (Instrucción Española del Hor-
migón Estructural EHE-08, henceforth EHE; Ministe-
rio de la Presidencia 2008; Aguado et al. 2012). This  
model is known as the Structure’s Contribution to Sus-
tainability Index (in translation, ICES, which is used in 
this paper) and constitutes the first sustainability model 

included in a structural code. Two of the present paper’s 
authors formed part of the ICES development team.

Once the general sustainability objective and the 
ICES sub-objective for the structure are established,  
architects and engineers will design it. They will take 
into account the complete set of project objectives,  
including scope, cost, time, quality and sustainability. 
After construction, the final product may attain the ICES 
objective, but not necessarily in the way initially estab-
lished. Alternatively, the end product may not attain the 
ICES desired. Consequently it is necessary to assess  
the ICES throughout the project’s life cycle in order to 
make decisions as appropriate.

Uncertainty is inherent to projects and it exists in 
respect of real, final ICES. Uncertainty can result in both 
opportunity and risk (del Caño, de la Cruz 2002). For  
example, potential changes in design or specification, 
such as those relating to the percentage of additions of fly 
ash or silica fume to concrete, can increase or decrease 
the final ICES. These and other changes could raise the 
sustainability index, for example, enabling the owner to 
obtain a higher sustainability certification, or higher sub-
sidies where appropriate. The primary risk would be in 
the expenditure of specific funds to improve structural 
sustainability without attaining the ICES objective and 
thus sustainability certification and subsidies.
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Key stakeholders need to know how likely it is for 
the sustainability objective to be reached or exceeded 
at the end. A MIVES Monte Carlo simulation model 
(del Caño et al. 2012) is one option for taking the uncer-
tainty of different sustainability parameters into account. 
The fuzzy method presented here is another.

1. The MIVES method

The first stages in the MIVES method consist of defining 
the problem to be solved and the decisions to be made, 
along with elaborating a basic decision-model diagram. 
This hierarchical diagram is denominated “requirement 
tree” and includes all aspects of the assessment to be 
made (Fig. 1). The lower part of the tree consists of the 
different qualitative and quantitative variables; the latter, 
in various units and scales. In the following stage, sustain-
ability indicator magnitudes and units are converted into a 
common, non-dimensional unit called value. This method 
is based on Multi-Criteria Decision Methods (MCDM). 
To compare a specific design alternative to others, the 
existence of a value function V: P→R can be considered, 
where P = (P1, P2, …, PN) is the set of evaluation indica-
tors included in the requirement tree. A non-dimensional 
value function V(P) integrating all the assessment indica-
tors is then constructed. The solution is a non-dimensional 
function V as the weighted sum of N value functions Vi 
corresponding to the N indicators. MIVES uses Eqn (1) as 
the basis for defining  individual value functions V:

  

 

(1)

In this equation, Pi is the score of the alternative being 
examined with respect to indicator i under consideration, 
usually between 0 and 100. Pi,max is the maximum score 
that Pi can reach, normally 100. Ai, ni, and mi are shape 
factors used to generate concave, convex, “S” shape, or 
straight-line value functions. The Vi functions’ geometry-
concave, convex and so on- makes it possible to consid-
er non-linearity in the assessments, and also to establish 
greater or lesser exigency when complying with given 
indicator requisites (Alarcón et al. 2011). Finally, the 
Eqn (1) divisor ensures that value function remains with-
in the range of [0; 1], and that the highest contribution to 
sustainability is associated with a value equal to the unit.

In the next stage the relative weight of the model 
parameters is established (αi, βi and γi in Fig. 1). For 
problems based on a requirement tree with three levels, 
the resulting V function takes the form of Eqn (2):

  (2)

V(P) measures the degree of sustainability for the alterna-
tive being assessed, with respect to indicators P; αi and 

βi are the requirement and criteria weights to which each 
indicator i belongs; γi are the different indicators weights; 
Vi(Pi) are the value functions used to measure the degree 
of sustainability for the alternative under study with re-
spect to a given indicator, i. Finally, N is the total number 
of indicators taken into account for the assessment (N = 10  
in Fig. 1). Weights αi, βi and γi are factors representing the 
preference or relevance, respectively, of certain indicators 
(γi), criteria (βi) and requirements (αi) against others.

Trees can at times be excessively large and com-
plex. Discrepancies can also exist between specialists 
when establishing numerical values for αi, βi, and γi.  
In these situations, the Analytic Hierarchy Process is 
used to organize the process in an efficient way, reduc-
ing complexity and subjectivity, assuring consistency 
and diminishing potential divergences among specialists.  
A final process for analysing, comparing, and, if appro-
priate, modifying resultant weights is recommended.

In the next stage the different design alternatives 
are evaluated using the previously created model. This 
makes it easier to reach decisions and choose the best 
design alternative. MIVES can be used to help decision 
makers in areas outside sustainable development. The 
reader can find additional information on, and a very 
detailed explanation of, the foundations of the MIVES 
method in Gómez et al. (2012).

