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Abstract. Model predictive control (MPC) for smart building operation management has become an increasingly popular 
and important topic in the academic community. Based on a total of 202 journal articles extracted from Web of Science, 
this study adopted a science mapping approach to conduct a holistic review of the literature sample. Chronological trends, 
contributive journal sources, active scholars, influential documents, and frequent keywords of the literature sample were 
identified and analyzed using science mapping. Qualitative discussions were also conducted explore in details the objec-
tives and data requirements of MPC implementation, different modeling approaches, common optimization methods, and 
associated model constraints. Three research gaps and future directions of MPC were presented: the selection and estab-
lishment of MPC central model, the capability and security of processing massive data, and the involvement of human 
factors. This study provides a big picture of existing research on MPC for smart building operations and presents findings 
that can serve as comprehensive guides for researchers and practitioners to connect current research with future trends. 
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Introduction

Buildings constitute one of the largest sectors of energy 
consumption and account for 20–40% of energy usage 
in the world (Pérez-Lombard et al., 2008). In the mean-
while, buildings also serve as one of the most important 
infrastructures that influence human lives by providing 
a comfortable living environment, especially consider-
ing the large amount of time for human indoor activi-
ties (US Environmental Protection Agency [EPA], 1989). 
It poses challenges in building operations to both create 
a comfortable indoor environment for occupants and 
maintain building energy efficiency, because managing the 
indoor space to be in optimal conditions is usually ener-
gy-consuming. Furthermore, the increasing penetration 
of renewable energy also introduces new requirements 
in building operations, which are critical to support the 
future smart grid with improved system integration and 
resilience (Pazheri et al., 2014).

To support smart building operation, the model pre-
dictive control (MPC) arises as one of the most promis-
ing building technologies and continuously grows with 

increasing attention from both the academic community 
and industry experts these years (Hilliard et  al., 2016). 
Specifically, the MPC is the control technique that utilizes 
central models to forecast future building status with dif-
ferent control signals and solves optimization to generate 
optimal building control sequence for predictive control 
under user-specified constraints (Serale et al., 2018). As 
the key components of MPC, central models usually re-
quire measured system status (e.g., indoor temperature) 
and forecasted disturbance (e.g., outdoor weather, occu-
pant activity) as inputs (Zhan & Chong, 2021). Thanks 
to the wide adoption of sensing techniques and building 
management systems, continuous stream of sensing data 
further empowered the development of MPC to be ma-
ture and applicable with consistent and satisfactory per-
formance in practice. Employed as the supervisory con-
trol of buildings, MPC has been developed and applied to 
achieve smart building operation with various purposes, 
such as improved energy efficiency and thermal comfort 
(Yang et al., 2020), demand response to support reliable 
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grid operation (Bianchini et al., 2016), and a healthy liv-
ing environment for occupants (Ganesh et al., 2019). MPC 
has become a critical component for enhanced building 
intelligence.

Given the increasing popularity of MPC for smart 
building operation management, previous researchers 
have conducted various qualitative reviews in this field. 
Serale et al. (2018) summarized the formulation of MPC 
and Afram and Janabi-Sharifi (2014) investigated prin-
ciples and influential settings in MPC application. Other 
works summarized the MPC technique for smart build-
ing operation management from various detailed techni-
cal perspectives, such as usable models in MPC (Rockett 
& Hathway, 2017), optimizations in MPC development 
(Mariano-Hernández et al., 2020), data requirements and 
incorporation in MPC setup and formulation (Zhan & 
Chong, 2021; Mirakhorli & Dong, 2016), and AI-support 
MPC (Merabet et  al., 2021). In addition to technology, 
researchers have also summarized relevant works from 
purpose perspectives, including for building-integrated 
microgrids operations (Fontenot & Dong, 2019), for re-
newable energy (Sultana et  al., 2017), and for building 
energy flexibility (Kathirgamanathan et al., 2021). 

These previous reviews (Afram & Janabi-Sharifi, 2014; 
Rockett & Hathway, 2017; Mariano-Hernández et  al., 
2020; Mirakhorli & Dong, 2016; Merabet et  al., 2021; 
Fontenot & Dong, 2019; Sultana et al., 2017; Kathirgam-
anathan et al., 2021) have made valuable contributions to 
the current body of knowledge, but they are manual and 
qualitative reviews. Few works have adopted a sciento-
metric analysis approach to conduct a systematic review. 
Additionally, none of them has utilized any graphic rep-
resentation to discover the inherent relationships among 
those research works. Motivated by the fact that humans 
present strong visual processing abilities and are therefore 
better at discovering domain knowledge when it is pre-
sented in graphical forms (Felizardo et  al., 2011; Keim, 
2002), we utilized a science mapping approach to conduct 

a review of MPC for smart building operation manage-
ment to complement existing qualitative reviews. 

This paper is organized as follows. Section 1 outlines 
the research methodology and literature discovery and 
retrieval strategy. Results of science mapping analysis to-
gether with different knowledge graphs are presented in 
Section 2. Section 3 provides qualitative discussions and 
insights of the analytical results and discusses research 
themes, gaps, and trends. Final section draws the conclu-
sions. The findings in this research are expected to pro-
vide researchers and practitioners with a thorough under-
standing of the status quo and evolving trends of MPC 
for smart building operation management research and 
facilitate future studies in this domain. 

1. Methodology

This section discusses the review methodology adopted 
in this research: literature search, science mapping, and 
qualitative discussion. Detailed research workflow is il-
lustrated in Figure 1. 

1.1. Literature-based discovery 

Web of Science was chosen as the literature-based discov-
ery (LBD) and information retrieval database, because of 
its wide literature coverage and good compatibility with 
different science mapping tools (Van Eck & Waltman, 
2014). Both the backward expansion method and query-
based lexical search method were utilized to generate an 
initial list of papers that fit the scope of this review. Back-
ward expansion starts from recently published reviews by 
domain experts (Chen & Song, 2019), and query search 
complements the document list by incorporating papers 
of most recent years (2018–2021) that may have not been 
covered by existing reviews. The search was carried out 
using the query of “(model predictive control) AND 
(building energy)” for topic search in the Web of Science 
Core Collection database. 

Figure 1. Detailed workflow of the proposed research
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From the initial list of 1,862 documents, proceeding 
papers, reviews, and book chapters were removed and 
1,390 journal articles published in English remained. Ti-
tles and abstracts of the remaining articles to were manu-
ally reviewed to conduct further screening, and articles 
that are not related to MPC but related to various other 
topics were excluded. Since this review focuses on the 
applications of MPC on building operation, studies rel-
evant to the application of MPC in other fields, such as 
microgrid operation (Craparo et al., 2017; Menon et al., 
2016), were excluded. Besides, articles that focus only on 
building modeling approaches but do not contain any 
control designs (Zhu et al., 2019; De Coninck et al., 2016) 
were also removed from this review to make the target 
of this review specific to MPC. Eventually, a total of 202 
journal articles were selected to the best of our knowledge 
to be the literature sample for the following science map-
ping and qualitative discussions in this study.

1.2. Science mapping

Science mapping is a generic process of domain analysis 
and visualization (Chen, 2017), and it has been broadly ap-
plied to facilitate systematic literature reviews of scientific 
research both within the scope of smart building opera-
tions (Sepasgozar et al., 2020; Kim et al., 2021) and within 
other different fields (Jin et al., 2019; Martínez et al., 2015; 
Hallinger & Kovačević, 2019). Two prominent science 
mapping tools were utilized in this research: VOSViewer 
(Van Eck & Waltman, 2010) and CiteSpace (Chen, 2006). 
VOSViewer leverages a distance-based approach to visual-
ize bibliometric networks of units (represented as nodes), 
including source journals, authors, organization, coun-
tries, keywords (Van Eck & Waltman, 2014). The distances 
between those nodes reflect the relatedness of those units 
measured in different metrics, such as co-authorship, 
shared references, co-occurrence, etc. However, VOSView-
er is not good at handling timeline-based analysis, which 
is a critical step of conducting bibliometric analysis. Since 
each publication can be linked to a specific point in time 
based on its publication date, timeline-base analysis is use-
ful for understanding temporal relations among existing 
research topics and identifying the emergence of new re-
search topics (Morris et al., 2003). Fortunately, CiteSpace 
has a strong focus on timeline-based visualization and can 
facilitate insights on how bibliometric networks evolve 
over time (Van Eck & Waltman, 2014). It also provides 
users with the flexibility of using different text-clustering 
algorithms to generate visualization results. Considering 
the analytical results of VOSViewer and CiteSpace can 
complement each other, we decided to use both tools in 
this research for different analytical purposes.

1.3. Qualitative discussions

Finally, in-depth discussions were made to explore re-
search works on MPC for smart building operation man-
agement from different perspectives. Objectives of such 
discussions include summarizing ongoing main research 

topics, categorizing purposes of MPC, setting out proce-
dures of MPC methodology, pointing out existing research 
gaps, and suggesting future research directions. 

2. Science mapping

This section contains various results of the science map-
ping analysis and corresponding discussions, all of which 
were conducted based on the entire literature sample of 
all 202 journal articles. It starts with the chronological 
distribution of the literature sample, and then journal 
source analysis, scholar analysis, keywords analysis, and 
document analysis were carried out using VOSViewer. Fi-
nally, timeline-based analysis and citation burst analysis 
was conducted using CiteSpace to explore research topic 
evolution over time. 

2.1. Chronological distribution  
and journal source analysis

We first summarized the literature sample according to 
their publication year, and displayed their chronological 
distribution in Figure 2. Based on the number of publica-
tions of each year, we divided the entire timespan into 
three stages: stage one (2000–2010), stage two (2011–
2013), and stage three (2014–2021). In stage one, fewer 
articles were published and the average number of arti-
cles was only 2.11. Stage two worked as a short interim 
period between the other two stages, where the average 
number climbed up to 7.67. In stage three, the number of 
publications significantly surged and the average number 
of articles had increased to 20.13 per year. The number of 
articles published in this stage accounted for 79% of the 
literature sample, indicating that MPC for smart building 
operation management had drawn increasing attention in 
academia in recent years. 

Next, we summarized the literature sample according 
to their journal sources. After setting the minimum num-
ber of documents of a journal source at 2 in VOSViewer, 
16 out of 24 journal sources remained and were displayed 
in Figure 3. Each note represents a journal source and the 
size of the note denotes the number of documents from 

Note: 1. Blue histogram denotes the number of articles published 
in each year; 2. Red dotted line denotes the average number for 
each stage.

Figure 2. Chronological distribution of journal articles
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that journal source. The distance between two nodes ap-
proximately reflects the number of times they cite each 
other (Van Eck & Waltman, 2014). The color of a node 
demonstrates the cluster to which the node has been as-
signed, and each cluster contains a set of closely related 
nodes that are automatically determined by VOSViewer 
using a smart local moving average algorithm (Van Eck & 
Waltman, 2014; Waltman et al., 2010; Waltman & Van Eck,  
2013). Figure 3 shows that Energy and Buildings has made 
the biggest contribution in terms of the number of publi-
cations, followed by Applied Energy, Building and Environ-
ment, and Energy. It also shows that Energy and Buildings, 
Applied Energy, and Energy have been classified into the 
same cluster, because they have been actively citing each 
other and are therefore more closely related. 

Table 1 summarized the quantitative measurement of 
the top journal sources based on the number of publi-

cations. Publications from Energy and Buildings, Applied 
Energy, and Building and Environment had accounted for 
more than 60% of the literature sample and had received 
the most average citation. To adjust for the fact that older 
documents have had more time to receive citations than 
more recent documents, VOSViewer introduced and 
implemented the measurement of normalized citation, 
which equals the number of citations of a document di-
vided by the average number of citations of all documents 
published in the same year (Van Eck & Waltman, 2020). 
Publications from Applied Energy and Sustainable Cities 
and Society have received the highest average normal-
ized citation. According to the average publication year, 
documents of Building and Environment were published 
at an earlier stage, and documents of Sustainable Cities 
and Society, Energies, and Journal of Process Control are 
more recent. 

Table 1. Top journal sources in terms of number of publications

Journal Source Number of 
publications

Total 
citation

Average 
publication year

Average 
citation

Normalized 
citation

Average normalized 
citation

Energy and Buildings 74 4058 2015 54.84 63.23 0.85
Applied Energy 32 1629 2017 50.91 51.79 1.62
Building and Environment 20 1243 2012 62.15 18.65 0.93
Energy 11 481 2017 43.73 9.58 0.87
Energy and Conversion Management 9 205 2016 22.78 7.01 0.78
Journal of Building Performance Simulation 8 231 2015 28.88 4.26 0.53
Sustainable Cities and Society 6 142 2019 23.67 6.93 1.16
Energies 5 4 2020 0.80 0.28 0.06
Journal of Process Control 5 53 2020 10.60 4.28 0.86

Figure 3. Visualization of journal sources that publish MPC for smart building operation management research
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2.2. Scholar analysis and keywords analysis

Besides journal sources, we also summarized the litera-
ture sample according to their authors. After setting the 
minimum number of documents of an author at 2 in 
VOSViewer, 120 out of 596 scholars remained and were 
displayed in Figure 4. Each note represents a scholar and 

the size of the note denotes the total number of citations 
that scholar has received. More related scholars are lo-
cated closer and their in-between distance approximately 
denotes the number of times they cite each other. Table 2 
summarized the impacts of the top twenty scholars sorted 
by their number of citations. It is seen in Table 2 that Ol-
dewurtel F., although with only two articles, has achieved 