2. The ICES model

The sustainability assessment model used here is based on 
EHE and incorporates several improvements developed by 
the authors to solve slight problems caused by small er-
rors, misprints and omissions within the EHE text. In any 
case, both models produce similar results as the authors 
wished to respect the spirit of the EHE. The modifications 
alluded to lie outside the scope of this paper. However 
the reader can find the complete scope of these improve-
ments in GRIDP (2012) (to be compared to Ministerio de 
la Presidencia (2008) and Ministerio de Fomento (2011)).

The sustainability assessment is structured in the 
usual environmental, social, and economic sections. 
Figure 1 comprises the improved environmental mod-
el requirement tree. The evaluation parameter is de-
nominated as the Environmental Sustainability Index 
(ISMA, in Spanish) and fits in with Eqn (3), a specific  
Eqn (2) case for the problem being addressed here:

  (3)

Weights αi, βi and γi (Fig. 1) differ from their EHE coun-
terparts, although on the whole the influence of these var-
ious indicators on the ISMA is unaltered. With respect to 
the value functions of each indicator, all follow Eqn (1).  
On the other hand, the ISMA indicators in Figure 1 may 
have several quantitative and qualitative aspects to evaluate.  
There is therefore a fourth level of breakdown. Due to its 
length, this is included in Table 1.
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To quantify the degree of compliance for all aspects 
under assessment, there is a scoring system for each in-
dicator. As a result, a Pi value is calculated for each in-
dicator, and then introduced into the corresponding value 
function. This scoring system uses specific functions.

Different tables establish the scores for the possi-
ble design alternatives to be adopted for each indicator.  
The scoring system for the seventh indicator is sum-
marized below, including its specific function and  
corresponding table (Table 2). This indicator is related 
to the characteristics of cement and additions. It helps 
evaluate the environmental contribution associated  
with the various aspects set out in the table. The spe-
cific function used for this purpose follows Eqn (4), 
where p7i is the percentage of concrete produced with 
each type of cement, and λ7i is the addition of the val-
ues included in the last column of Table 2, for each type  
of cement:

  (4)

Table 1 summarizes the aspects taken into account in the 
scoring system for the other indicators. Where applica-
ble, the design or construction alternatives resulting in a 
higher or lower score are shown in the table in parenthe-
ses. As for transport, a shorter distance means a higher 
score. Finally, in aspects expressed by percentages, the 
score increases with these percentages. The reader can 
find the complete EHE model in Spanish and English in 
Ministerio de la Presidencia (2008) and Ministerio de 
Fomento (2011), in addition to the modified model used 
here in GRIDP (2012).

Meanwhile, economic and social aspects are also 
taken into account to obtain an overall value for the 
ICES, using Eqn (5):

 ICES = a + b × ISMA, (5)

with the following restrictions:

ICES ≤ 1;
ICES ≤ 2 × ISMA.

In this equation, a is the coefficient associated with the 
social contribution, which values the five issues reflected 
in Table 1 (variables 47 to 51 of Table 1). Economic  
aspects are taken into account using coefficient b, which 
increases with structural durability. Note that other eco-
nomic aspects – such as material savings – have already 
been taken into account in the environmental indicators. 
Co-efficient b is calculated using Eqn (6), dividing the 
estimated lifetime (tg) by the minimum compulsory life-
time required by EHE (tg,min):

  (6)

A level scale has been established, similar to that used 
to compare appliance energy consumption. It gives each 
structure a sustainability level of A, B, C, D or E, de-
pending on the numerical ICES obtained.

The EHE indicators are not the ones used in con-
ventional life-cycle analysis (cLCA). The reality of the 
situation in many countries is that only a few profession-
als have enough knowledge and experience to perform 

Fig. 1. Model requirement tree
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Table 1. Model variables and their values in the case study. CS = case study for Scenario #1 of Table 3. p = (p1, p2, p3) = 
probability of (alternative1, alternative2, alternative3) for discrete variables. (N1, N2, N3) = (min, modal, max) values used to 
define fuzzy numbers

Indicator Model variables and their values in the case study

Characteristics of 
concrete 
suppliers

1.  Origin of concrete (prefabrication company, external ready-mixed company, on-site facility). Case study 
(CS). 20% (volume) prefabricated elements supplied by two prefabrication companies (18% for hollow 
core concrete floor slabs and 2% for stands). 80% concrete supplied by an external ready-mixed 
company.

2.  Environmental status of companies supplying concrete (certification, commitment, other cases). CS. 
Prefabrication company #1 (18% of total structure): p = probability of (certification, commitment, other 
cases) = (85%, 15%, 0%). Prefabrication company #2 (2% of total): certification. External ready-mixed 
company: p = (60%, 20%, 20%).