Figure 4. Visualization of scholars in the field of MPC research

Table 2. Top twenty scholars in terms of the number of citations

Scholar name Number of 
publications

Total 
citation Average publication year Average 

citation
Normalized 

citation
Average normalized 

citation
Oldewurtel, F. 2 1032 2012 516.00 6.4 3.20
Cigler, J. 6 866 2012 144.33 6.13 1.02
Privara, S. 4 804 2012 201.00 4.88 1.22
Siroky, J. 3 692 2012 230.67 4.29 1.43
Gwerder, M. 3 679 2013 226.33 5.04 1.68
Gyalistras, D. 2 660 2013 330.00 4.64 2.32
Lehmann, B. 2 660 2013 330.00 4.64 2.32
Parisio, A. 2 608 2017 304.00 3.85 1.93
Wang, S. 7 543 2011 77.57 8.94 1.28
Ferkl, L. 2 320 2012 160.00 1.95 0.98
Bourdais, R. 3 246 2013 82.00 2.14 0.71
Ferreira, P. M. 2 239 2014 119.50 2 1.00
Ruano, A. E. 2 239 2014 119.50 2 1.00
Silva, S. 2 239 2014 119.50 2 1.00
Ghiaus, C. 3 235 2013 78.33 1.81 0.60
Hazyuk, I. 3 235 2013 78.33 1.81 0.60
Penhouet, D. 3 235 2013 78.33 1.81 0.60
Henze, G. P. 5 219 2015 43.80 3.81 0.76
Kozek, M. 5 218 2016 43.60 5.7 1.14
Killian, M. 4 199 2016 49.75 5.21 1.30
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the highest total citation, average citation, as well as aver-
age normalized citation. In terms of the number of pub-
lications, Wang, S., Cigler, J., Henze, G. P., and Kozek, M. 
are most productive. In terms of both average citation and 
average normalized citation, Oldewurtel, F., Gyalistras, D., 
and Lehmann, B. are on the top of the list. It is also in-
teresting to find that the average publication year of most 
researchers listed in Table 2 is between 2012 and 2013, and 
Parisio, A., Kozek, M., and Killian, M. are more active in 
recent years. 

Keywords, including both Author Keywords that au-
thors believe best represent the context of their paper (Li 
et al., 2009) and Keywords Plus that appear frequently in 
the titles of an article’s references and not necessarily in 
the title of the article or as Author Keywords (Garfield, 
1990; Garfield & Sher, 1993; Zhang et al., 2016), are criti-
cal textual information for scientific publications. Before 
conducting keyword analysis using VOSViewer, a critical 
step of textual data pre-processing is needed because dif-
ferent written expressions can semantically mean the same 
thing. Most textual analysis tools, including VOSViewer, 
however, would treat them differently if no data pre-pro-
cessing is conducted. In the context of this research, for 
example, “model-predictive control”, “model predictive 
control (mpc)”, and “mpc” all equal to “model predictive 
control”. This step can be done by sorting all keywords in 
alphabetical order and manually unifying those different 
written expressions. After setting the minimum number 
of occurrences of a keyword at 5 in VOSViewer, 62 out 

of 840 keywords were selected and visualized in Figure 5.  
Each note denotes a keyword, the size of the note repre-
sents the number of occurrences of that keyword, and the 
distance of two keywords approximately demonstrates the 
number of co-occurrences of the two keywords. Top ten 
keywords are model predictive control (113), optimiza-
tion (50), system (44), thermal comfort (34), management 
(28), performance (28), demand response (28), energy 
(26), simulation (25), predictive control (20), where the 
numbers in parentheses denote occurrences.

Figure 5 shows that from a methodology perspective, 
“model predictive control” usually relies on “simulation” 
to achieve the “predictive control” and “optimization” 
(methods including “genetic algorithm” and “particle 
swarm optimization”) and to find the optimal solutions 
in building management. Currently, “model predictive 
control” has already been applied to both “commer-
cial buildings” and “residential buildings”, especially to 
smartly control the “hvac system” or “heating system”. For 
the purpose of MPC, it has been most widely utilized to 
achieve improved “thermal comfort” and “energy efficien-
cy”. With the trend of emerging renewable energy, recent 
studies further extended MPC to “demand response” and 
“demand-side management”, such as the utilization of “en-
ergy flexibility”, “thermal energy storage”, “mass” in build-
ings, and “microgrid” support. In addition to the energy, 
thermal comfort criteria, such as “predicted mean vote”, 
is also an important dimension to consider in the MPC 
formulation. 

Figure 5. Visualization of highly occurred keywords
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2.3. Document analysis, timeline-base  
analysis, and citation burst
Besides keywords, we also summarized the relationship 
between each document. After setting the minimum cita-
tions of a document at 50 in VOSViewer, 60 connected 
documents were selected and displayed in Figure 6. Each 
note represents a document and the size of the note de-
notes the total number of citations that the document has 
received. More related documents are located closer and 
their in-between distance approximately denotes the num-
ber of references they share.

Table 3 summarized the impacts and contents of the 
top twenty most-cited documents sorted by their number 
of citations. Energy efficiency and thermal comfort are 
two of the most important dimensions in building con-
trol, and most relevant papers have proposed MPC with 
either multi-objective optimization to simultaneously 
achieve energy-efficient operation and improved thermal 
comfort (Ferreira et al., 2012; Hazyuk et al., 2012; Ascione 
et al., 2016), or a single objective to enhance energy ef-
ficiency or thermal comfort without compromising the 
other in the MPC formulation (Oldewurtel et  al., 2012; 
Privara et al., 2011; Freire et al., 2008; Fong et al., 2006; 
Maasoumy et  al., 2014). These highly cited articles also 
demonstrated that MPC could be utilized to optimize in-
door air quality (IAQ), such as the CO2 concentration, 
by controlling the heating, ventilation, and air condition-
ing (HVAC) air supply (Wang & Jin, 2000; Mossolly et al., 
2009; Kolokotsa et  al., 2009). With the increasing pen-
etration of renewable energy resources, researchers have 
applied MPC to improve building and renewable energy 
(e.g., photovoltaic) integration (Shakeri et al., 2017) and 
to minimize the energy cost during building operation 
(Chen et al., 2013; Avci et al., 2013). It is worthy to note 

that energy cost saving does not necessarily stem from 
building energy efficiency measures. Although improving 
energy efficiency could help save energy cost, the energy 
cost saving could also be achieved through considering 
dynamic electricity pricing in the MPC formulation, as 
demonstrated in Chen et al. (2013) and Avci et al. (2013). 
In MPC operation, uncertainties (Maasoumy et al., 2014), 
optimal utilization of thermal mass (Privara et al., 2011; 
Ferreira et al., 2012), and occupancy (Dong & Lam, 2014) 
are all important dimensions to be considered. Besides be-
ing deployed as a central control strategy, distributed MPC 
has also been developed to regulate indoor thermal con-
ditions (Moroşan et al., 2010). Finally, these highly cited 
articles also present the validation of MPC in real building 
settings (Široký et al., 2011; Ferreira et al., 2012), which 
could serve as important evidence for the applicability of 
MPC in practice. 

CiteSpace enables timeline-based analysis by analyzing 
the cited references of selected articles, and two types of 
timeline analysis were conducted in this review: timeline-
based document clustering and citation burst. After select-
ing the top 5% of most cited references from each year, we 
kept 295 documents to be classified into different clusters 
and had them visualized in a timeline-based manner as 
shown in Figure 7. Clusters and corresponding labels were 
automatically identified and generated by CiteSpace using 
the log-likelihood ratio algorithm based on the keywords 
of each document. Documents belonging to “distributed 
model predictive control” first appeared in 2005, followed 
by those belonging to “energy efficiency” and “multi-
objective optimization”. Other clusters, including “smart 
buildings”, “demand response”, “building automation and 
control” and “energy flexibility” are more recent ones as 
shown in Figure 7. 

Figure 6. Visualization of highly cited articles
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Citation burst analysis, which detects publications 
that have a surge of citations over certain periods of time 
(Cipresso et al., 2018), was also conducted with the help 
of CiteSpace that uses Kleinberg’s algorithm (Kleinberg, 
2003). The top-ranked document by bursts is Oldewurtel 
et al. (2012) in Cluster #0, with burst strength of 8.46. The 
second is Privara et  al. (2011) in Cluster #0, with burst 
strength of 8.43. The third is Široký et al. (2011) in Clus-
ter #0, with burst strength of 7.76. The fourth is Moroşan 
et al. (2010) in Cluster #0, with burst strength of 6.59. The 
fifth is May-Ostendorp et  al. (2011) in Cluster #0, with 
burst strength of 4.85. The sixth is Ferreira et al. (2012) 

in Cluster #0, with burst strength of 4.54. The seventh 
is Pérez-Lombard et al. (2008) in Cluster #0, with burst 
strength of 4.41. The eighth is Ma et al. (2012) in Cluster 
#0, with burst strength of 4.39. The ninth is Freire et al. 
(2008) in Cluster #8, with burst strength of 4.14. The 
tenth is Afram and Janabi-Sharifi (2014) in Cluster #0, 
with burst strength of 4.01. Results showed that most top 
articles in the citation burst analysis belong to Cluster #0, 
indicating the significant importance of ‘energy efficiency’ 
in this field. Table 4 displays the results of citation burst 
analysis sorted by chronological order.

Table 3. Top twenty highly cited articles in the literature sample

Article Title Total 
citation

Normalized 
citation

Oldewurtel et al. (2012) Use of model predictive control and weather forecasts for energy efficient 
building climate control

608 3.85

Široký et al. (2011) Experimental analysis of model predictive control for an energy efficient 
building heating system

424 2.56

Privara et al. (2011) Model predictive control of a building heating system: The first experience 255 1.54
Freire et al. (2008) Predictive controllers for thermal comfort optimization and energy savings 223 2.41

Moroşan et al. (2010) Building temperature regulation using a distributed model predictive 
control

216 1.51

Ferreira et al. (2012) Neural networks based predictive control for thermal comfort and energy 
savings in public buildings

214 1.35

Fong et al. (2006) HVAC system optimization for energy management by evolutionary 
programming

202 1.54

Wang and Jin (2000) Model-based optimal control of VAV air-conditioning system using genetic 
algorithm

173 1.49

Mossolly et al. (2009) Optimal control strategy for a multi-zone air conditioning system using a 
genetic algorithm

168 1.69

Chen et al. (2013) MPC-Based Appliance Scheduling for Residential Building Energy 
Management Controller

154 2.36

Hazyuk et al. (2012) Optimal temperature control of intermittently heated buildings using 
Model Predictive Control: Part I – Building modeling

133 0.84

Ben-Nakhi and Mahmoud 
(2002) 

Energy conservation in buildings through efficient A/C control using 
neural networks

132 1.00

Avci et al. (2013) Model predictive HVAC load control in buildings using real-time 
electricity pricing

122 1.87

Dong and Lam (2014) A real-time model predictive control for building heating and cooling 
systems based on the occupancy behavior pattern detection and local 
weather forecasting

113 2.40

Killian and Kozek (2016) Ten questions concerning model predictive control for energy efficient 
buildings

112 2.89

Kolokotsa et al. (2009) Predictive control techniques for energy and indoor environmental quality 
management in buildings

111 1.12

Maasoumy et al. (2014) Handling model uncertainty in model predictive control for energy 
efficient buildings

109 2.32

Ascione et al. (2016) Simulation-based model predictive control by the multi-objective 
optimization of building energy performance and thermal comfort

105 2.71

Thomas et al. (2018) Optimal operation of an energy management system for a grid-connected 
smart building considering photovoltaics’ uncertainty and stochastic 
electric vehicles’ driving schedule

105 4.01

Shakeri et al. (2017) An intelligent system architecture in home energy management systems 
(HEMS) for efficient demand response in smart grid

105 2.86

https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02086/full?fbclid=IwAR35XFsBW0V7oe5NVb7Oq_3nJl4xvWd3zijbNUNXXPMQNcSz6AxV7oj4KP0#T3
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3. Qualitative discussions

Following previous bibliometric analysis and science map-
ping results, this section provides in-depth qualitative dis-
cussions of research works on MPC for smart building op-
eration management. Compared to previous reviews, the 
paper not only provided the most up-to-date summary for 

typical application of MPC on smart building operation, 
but also detailly reviewed critical components in MPC, 
including the objectives and data requirements of MPC 
implementation, specific modeling approaches, optimiza-
tion methods, and associated constraints. Research gaps 
and corresponding future directions of MPC were also 
presented in this section. 