3. Environmental status of contractor (certification, commitment, other cases). CS. p = (85%, 15%, 0%).
4.  Distances from concrete manufacturers’ plants to site. CS. Prefabrication company #1 (18% of total): 

(minimum, modal value, maximum) = (30, 70, 150) km. Prefabrication company #2 (2% of total):  
780 km. External ready-mixed company: (8, 20, 45) km.

Characteristics of  
reinforcement  
suppliers

5.  Reinforcement origin (prefabricated elements, external facility, on site facility). CS. 9% (weight) 
prefabricated elements supplied by two prefabrication companies (8% for hollow-core concrete floor 
slabs and 1% for stands). 91% external facility.

6.  Environmental status of rebar supplier (certification, commitment, other cases). CS. Prefabrication 
company #1 (8% of total): p = (85%, 15%, 0%). Prefabrication company #2 (1% of total): certification. 
 External facility (91% of total): p = (85%, 15%, 0%).

7. Environmental status of contractor (certification, commitment, other cases). CS. p = (85%, 15%, 0%).
8.  Distances from rebar manufacturers plants to site. CS. Prefabrication company #1 (8% of total): (30, 70, 

150) km. Prefabrication company #2 (1% of total): 780 km. External facility: (5, 15, 50) km.

Reinforcement 
reduction

9. Pre-stressed reinforcement (percentage). CS. 9%.
10. Reinforcement with quality mark (percentage). CS. 0%.
11. Rebar joined by mechanical means (not welded; percentage). CS. (10%, 20%, 40%).

Construction control
12. Steel with diminished safety coefficient, in accordance with EHE (percentage). CS. 9%.
13. Concrete with diminished safety coefficient, in accordance with EHE (percentage). CS. 20%.

Steel characteristics

14. Percentage of steel of each type. CS. 91% of B-500S and 9% of Y-1670 C.
15.  Environmental certification of steel production (EMAS, ISO, nothing). CS. p = (20%, 60%, 20%)  

for both types of steel.
16. Steel with quality mark (yes, no). CS. p = (85%, 15%) for both types.
17. Quality mark certifying that at least 80% of production uses recycled scrap (yes, no). CS. No.
18.  Quality mark certifying steel production subject to Kyoto Protocol requirements (yes, no). CS.  

p = (85%, 15%) for both types of steel.
19.  Quality mark certifying that steel manufacturer makes use of more than 50% of steel slag (yes, no). 

CS. No.
20. Raw materials and steel subjected to radiological emission testing (yes, no). CS. No.

Recycled aggregate
21. Concrete of each type (percentage) . CS. 80% of HA-30. 18% of HP-40. 2% of HP-45.
22. Recycled aggregate (percentage). CS. 0% in all cases.

Cement and  
additions 
characteristics

23.  Concrete produced with each type of cement (percentage). CS. HA-30: CEM II, B-P 42,5 N (80% of 
total concrete). HP-40: CEM II, B-V 52,5 R (18% of total concrete). HP-45: CEM II, A-D 52,5 R 
(2%of total concrete).

24.  Environmental certification of cement production (EMAS, ISO, nothing). CS. p = (50%, 50%, 0%) 
for all cements.

25. Cement with quality mark (yes, no). CS. Yes, in all cases.
26.  Production subject to Kyoto Protocol requirements (yes, no). CS. p = (85%, 15%) for all types 

of cement.
27.  Quality mark certifying production of cements using fuels and raw materials generating lower CO2 

emissions (yes, no). CS. No.
28.  Types of additions (additions to the cement; additions to concrete; in cases of concrete with quality 

mark, produced by a company with environmental certification; other cases). CS. Additions to cement.
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cLCA. On the contrary, the EHE method is easier for 
practitioners to understand and apply.

3. The Fuzzy-MIVES-EHEm method
3.1. Foundations
Fuzzy sets theory solves a broad range of problems. 
One application has to do with uncertainty. Various au-
thors have dealt with fuzzy sets and their application in 
the analysis or control of processes and physical sys-
tems, as well as decision making. In the field of project  
uncertainty, many authors have applied fuzzy sets to  
project selection; the financial analysis of the project; 
time and cost estimation and control; contractor selection 
and risk analysis (see, for instance, Zadeh et al. 1975;  
Kaufmann, Gupta 1985, 1991; Carr, Tah 2001; Li et al. 2007;  
Gil-Aluja 2010; Abbasianjahromi, Rajaie 2012).

The method presented here is based on establish-
ing fuzzy sets for input variables affected by a relevant 
uncertainty, and using fuzzy arithmetic for calculating 

a global fuzzy sustainability index. Fuzzy sets were  
established as an extension of the conventional, crisp 
sets, to build models incorporating the imprecision or 
vagueness of many human concepts.