Figure 7. Visualization of reference documents clustering in a timeline-based manner

Table 4. Top ten articles popped up in the citation burst analysis sorted chronologically 

References Title Strength Begin End 2000–2021

Freire et al. 
(2008)

Predictive controllers for thermal comfort 
optimization and energy savings

4.14 2010 2013
■■■■■■■■■■■■■■■■■■■■■■

Moroşan et al. 
(2010) 

Building temperature regulation using a 
distributed model predictive control

6.59 2011 2015
■■■■■■■■■■■■■■■■■■■■■■

Pérez-Lombard 
et al. (2008) 

A review on buildings energy consumption 
information

4.41 2011 2013
■■■■■■■■■■■■■■■■■■■■■■

Privara et al. 
(2011) 

Model predictive control of a building 
heating system: The first experience

8.43 2012 2016
■■■■■■■■■■■■■■■■■■■■■■

Široký et al. 
(2011) 

Experimental analysis of model predictive 
control for an energy efficient building 
heating system

7.76 2012 2016
■■■■■■■■■■■■■■■■■■■■■■

Oldewurtel 
et al. (2012) 

Use of model predictive control and 
weather forecasts for energy efficient 
building climate control

8.46 2013 2017
■■■■■■■■■■■■■■■■■■■■■■

May-Ostendorp 
et al. (2011) 

Model-predictive control of mixed-mode 
buildings with rule extraction

4.85 2014 2016
■■■■■■■■■■■■■■■■■■■■■■

Ferreira et al. 
(2012)

Neural networks based predictive control 
for thermal comfort and energy savings in 
public buildings

4.54 2015 2017
■■■■■■■■■■■■■■■■■■■■■■

Ma et al. (2012) Model Predictive Control for the 
Operation of Building Cooling Systems

4.39 2015 2017
■■■■■■■■■■■■■■■■■■■■■■

Afram and 
Janabi-Sharifi 
(2014) 

Theory and applications of HVAC control 
systems – A review of model predictive 
control (MPC)

4.01 2016 2019
■■■■■■■■■■■■■■■■■■■■■■
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In summary, MPC has been widely used to improve 
both energy efficiency and building indoor environment 
and increasingly applied to facilitate building and renew-
able energy integration. White-box and grey-box building 
modeling usually serve as the central model in MPC op-
eration, while data-driven modeling have gained popular-
ity in recent years due to the enhanced data availability. 
Depending on the nature of the problem, linear or nonlin-
ear programming, evolutionary algorithms, and stochas-
tic optimization are mainstream optimization methods in 
MPC. Thermal comfort and physical capacity of systems 
are typically formulated as constraints in solving the op-
timization problem. The selection and establishment of 
MPC central model, the capability and security of process-
ing massive data, and the involvement of human factors 
constitute the major research gaps for the advancement of 
MPC techniques. These findings with details below will 
provide a comprehensive overview to facilitate the under-
standing of current status of MPC development from the 
holistic view to detailed components. 

3.1. Purpose of MPC

3.1.1. Improve energy efficiency  
and indoor environment
Improving building energy efficiency will reduce opera-
tion costs and greenhouse gas emissions, and it is there-
fore of significant importance with environmental, eco-
nomic, and social benefits. In the meanwhile, buildings 
are designed and operated to maintain a comfortable 
indoor environment for building occupants as one of 
the basic requirements. Thus, for the purpose of the ap-
plication, MPC is mostly developed to achieve improved 
energy efficiency and at the same time ensure a comfort-
able indoor environment with respect to either thermal 
comfort or IAQ (Privara et al., 2011; Mossolly et al., 2009; 
Ascione et al., 2016). The settings of HVAC systems, such 
as on/off status (Chen et  al., 2018), supply air tempera-
ture and airflow rate (Fontenot & Dong, 2019) indoor 
temperature setpoints (Aftab et  al., 2017), are optimally 
adjusted according to the control aims. The control aim 
can be reflected in the objective functions of MPC control, 
of which simultaneous optimization of energy efficiency 
and indoor environment status (Cigler et al., 2012; Chen 
et al., 2015), minimization of energy consumption while 
maintaining thermal comfort (Ferreira et al., 2012; Dobbs 
& Hencey, 2014; West et al., 2014) or IAQ (Ganesh et al., 
2021), and optimized thermal comfort (Freire et al., 2008; 
Castilla et al., 2011) are commons ones in MPC for smart 
building operation. Reducing the environmental impacts, 
such as minimizing CO2 emission (Knudsen & Petersen, 
2016) could also be incorporated into the control objective 
function as well. 

3.1.2. Meet demand response
In addition to enhancing energy efficiency and the indoor 
environment, the increasing adoption of renewable energy 
resources poses new challenges to building operation, i.e., 

requiring buildings to shift from reactive to active roles 
in power management to ensure stable power system op-
erations. Hence, to compensate for the intrinsically inter-
mittent and variable nature of electricity generation from 
renewable energy, MPC was also widely used to support 
demand response, when buildings are operated to curtail 
or shift electricity to respond to grid signals and finan-
cial incentives. Lower peak load and better load balancing 
(Shakeri et al., 2017) are aims of smart building operations 
to be achieved by MPC (Biyik & Kahraman, 2019). Still, 
building HVAC systems are a major energy flexibility re-
source utilized by MPC in demand response (Vedullapalli 
et al., 2019). Building thermal mass is considered as an-
other important thermal storage in buildings to absorb or 
release heat in smart building operation, despite the chal-
lenges in accurately modeling system coupling and ther-
mal dynamics of buildings (Kathirgamanathan et al., 2021; 
Hu et  al., 2019). Currently, demand response is usually 
implemented in commercial buildings (Vedullapalli et al., 
2019). These years, MPC for demand response in resi-
dential buildings has become a possibility as the growing 
acceptability and the deployment of smart home energy 
management (Oldewurtel et al., 2012; Godina et al., 2018). 
If buildings have distributed renewable energy (such as 
PV panels) deployed on site, the variable generation from 
these renewable energy resources should be considered 
to ensure the load balancing and reduced grid impacts of 
buildings in the smart building operation (Thomas et al., 
2018; Wanjiru et al., 2017). 

3.2. Methodology of MPC

3.2.1. Data
Data is the basis for smart building operation. It is not 
only necessary to build the central model of MPC, but 
also a critical component in the control feedback loop 
so that building operations can be optimized in a real-
time manner. Overall, usable data in MPC include both 
static data, such as the building construction details for 
the central model establishment, and dynamic data that 
reflects building operation and environment status, such 
as metered energy consumption, indoor temperature and 
activities, weather conditions, and HVAC operation status 
(Zhan & Chong, 2021). To support smart building opera-
tion, data needs to be collected at different intervals (e.g., 
15 minutes, half an hour, hourly, or daily) and spatial 
resolutions (building, system, and component level), and 
different MPC application scenarios impose different data 
requirements in practice. For example, building construc-
tion information is heavily used in white box modeling to 
serve as the central model of MPC (Ascione et al., 2016; Li 
& Malkawi, 2016). Room temperature is usually required 
in the identification of greybox modeling approaches (An-
driamamonjy et al., 2019; Arroyo et al., 2020). Historical 
energy consumption can be acquired for energy manage-
ment system development with MPC (Bartolucci et  al., 
2019). Information of occupant thermal comfort could 
be collected as feedback of MPC decision makings (West 
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et al., 2014). To support smart building operations with 
MPC, the most frequently collected data include indoor 
and outdoor environmental variables (e.g., indoor and 
outdoor air temperature, indoor relative humidity, and air 
velocity) and occupant relevant information (e.g., thermal 
comfort, occupancy status) (Merabet et al., 2021).

3.2.2. Model
Central building models are one of the most critical 
components in MPC. These central models predict the 
required building energy and indoor thermal dynamics, 
and they both serve as the optimization inputs to gen-
erate optimal building operation decisions in the control 
horizon. Hence, an accurate and reliable central model 
in MPC is crucial to ensure the applicability of MPC in 
practice. Existing building models in MPC applications 
include white-box (physics-based) modeling, black-box 
(data-driven) modeling, and grey-box (combination of 
both) modeling. 

3.2.2.1. White-box modeling
White-box modeling is physics-based and it relies on 
physics principles to describe the fundamental heat and 
mass balance of buildings. With decades of development, 
white-box modeling has become relatively mature with 
several well-developed simulation engines, such as Ener-
gyPlus (Crawley et al., 2001) and TRNSYS. Based on com-
plex physics laws, white-box modeling could accurately 
model building thermal dynamics and simulate energy 
consumption of different types of building systems. On 
the other hand, however, a massive number of model in-
puts can be required in model establishment based on en-
gineering experience or actual measurement. This makes 
the white-box modeling process expertise-demanding and 
error-prone, resulting in deviations of simulation results. 
It is common to observe missing input parameters during 
the model establishment process. The complexity of white-
box modeling also makes it computational-intensive, thus 
introducing another major barrier that hinders its usabil-
ity in the MPC framework since repetitive computation 
is required in the optimization process. To counteract the 
side effects of complex physics-based modeling, model re-
duction techniques, such as iterative approaches (De Rosa 
et  al., 2019) and Balanced Truncation (Robillart et  al., 
2019), have been utilized to reduce the model complexity 
while preserving the model structure, to minimize the ac-
curacy loss of physics-based simulation.

Several previous works have utilized white-box model-
ing for MPC. For example, Salakij et al. (2016) developed 
the building energy analysis model (BEAM) for building 
heat and moisture transfer prediction, which was incor-
porated into MPC to optimally adjust HVAC setpoints 
for energy efficiency and building load reduction. Schir-
rer et al. (2016) developed high-fidelity building models 
to support MPC in heating and cooling control consider-
ing energy efficiency and thermal comfort. Bianchini et al. 
(2019) utilized white-box modeling for a large commercial 

building and integrated it with a two-stage optimization 
strategy to optimize heat pump and electricity operation 
considering PV generation. For residential buildings, 
Ruusu et  al. (2019) demonstrated significant savings of 
housing operations using the developed energy manage-
ment system with MPC and detailed building models as 
the core. Physics-based models for buildings and HVACs 
along with micro-scale concentrated solar power were es-
tablished to support MPC aiming to reduce building op-
eration costs (Toub et al., 2019). 

3.2.2.2. Black-box modeling
The advancement of computational power and increas-
ingly wide adoption of IoT infrastructure have opened 
opportunities for continuous sensing data collection and 
big data analysis to enable improved decision-making. As 
one application of using data to support decision mak-
ing, data-driven building modeling has become a rising 
technique that attracted attention from both the research 
community and industry these years (Sun et  al., 2020). 
Instead of relying on building physics, data-driven mod-
els utilize mathematical modeling to represent building 
dynamics (Bourdeau et  al., 2019). To train such mod-
els, building indoor environmental conditions such as 
the indoor temperature and system sensing data such as 
airflow rate measurement and outdoor weather data are 
commonly used as model inputs (Li & Malkawi, 2016). 
On the other hand, indoor temperature and building en-
ergy consumption are usual model outputs to be utilized 
in the MPC (Huang et al., 2015a; Bünning et al., 2020). 
Black-box modeling is computationally much less in-
tensive compared to white-box modeling, offering great 
advantages in the MPC optimization process. Once the 
framework for model training is established, it is easy 
to automate the training process across different types 
of buildings, and such a process would require much 
less domain knowledge or engineering efforts compared 
with white-box modeling. However, since data-driven ap-
proaches only rely on data in the model training process, 
data quality is critical in determining model robustness. 
A massive amount of data covering diverse scenarios of 
building operations would be required to train an effective 
data-driven building model usable in building prediction. 
Feature identification is important to establish a robust 
data-driven building model as well. Another drawback of 
applying data-driven modeling is its “black-box” nature, 
i.e., the model parameters are unexplainable with phys-
ics meanings, affecting the credibility of its application in 
practice. Building robust data-driven models will require 
relevant computer science knowledge that could be out of 
the expertise of building engineers. 

Despite the advantages and disadvantages of data-
driven building modeling, various data-driven methods 
have been deployed in MPC to support optimal decision-
making in building energy management. Among those 
works, neural network is one of the most widely used ma-
chine learning algorithms in modeling building dynamics. 
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Chen et al. (2018) developed a neural network model as 
the central model of MPC to smartly operate mechanical 
and natural ventilation of buildings, aiming to optimize 
building energy efficiency while maintaining comfort. 
Similarly, Chaudhuri et al. (2019) proposed a framework 
that uses neural network to predict building HVAC con-
sumption and locate the optimal operating state such that 
the energy consumed to maintain indoor comfort is mini-
mized. Kusiak et  al. (2014) have employed a multilayer 
perceptron neural network to predict building HVAC en-
ergy consumption and indoor environment and applied 
interior-point method to generate optimal HVAC control 
sequence. Neural Network can also be employed to fore-
cast renewable energy generation to facilitate the smart 
operation of zero-energy buildings with MPC (Megahed 
et al., 2019). In addition to neural network, various other 
methods have been adopted to support black-box mod-
eling in MPC. Ríos-Moreno et  al. (2007) evaluated the 
usability of linear autoregressive models to model indoor 
temperature for intelligent building operation support. 
Auffenberg et al. (2017) utilized the Bayesian network to 
establish a personalized thermal comfort model and fur-
ther integrated it into an optimal HVAC control algorithm 
to minimize energy consumption. Random forest was uti-
lized to infer indoor temperature of buildings in the next 
24 hours under different HVAC control schedules (HVAC 
On/Off) to optimize the building heating and cooling en-
ergy efficiency in real building settings (Manjarres et al., 
2017). Similarly, the subspace modeling approach was 
used to represent building dynamics and integrated into 
MPC to achieve heating energy saving for a campus build-
ing (Privara et al., 2011). Support vector regression was 
applied to model HVAC systems and used as part of MPC 
for optimal HVAC control (Xi et al., 2007). Long short-
term memory (LSTM) with attention mechanism was 
utilized as the central model for indoor temperature in 
a data-driven MPC to minimize energy, peak power, and 
discomfort in a multi-zone building (Mtibaa et al., 2021). 