An element can only have two membership values 
in relation to a crisp set: 1 and 0, depending on whether 
or not it belongs to the crisp set. This is the case with 
the set of distances between 0 and 30 km. On the other 
hand, the membership function μ(x) of an element to a 
fuzzy set can take any value in [0, 1]. This happens with 
a potential set of “short” distances.

If U is a universal set, the fuzzy subset A of U  
is defined by its membership function μA: U→[0, 1], assign-
ing a real number μA(x) in the interval [0, 1], to each ele-
ment x∈U, where the value of μA(x) at x shows the degree 
of membership of x in A. So A = {(x, μA(x)): x∈U, μA(x) ∈ 
[0, 1]}. In a crisp set μA(x) = 1 if x∈A, and μA(x) = 0 if x∉A.

Given a fuzzy set A in U and any real number α∈[0, 1],  
then an alpha-cut of A is the crisp set αA = {x∈U: 
μA(x)≥α}, α∈[0, 1] (see Fig. 2a). The family including 

29.  Additions to the cement (percentage). CS. CEM II, A-B 42,5 N: > 20%. CEM II, B-V 52,5 R: > 20%. 
CEM II, A-D 52,5 R: < 20%.

30. Additions of fly ash to concrete (percentage). CS. 0% in all cases.
31. Additions of silica fume to concrete (percentage). CS. 0% in all cases.

Impacts caused by 
construction processes

32. Site accesses paved (yes, no). CS. Yes.
33. Pneumatic cleaning systems (yes, no). CS. No.
34. Dust retention devices (yes, no). CS. p = (50%, 50%). 
35. On-site sprinklers to avoid generating dust (yes, no). CS. p = (15%, 85%).
36. Chemical stabilizers to reduce dust production (yes, no). CS. No.
37. Tarpaulin or canvas use during transport to cover material that can generate dust (yes, no). CS. Yes. 

Waste management

38.  Management of excavation products (recycling, reusing or revalorizing, dumping). CS. 11% reuse, 
89% dumping.

39.  Management of construction and demolition waste (recycling, reusing or revalorizing, dumping). CS. 
Dumping.

40. Concrete with quality mark (percentage). CS. 0%.
41. Cylindrical specimens without sulfur capping, for testing concrete (percentage). CS. 0%.
42. Cubic specimens for testing concrete (percentage). CS. 0%.

Water management

43. Contractor’s environmental status (certification, commitment, other cases). CS. p = (85%, 15%, 0%).
44. Efficient curing techniques in respect of water consumption (yes, no). CS. p = (85%, 15%).
45. Water saving devices (yes, no). CS. No.
46. Containers for collection and use of rain water (yes, no). CS. No.

Social contribution

47.  Application of innovative design or construction methods deriving from R&D and innovation 
projects (yes, no). CS. No.

48. On-site staff training in excess of legal requirements (yes, no). CS. Yes.
49.  Adopting voluntary health and safety measures in excess of legal requirements (yes, no). CS.  

p = (15%, 85%).
50.  Establishing measures informing the public of the features and timescales, in addition to the 

economic and social implications of the project (yes, no). CS. No.
51. Having the project declared of public interest by the Administration (yes, no). CS. No.

Extended lifetime 
contribution

52. Minimum lifetime established by EHE for this type of structure. CS. 100 years.
53. Structure’s estimated lifetime. CS. 100 years.

Continued of Table 1
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all the alpha-cuts of a fuzzy set contains all the informa-
tion relative to that set.

On the other hand, a fuzzy set is convex if μA(λx + 
(1–λ) ×y) ≥ min{μA(x), μA(y)}, ∀ x, y ∈ U and ∀ λ ∈ [0, 1].  
Thus, the concept of convexity here is similar to the one 
related to a conventional function y = f(x).

Finally, a fuzzy number is a convex, normalized fuzzy 
set of real line R with a piecewise, continuous member-
ship function, where there is at least an M∈R point, with 
μA(M) = 1 (α = 1A = M). Fuzzy numbers can have different 
geometric shapes, reflecting actual circumstances.

In the model presented here, a continuous input  
variable is represented by a triangular fuzzy number 
(Fig. 2a). On the other hand, a discrete input variable 
is represented by a specific discrete fuzzy set explained 
here (Fig. 2b). For example, one model input variable 
referred to above (Table 2) relates to the environmental 
certification of cement production. The scoring corre-
sponding to this variable is (15, 10, 0), for (EMAS cer-
tificate (European Parliament, Council of the European 
Union 2013), ISO-14001 certificate (2004), other cases) 
respectively.