3.2.2.3. Grey-box modeling
Grey-box modeling, as a combination of white-box and 
black-box modeling, is another type of building modeling 
technique widely used to support MPC decision mak-
ing. Grey-box models are formulated as reduced-order 
physics-based models with physical meanings in model 
parameters. In the model training process, optimization 
methods, such as least square optimization, are applied to 
identify the optimal set of model parameters that can most 
representatively depict building dynamics in terms of en-
ergy consumption and indoor environment. Specifically, 
the Resistance-Capacitance (RC) model is the most used 
grey-box model in MPC. The RC model uses the analogy 
of electric circuits, including resistors and capacitors, to 
represent the heat transfer process as building dynamics 
(Yang et al., 2018). Different types of RC models, such as 
2R1C (Fux et  al., 2014) and 3R2C (Lee & Braun, 2008) 
exist in the application. Compared with white-box mod-
eling, an advantage of grey-box modeling is its computa-

tion efficiency. Selecting the appropriate model complexity 
and avoiding parameter overfitting or underfitting in the 
model parameter identification process are all significant 
when using grey-box modeling for MPC support (Bacher 
& Madsen, 2011). 

Using RC models to model the thermal response of 
buildings, Zhuang et al. (2018) developed the MPC with 
a feedforward structure to minimize building energy 
consumption, which was validated with real site deploy-
ment. To enable demand response, Biyik and Kahraman 
(2019) developed the predictive control strategy includ-
ing the lumped mathematical model to describe transient 
zonal thermal dynamics, modeling of energy storage, and 
renewables. Li et  al. (2015) utilized grey-box modeling 
to capture the dynamics of integrated systems, involving 
building HVAC and solar collectors to achieve the optimal 
solar energy usage in high-performance buildings. The hy-
brid model predictive control (HMPC) scheme based on 
simplified grey-box building models and inverse neural 
network model was proposed for the smart operation of 
HVAC systems in commercial buildings (Huang et  al., 
2015b). 

3.2.3. Optimization method
The optimization method used in MPC differs according 
to various formulations of MPC problems. A computa-
tionally efficient optimization algorithm is crucial to en-
sure the timely and optimal delivery of building operation 
decisions as MPC outputs. In general, the optimization 
problems in MPC could be solved by several methods, 
including linear or nonlinear programming (Sun & Yuan, 
2006), evolutionary algorithms (Deb et al., 2002), and sto-
chastic optimization (Schneider & Kirkpatrick, 2007). If 
both the objective function and constraints were linear, 
the optimization in MPC would have become a linear pro-
gramming problem, which could be easily solved with the 
global optimum (Ma et al., 2011). However, considering 
the complexity and non-linear nature of building dynam-
ics, optimization in MPC is more likely to be a nonlinear 
programming problem (Široký et al., 2011; Privara et al., 
2011) that is hard to solve, especially if it is non-convex. 
Mixed-integer programming problems, as one type of 
non-linear programming problem, is commonly seen in 
optimization of MPC for smart building operation if the 
control output is the signal for HVAC on/off (Chen et al., 
2018). To solve complex non-linear optimization prob-
lems, dynamic programming is another flexible approach 
that provides a guarantee to reach the global optimum (Xi 
et al., 2007; Candanedo & Athienitis, 2011; Henze et al., 
1997). The principle of dynamic programming is breaking 
down the optimization problem into smaller subproblems 
to ensure the sub-optimality, and hence, the overall opti-
mality of the solution. 

In addition to solving optimization with classic ap-
proaches guaranteed to find global optimum, meta-heu-
ristics methods, which are a set of methods designed to 
search through a large population of candidate solutions, 
have also been widely used in MPC optimization (Wang & 
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Jin, 2000; Reynolds et al., 2018). With less required com-
putational efforts, meta-heuristics methods could find a 
relatively optimal solution in reasonable time, although 
the global optimum solution of the problem is not guar-
anteed. Although solution quality is compromised, this 
feature is especially helpful when the solution set is huge 
and it would be impractical to perform a thorough search. 
Among different meta-heuristics methods, particle swarm 
optimization (PSO) and genetic algorithm (GA) are the 
two most used approaches. In PSO, the solution to the 
optimization problem is continuously updated based on 
mathematical settings of algorithms such that the solu-
tion will gradually move towards the optimal place in the 
objective function space (Corbin et al., 2013). Similarly, 
GA will initialize a set of solutions and then evolute these 
solutions through mutation, crossover, and selection to 
reach an optimal set of solutions (Vose, 1999). For ex-
ample, Hu and Karava incorporated PSO into the MPC 
for mixed-mode cooling control of buildings to reduce 
cooling load (Hu & Karava, 2014). Reynolds et al. (2018) 
developed an artificial neural network to predict building 
energy consumption and indoor environment status and 
then coupled with GA to achieve energy saving. Mtibaa 
et al. (2021) developed data-driven MPC with GA as the 
optimizer for building HVAC system control. Wang and 
Jin (2000) utilized GA to solve online optimization for 
smart control of the variable air volume system. A multi-
agent control system was proposed for indoor energy and 
comfort management using PSO as the optimization algo-
rithm (Wang et al., 2012).

Finally, given the uncertain nature of building op-
eration, stochastic optimization is another optimization 
approach for optimal building control decision making 
while accounting for existing random variables in the 
optimization process (Rahmani-Andebili, 2017; Chen & 
Hu, 2019). In optimization, probability density functions 
of those random variables are established and incorpo-
rated into the problem formulation and solving. Despite 
its computational intensity, stochastic optimization is ben-
eficial for the robustness of designed control algorithms by 
taking uncertainties into account. 

3.2.4. Constraints

Setting constraints in MPC is important to ensure the per-
formance and applicability of smart building operations. 
In general, these constraints could stem from either per-
formance requirements or physical constraints of systems. 
Among performance constraints, thermal comfort is one 
of the most important constraints that are widely encoded 
in MPC formulations since the thermal comfort of oc-
cupants should be maintained as minimum requirements 
of building operation regardless of what control aims to 
be (Chen et al., 2015). These constraints could either be 
represented by predictive mean votes/predicted percent-
age of dissatisfaction (PMV/PPD) (Cheung et  al., 2019; 
Fanger, 1970) or indoor temperature of buildings. In past 
works, energy-saving from MPC is achieved with PMV 

as constraint (Ferreira et al., 2012; Chen et al., 2015). In 
addition, another type of constraint commonly seen in 
MPC formulation is the physical constraints of building 
systems, such as the capacity limit of systems, the limit of 
system changing rate, etc. 

3.3. Research gaps and future directions of MPC

Despite the advancement of MPC, it is still not widely 
adopted in real building operations due to model selection 
trade-offs between model complexity and robustness, data 
incompatibility and data security issues, and limitation in 
providing occupants with more customized services. 

First, the central model selection and establishment is 
one of the most crucial components that determine MPC 
performance in application. With different types of build-
ing energy models used in MPC, it is still not clear about 
what levels of model complexity are appropriate to achieve 
satisfactory control performance in practice (Blum et al., 
2019; Picard et al., 2017; Foucquier et al., 2013). Consider-
ing the existing trade-off among model complexity, model 
accuracy, and computational time, choosing the appro-
priate central model, and determining its corresponding 
data requirements to support MPC operation is the first 
and foremost step in MPC development (Zhan & Chong, 
2021). In the meanwhile, ensuring the quality of the es-
tablished model in MPC is another important dimension 
to further increase the reliability and adoption of MPC. 
A robust central model in MPC would not only require 
model robustness under various scenarios and be there-
fore usable in different building operation conditions, but 
also need to be adaptive over time to capture the changing 
building dynamics. Hence, to further increase the validity 
of the central model in MPC, it is critical to first under-
stand the required modeling accuracy to serve different 
purposes of MPC applications. Mechanisms should be 
built to verify the adaptability and validate the model ap-
plicability under actual building operating conditions to 
ensure the robustness of central building model. 

In addition to the modeling challenges in MPC, the 
increasing number of sensing deployments and the mas-
sive amount of sensing data collected to reflect building 
operation open new opportunities but also challenges for 
smart building operation with MPC (Carli et  al., 2020). 
These sensing data, such as controlled indoor tempera-
ture, airflow status, and water flow rates could come from 
heterogeneous sources in various formats (Naji et  al., 
2019). The massive amount of data introduces challenges 
of data communication, analysis, and labeling as required 
for different purposes. It also puts new requirements for 
data storage with the fast-growing collected data volume. 
The building MPC should have the capability to reflect 
on real-time building operations and make timely adjust-
ments. In the meanwhile, in the future of smart building 
operation, information from building sensing networks 
could contain sensitive information, such as occupant ac-
tivities collected by occupancy sensing techniques (Blum 
et al., 2019). Although the information is beneficial to the 
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decision-making of MPC, this raises new concerns of data 
security and privacy in building operations (Fernandes 
et al., 2016). To tackle with these issues, advanced com-
puting methods, such as deep learning along with data 
storage (e.g., non-SQL database) should be increasingly 
deployed to increase the model intelligence and efficiency 
of massive data processing. The improvement of cyber-
security for information of smart buildings and occupants 
inside should be established at different levels, including 
hardware, middleware, and software to preserve the infor-
mation security in data communication (Fernandes et al., 
2017). Applying edge computing as distributed informa-
tion techniques will also benefit both data processing ef-
ficiency and privacy conservation in future smart building 
operation. 

Finally, the building MPC should better incorporate 
human factors into account, which could be reflected as 
(1) making use of collected human information for smart 
building operation and improved occupant service; and 
(2) handling the uncertainties introduced by human be-
haviors in control decision making. Former research has 
demonstrated that the building operation based on ther-
mal comfort models of groups of populations such as 
PMV/PPD cannot guarantee satisfactory building opera-
tion performance (Brager & Baker, 2009). The advance-
ment of sensing (participatory sensing) (Jazizadeh et al., 
2013) and HVAC techniques have made personalized in-
door environment adjustment possible by further involv-
ing humans in the loop. Occupancy information could 
also be utilized for demand-driven ventilation achieved by 
MPC as energy-efficient building operation (Peng et al., 
2017). However, this information is still lacking and not 
considered in current HVAC control loop. Hence, further 
development of human-building interaction frameworks, 
i.e., the channels to collect and process individual infor-
mation, will be beneficial for building systems to under-
stand perceptions of indoor environment by occupants 
and make adjustments based on identified needs. Low-
cost sensing networks could also be deployed for automat-
ic information collection. In the meanwhile, the uncer-
tainties of occupant behaviors could result in stochasticity, 
hence, unexpected outcome of building decision-making 
by MPC (Goyal et  al., 2012). Accounting for these un-
certainties in the MPC decision making will increase the 
robustness of MPC application in real building settings. 

Conclusions

This study conducted a holistic review of 202 journal ar-
ticles in the domain of model predictive control for smart 
building operation management. Different from existing 
reviews in this field, it adopted review methods that com-
bined both the science mapping approach and qualitative 
discussions. A three-stage increasing trend of relevant 
studies was captured by analyzing the chronological dis-
tribution of the number of publications since 2000. Results 
of the science mapping analysis were summarized below.

From the journal source perspective, Energy and 
Buildings, Applied Energy, and Building and Environment 
have contributed to most of the publications and achieved 
the highest number of citations per publication. On the 
scholar analysis side, Wang, S., Cigler, J., Henze, G. P., and 
Kozek, M. are among the most productive scholars with 
the highest numbers of publications, and Oldewurtel, F., 
Cigler,  J., Privara,  S., and Siroky,  J. are among the most 
influential scholars with the highest numbers of citations. 
The keywords analysis summarized that MPC usually re-
lies on “simulation” and “optimization” to achieve “predic-
tive control” and find optimal control on “hvac system”, 
“heating system”, and other building operations, for the 
purpose of “energy efficiency”, “thermal comfort”, and 
“demand response”. Articles were classified into different 
clusters based on their keywords and were presented in 
chronological order: “distributed model predictive con-
trol”, “energy efficiency”, “multi-objective optimization”, 
“smart buildings”, “demand response”, “building automa-
tion and control” and “energy flexibility”. Finally, articles 
receiving the highest citation and highest normalized cita-
tion were identified and articles with the strongest citation 
burst strength were captured. 

Following the science mapping results, in-depth quali-
tative discussions were conducted to outline ongoing main 
research topics, summarize MPC purposes and methodol-
ogies, point out research gaps, and suggest future research 
directions. Improving energy efficiency, enhancing the in-
door environment (IAQ and thermal comfort), and sat-
isfying demand response are three common purposes of 
applying MPC for smart building operation management. 
The advantages and disadvantages of three different mod-
eling techniques for MPC – white-box modeling, black-
box modeling, and grey-box modeling – as well as the data 
needed for each model are outlined. As for optimization, 
mixed-integer programming, dynamic programming, and 
meta-heuristics methods such as PSO and GA are often 
utilized to solve the nonlinear optimization problem in 
MPC. Stochastic optimization can be another optimiza-
tion approach, given the uncertain nature of building op-
erations. Such optimization problems need to be solved 
under certain constraints, such as performance require-
ments (e.g., thermal comfort) and physical constraints of 
systems (e.g., capacity limit of systems or limit of system 
changing rate). Finally, research gaps and corresponding 
future directions of MPC works were pointed out in three 
folds: unclear central model selection criteria and proce-
dure, insufficient data processing capability and security, 
and lack of personalized occupant satisfaction.

This review-based study provides a holistic review of 
research works related to applying MPC to smart building 
operation management, by combining the novel science 
mapping approach and traditional in-depth discussion. 
Both the academic community and industry practitioners 
could benefit from this study by grasping an overview of 
relevant research works from both visual and textual per-
spectives and by following up research gaps and future 
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directions outlined in this study. It should also be pointed 
out that this review is limited to the literature sample se-
lected from Web of Science, and only English journal ar-
ticles were included. 
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