If one assumes that the engineer conducting the as-
sessment of a specific structure considers the (EMAS, 
ISO, other cases) probabilities to be (40%, 60%, 0%) 
(Fig. 2b), the corresponding probability histogram can 
be converted into a discrete fuzzy set. Using a fuzzy 
set of three values (15, 10, 0) with membership val-
ues (0.4; 0.6; 0) implies that there is not an alpha-cut 
corresponding to a membership value of 1. A solution 
is to normalize the fuzzy set of the discrete variable; 
other methods have been explored, but only this one 
produced sound results. Thus the fuzzy set to be used 
in calculations will have the same values (15, 10, 0), 
but now with membership values (0.67; 1; 0) (Fig. 2b). 
Finally, a deterministic variable will be represented as 
a singleton. This is a fuzzy number that represents a 
crisp one: it only takes the value of the crisp number, 
with a membership value of 1.

Following on, a first possibility is to perform fuzzy 
operations with different input variables, applying the 
Zadeh Extension Principle (Zadeh 1975a, 1975b, 1975c). 
In this case there are several discrete variables, however  
(Table 1). Operating with continuous and discrete vari-
ables will result in very cumbersome calculations, and is 
frequently unfeasible. This will not occur where all fuzzy 
input variables are continuous.

There are other possibilities using simplified,  
approximate methods. The main ones are the Vertex 
and DSW methods (Ross 2010). The most suitable of 
these is the second one (DSW, from Dong, Shah, and 
Wong) (Dong et al. 1985), based on performing interval 
 operations with alpha-cuts. With this method, in order to 
operate two variables, it is necessary to calculate several 

Table 2. Aspects evaluated via seventh environmental 
indicator from model

Characteristics of cement and additions λ7i

Environ-
mental cer-
tification of 
production

ISO 14001 (2004) 10

EMAS (2013) 15

Kyoto 
Protocol

Official quality mark certifying 
that cement production is 
subject to Kyoto Protocol 
requirements. 

20

Reducing 
CO2 
emissions or 
using waste 
materials as 
fuel.

Official quality mark certifying 
a cement production using fuels 
or raw materials producing 
lower CO2 emissions; or 
employing alternative (non-
fossil) fuels; or using waste 
materials as fuels.

15

Additions’ 
content

Cement does not contain 
additions, but concrete includes 
fly ash or silica fume additions. 
Moreover the concrete 
has a quality mark and is 
produced by a company with 
environmental certification.

0–30 for fly ash 
or silica fume, 
respectively, 
between 0–35% 
and 0–12% 
(% of cement 
weight).

Cement contains additions 
compliant with extant 
legislation and concrete has 
a quality mark. Percentage of 
additions ≤20%.

35

As above but with an additions 
percentage >20%. 50

Fig. 2. Examle of fuzzy paramaters
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alpha-cuts for each one. An alpha-cut constitutes an in-
terval. Consequently both pairs of values belonging to 
each alpha-cut will be operated using interval arithme-
tic (Ross 2010). MIVES only uses positive values, since 
Vi (Eqn (1)) can only take values in [0,1]. Suppose two  
intervals I1 = [a,b] and I2 = [c,d] (a,b,c,d ∈ R+, a ≤ b,  
c ≤ d). The interval operations needed for MIVES models 
(Eqns (1) to (6)) are:

I1 + I2 = [a+c, b+d];
I1 – I2 = [a–d, b–c], (a≥d, b≥c);

I1 × I2 = [a×c, b×d];
I1 ÷ I2 = [a÷d, b÷c], I2∈ R 0

+ (R+, excluding zero);
eI1 = [ea, eb];
I1

I2 = [ac, bd].

Consequently, in order to calculate the addition of two 
fuzzy numbers, the alpha-cut corresponding to a mem-
bership value of 1 (α = 1X) is calculated for both numbers 
(Fig. 2a).

Subsequently, the minimum value of the alpha-cut 
for the first number is added to the minimum value of the 
alpha-cut for the second number. Similarly, the maximum 
value of the alpha-cut for the first number is added to the 
maximum value of the alpha-cut for the second number. 
The alpha-cuts corresponding to a membership value of 
0.9 (α = 0.9X) will then be added up, and so on.

This generates an alpha-cut set corresponding to the 
fuzzy number that is the result of the fuzzy operation un-
der calculation, and serves in generating the resulting 
number. This is a summary of the computational way of 
implementing such calculations, but the reader can find 
additional information on it in Appendix I of this paper.

It is essential that the fuzzy variables have values 
adjusted to the model’s actual behaviour. At least key 
value estimates must be realistic: for instance, the alpha-
cut for α = 0 (maximum, minimum) and the alpha-cut  
for α = 1 (Fig. 2a). There are no databases containing 
historical data for the parameters evaluated here. Conse-
quently, just as triangular distributions are recommended 
for simulation purposes in this case (Williams 1992), for 
continuous numerical variables triangular fuzzy num-
bers are recommended. They are simple to understand 
and easy to estimate as they only require an estimate of 
extreme (α = 0X) and “most possible” values (α = 1X).

Furthermore, they can be configured as asymmetric. 
This is a necessary characteristic here as the distances  
between the “most possible” and the two extreme  
values of the number usually differ. Finally, the most 
likely (modal) value can be used as the “most possi-
ble” value of the fuzzy number (α = 1X). This will make 
things easier, since, due to human mind characteristics,  
modal (repetitive) values are easily stored mentally in 
day-to-day life.

It is not crucial whether the geometry of these fuzzy 
numbers adjusts perfectly to potentially real facts. If 
the estimates for key parameters are reliable, it is bet-
ter to apply the method presented here, or others based 
on  simulation, rather than depending on mere crisp, 

 deterministic models. Non-deterministic methods deal 
with the complexity of reality better.

3.2. Stages
Project uncertainty makes estimating the ICES and man-
aging the structural sustainability objective difficult.  
A hybrid method based on the MIVES method and fuzzy 
arithmetic has been designed to solve this. This shall now 
be referred to as Fuzzy-MIVES-EHEm. It makes it eas-
ier to manage the sustainability objective for a concrete 
structure in accordance with the assessment model found 
in Section 2. However, uncertainty must now be taken 
into account.

The first stage (Stage S1; Fig. 3) involves se-
lecting the input parameters that can be affected by a 
relevant uncertainty (fuzzy inputs). There are always 
inputs that have a higher degree of uncertainty than 
others and some variables have a greater influence than 
others on model results. It is recommended that only 
those inputs with the greatest influence over the model 
and a significantly high degree of uncertainty are es-
tablished as fuzzy. For further information about this, 
see del Caño et al. (2012).

On the other hand, the uncertainty of each variable 
can change throughout the project life-cycle. Normally 
it decreases, but specific project changes can bring un-
certainty to a variable that previously seemed certain.  
The analyst should decide in each case and, at every  
moment, which variables are fuzzy inputs.

Once the first stage has been completed, the next 
step is to estimate the values that the model inputs take 
(Stage S2). The following phase (Stage S3) consists of 
performing the previously summarized fuzzy calculations 
in order to obtain the fuzzy ICES. This stage also in-
cludes performing defuzzification, converting that fuzzy 
index into a set of crisp parameters that the designer can 
easily understand. Those parameters are analyzed by  

Fig. 3. Fuzzy-MIVES-EHEm method flowchart
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the user in the next phase (Stage S4), and the relevant 
decisions are made.

Phases S1 to S4 are performed on a periodic basis 
throughout the project’s life cycle and whenever there 
are major project changes. Continuous information col-
lection will assist the user in managing the sustainability 
objective throughout the project’s entire life cycle.

The final stage (Stage S5) is absolutely crucial. It is 
essential to compile actual final data, thus generating an 
historical database. This will make it possible in the fu-
ture to perfect the model and estimate its input variables 
more effectively. This could mean using fuzzy numbers 
with other shapes different from the triangular one sug-
gested here, but the method presented in this paper is ap-
plicable to any kind of fuzzy numbers. As a result of the 
application of this final stage in different projects, ICES 
estimation and uncertainty management will increasingly 
improve in efficiency and effectiveness.

3.3. Defuzzification: parameters generated for help 
in decision making
After performing all the calculations mentioned in  
Section 3.1, a final result will be obtained in the form of 
an ICES fuzzy number. The fuzzy number graph could 
be shown directly to the user, but a defuzzification pro-
cess must be performed to better assist decision makers.  
In our case the ICES will be a fuzzy number  different 
to triangular and trapezoidal ones, made up of  segments 
and with a shape similar to the probability histogram 
obtained through simulation (Fig. 4). Several val-
ues can be highlighted to the user. The most obvi-
ous are the minimum and maximum potential ICES 
(α = 0ICES). Moreover, the range of values correspond-
ing to α = 1ICES can be called the “range of most pos-
sible” ICES values. This can be complemented with the 
 central  value of this range.

On the other hand, specific parameters will serve to 
give the user an idea of the effect of uncertainty on the po-
tential final, real ICES, and thus about the risk of not meet-
ing the established sustainability objective. This will help 
in subsequent decision making. The authors suggest using  
the following parameters, with similarities to specific 
ones resulting from a Monte Carlo simulation:

 – The difference between the minimum and maximum 
potential ICES (α = 0ICES): the ICES range.

 – The area of the fuzzy ICES (AICES).
 – The average of the differences between the gravity 
centre of the several segments of the fuzzy ICES 
(ICESgci, for i = 1 to the n segments) and its global 
gravity centre ICESGC. This parameter can be called 
the variance of the fuzzy number (VarFN): VarFN = 
[(ICESgc1 – ICESGC)2 + (ICESgc2 – ICESGC)2 + ... +  
(ICESgcn – ICESGC)2] / n.

 – The square root of VarFN (SigmaFN).
Finally, there are another two interesting parame-

ters. The first is the ICES that leaves 95% of the fuzzy 
ICES area on its right (ICESA95%). This is a conservative 

value similar to the ICES value corresponding to a 95% 
confidence level, resulting from simulation. The other is 
the possibility of reaching a specific ICES level. This is 
calculated as the quotient between the area to the right 
side of the objective ICES and the total area (AICES) of 
the fuzzy ICES, expressed as a percentage: Pos(ICES ≥ 
ICESobj) = Aright(ICESobj)/AICES.

Despite the resemblance between the fuzzy ICES 
and the probability histograms obtained with Monte  
Carlo simulation, the defuzzification parameters men-
tioned are not the same as their probabilistic counter-
parts: modal interval and α = 1ICES; average and ICESGC; 
variance and VarFN; standard deviation and SigmaFN; 
95% confidence and ICESA95%; P(ICES ≥ ICESobj) and 
Pos(ICES ≥ ICESobj) (probability and possibility). Nev-
ertheless, those defuzzification parameters will normally 
adopt values consistent of, coherent with and close to 
those resulting from the simulation method. This will 
now be seen.

4. Case study

In this section, the method outlined here is applied to a 
case study. The results are compared to those obtained 
from applying to the same case a Monte Carlo simula-
tion method conceived for the same purpose (del Caño 
et al. 2012). This relates to a Sports Centre located in 
Galicia (North-West Spain) with a surface area of more 
than 15,000 m2. The roof sits on steel trusses and the rest 
of the structure is made of concrete.

The building has structural elements of reinforced, 
on-site poured concrete (foundations, columns, and 
beams) and pre-stressed precast concrete (stands and 
floor slabs), totalling 11,297 m3 of concrete and 902 t of 
steel reinforcement. Other concrete structure characteris-
tics are summarized in Table 1. This table also provides 
the information required to perform the corresponding 
Fuzzy-MIVES-EHEm calculations.

After applying the method, the resulting fuzzy 
ICES can be seen in Figure 4 (on the left). The potential  
ICES values at the end of the project can range from 0.25 
to 0.51 (α = 0ICES), corresponding to levels D and C of 
ICES. Most possible values should be within the [0.43, 
0.45] interval (α = 1ICES; level C). On the other hand, 

Fig. 4. Case study: fuzzy ICES for the three scenarios



932 A. D. Caño et al. Fuzzy method for analysing uncertainty in the sustainable design of concrete structures

SigmaFN = 0.051, ICESA95% = 0.28 (level D), and Pos 
(ICES level ≥ B) = 0. Applying the simulation method, 
extreme values are 0.30 and 0.51 (D and C levels), the 
probabilistic modal interval is [0.40–0.50], standard de-
viation = 0.33, P(ICES level ≥ B) = 0, and with a 95% 
confidence level, the ICES for this structure exceeds 0.36 
(level D). As can be seen, the probabilistic parameters are 
close to those obtained with the fuzzy method.

Scenario #1 of Table 3 summarizes this situation. 
The reader should take into account that the distribution 
functions used in the simulation model are not closed,  
triangular ones. Rather, they are trigen distributions 
(open ones; Hillson, Simon 2007) leaving a 5% prob-
ability of exceeding extreme values included in Table 1. 
This assumes that the user may make small errors when 
estimating extreme values.

Looking at Table 3, it is evident that significant 
changes must be made in order to achieve a relevant 
possibility of attaining a desirable sustainability objec-
tive. Potential ICES, for instance, could be raised, thus 
increasing the values for variables 12 (from 9% to 100%; 
Table 1), 38 (now 85% and 15%, respectively, for re-use 
and dumping) and 39 (now 75% for recycling and 15% 
for dumping). The new fuzzy ICES is depicted in Figure 4  
(continuous line). The results of applying both methods 
are contained in Table 3 (Scenario #2). Once again these 
are close. Minimum, maximum, modal and most pos-
sible values have now been increased. Either way, the 
possibility of attaining a B or higher level is not high. 
On the other hand, the modifications undertaken only af-
fect deterministic, crisp inputs. As a result, the level of 
uncertainty remains the same. Obviously, it is possible to 
increase potential ICES, thus diminishing uncertainty in 
some specific inputs.

Ensuring that the different companies involved 
have environmental certification, for instance, will  affect 
 inputs 2, 3, 6, 7 and 43 of Table 1 and the possibility 
of attaining a B level will be enhanced. The third fuzzy 
ICES is shown in Figure 4 (white dotted line). The  results 
from applying both methods are included in  Table 3 

Table 3. Case study: results and comparison with the deterministic and simulation methods

Method/ICES parameters Scenario #1 Scenario #2 Scenario #3
EHE model (deterministic ICES) 0.43 0.62 0.62

Monte Carlo Fuzzy Monte Carlo Fuzzy Monte Carlo Fuzzy Monte Carlo Fuzzy

Minimum α = 0ICES
0.30  

(level D) 0.25 (D) 0.49 (C) 0.44 (C) 0.55 (C) 0.53 (C)

Maximum 0.51 (C) 0.51 (C) 0.70 (B) 0.71 (B) 0.70 (B) 0.71 (B)

Modal interval α = 1ICES [0.40–0.50] 
(level C)

[0.43, 0.45] 
(level C)

[0.60–0.70]   
(level B)

[0.62, 0.64] 
(level B)

[0.60–0.70] 
(level B)

[0.62, 0.64] 
(level B)

Distribution range Range of α = 0ICES 0.21 0.26 0.21 0.27 0.15 0.18
Standard deviation SigmaFN 0.033 0.051 0.033 0.051 0.027 0.041

95% confidence ICESA95%
0.36  

(level D) 0.28 (D) 0.55 (C) 0.47 (C) 0.59 (C) 0.55 (C)

Probability  
(ICES ≥ B) Pos (ICES ≥ B) 0% 0% 63% 56% 85% 77%

 (Scenario #3) and again are similar. Modal  intervals and 
α = 1ICES retain the same values, but the uncertainty lev-
el is now lower and the likelihood of achieving a B or 
higher level is high.

Table 3 also includes the results from applying the 
deterministic EHE model, calculated using the most fre-
quent values for the input parameters. This is the most 
common way of proceeding when using deterministic 
methods. As can be seen in Table 3, the fuzzy method is 
generally more conservative than the one based on simu-
lation. On the other hand, the deterministic method does 
not give the user enough information to make adequate 
decisions.

Conclusions

It is now increasingly more common to set project sus-
tainability objectives, and not just in the construction 
sector. Uncertainty, on the other hand, poses a problem 
in estimating sustainability, especially in early project 
phases. The potential effectiveness of the sustainability 
management function is diminished and it is therefore 
much less probable that the corresponding objective is 
achieved. This makes it more difficult to apply determin-
istic, crisp assessment systems.

A probabilistic MIVES model is a potential solu-
tion to this problem. The fuzzy method presented here 
is another one. Both methods help designers and project 
managers to compare the consequences of making dif-
ferent decisions. They facilitate on-time decision making 
in order to achieve the sustainability objective. Moreo-
ver, they can be applied to other structural sustainability  
codes and models, as well as other system sustainability 
models (facades, heating systems, buildings, civil engi-
neering systems). Nevertheless, they are particularly suit-
ed to large and complex projects.

To apply these methods it is necessary to devel-
op computer tools that usually cannot be designed or  
constructed by an architect or structural engineer. Pro-
gramming such methods should not prove to be too dif-
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ficult for a software engineer or a structural engineer  
accustomed to such work. The methods are relatively 
easy to develop and implement.

In particular, that of using fuzzy arithmetic instead 
of simulation has specific pros and cons. On the one 
hand, this method is less complex and implies fewer 
calculations than the one based on simulation. It makes 
programming the corresponding algorithm process easi-
er and offers a real advantage in computation time. The 
computational time and cost can be divided by 25 to 250, 
depending on the model size.

Additionally, the authors consider that the meth-
od proposed here could be understood more easily or 
at least more speedily by practitioners. On the other 
hand, this method produces less profuse result param-
eters than those generated by simulation. Nevertheless, 
the  practitioner has a very complete set of parameters 
to help with decision making. In the authors’ opinion, 
the fuzzy method could be a better solution in specific 
cases of limited time or budget for creating the model. 
The simulation-based method can be used in other cases.
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Appendix 1
Alpha-cut-based arithmetic operations

Fuzzy sets, fuzzy numbers and alpha-cuts have been defined previously. This example considers the case of two trian-
gular fuzzy numbers X = [a, b, c] and Y = [A, B, C] whose membership functions are:

The X and Y alpha-cuts are:
αX = [(b – a) × α + a, c – (c – b) × α];

αY = [(B – A) × α + A, C – (C – B) × α].
Interval arithmetic can be applied in order to calculate the addition of X and Y, by adding up the X and Y alpha-cuts:

αX + αY = [a + A + (b – a + B – A) × α, c + C – (c – b + C – B) × α].

Making both components of αX + αY equal x:

x = a + A + (b – a + B – A) × α;

x = c + C – (c – b + C – B) × α.
Subsequently, expressing α in terms of x and setting α = 0 and α = 1 in αX + αY, we obtain α and the domain of x:

α = [x – (a + A)] / [(b + B) – (a + A)], (a + A) ≤ x ≤ (b + B);

α = [(c + C)–x] / [(c + C) – (b + B)], (b + B) ≤ x ≤ (c + C).

Resulting in the membership function μX + Y (x):

  

So if X = [a, b, c] and Y = [A, B, C], then X + Y = [a + A, b + B, c + C], obtaining the same result as that obtained by 
applying the Zadeh Extension Principle. The reader can find additional information on fuzzy arithmetic and alpha-cut 
methods in Dong et al. (1985), Kaufmann and Gupta (1985), and Ross (2010).
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