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Abstract. Cost overruns are a ubiquitous feature of construction projects, and realistic budgeting at the development stage 
plays a significant role in their control. However, the application of existing models to budgeting for power plant projects is 
restricted by the limited amount of project-specific cost data available. This study overcomes this by using a Classification 
and Regression Tree (CART) approach involving mixed methods of website visits, document study, and expert opinion to 
predict the amount of project cost (PC) and cost contingency (CC) needed to cover probable cost increases by the use of 
models containing readily available project attributes and national economic parameters at the project development stage. 
The modeling process is demonstrated and tested with a case study involving 58 Bangladeshi power plant projects – pro-
ducing average absolute errors ranging from 0.7% to 1.7% and enabling project cost, inflation rate, and GDP to be identi-
fied as significant factors affecting PC and CC modeling. The approach can be applied to predict the PC during preliminary 
budgeting and selecting a project type and location aligned to the country’s economic status and policy-making strategies, 
thus facilitating further investment decisions.

Keywords: power plant, project cost, cost contingency, prediction, CART.

Introduction

Realistic budgeting at the development stage of construc-
tion projects plays a significant role in controlling cost 
overruns  – a ubiquitous problem affecting construction 
work worldwide (Amadi, 2021). However, budgeting for 
power plant projects is restricted by a limited ability to use 
existing project cost (PC) prediction models because of 
the inadequate amount of project-specific cost data avail-
able due to their relative uniqueness on account of the 
nature of the investment and involvement of stakehold-
ers (Aragonés-Beltrán et al., 2014; Zhao et al., 2019). Of 
the few studies to date, Jung et al. (2016) and Diab et al. 
(2017), for instance, consider the management of risks and 
cost contingency (CC) (amount needed to cover probable 
cost increases) of mega construction projects, but the find-
ings of such studies make only a limited contribution to 
the planning and management of power plant projects due 

to their individualistic nature and complex construction 
processes. In addition, most studies focus on establish-
ing the CC needed based on expected risks in the project 
execution phases (Ayub et al., 2019). Identifying and as-
sessing the potential and critical risks in the preliminary 
phases is a complicated process for power plant projects 
due to their long duration and limited number of simi-
lar past projects, which renders the findings of existing 
studies less useful for those involved in their planning and 
development. 

PC and CC models also have common limitations. 
For example, Monte Carlo Simulation (MCS), Artificial 
Neural Network (ANN), Case Based Reasoning (CBR), 
Support Vector Machine, and multiple/stepwise regres-
sion models require intensive and quantitative data from 
similar previous projects. MCS and ANN, in particular, 
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can provide more accurate cost predictions for building 
and road transportation projects, where historical data are 
available (Elmousalami, 2020a, 2020b). Of these, MCS re-
quires the mean and standard deviation of historical cost 
data from similar projects to develop a probability distri-
bution function (Chang & Ko, 2017) – a constraint that 
restricts the application of MCS to power plant projects, 
which are less frequent and with limited access to cost 
datasets (Islam et al., 2021). Williams and Gong (2014) use 
cost data of 92 building projects with an integrated ANN 
and support vector machine (SVM) for better PC predic-
tion accuracy, and Dursun and Stoy (2016) use 657 build-
ing projects for PC prediction by applying an ANN-based 
multistep ahead approach. While ANN performs better 
than the multiple regression model (Hashemi et al., 2019), 
it involves a greater amount of trial and error. ANN pro-
vides better accuracy with the combination of a complex 
Genetic Algorithm or Support Vector Machine (Günaydin 
& Doǧan, 2004). Again, however, the prediction accuracy 
of ANN, CBR, and SVM models is compromised if there 
is a limited training dataset and noisy or missing data (El-
fahham, 2019). Moreover, ANN is limited in its handling 
of uncertainty in project execution and is a black box sys-
tem where the human estimator has no control (Elmousa-
lami, 2020b). In addition, the accuracy of these models 
depends on the quality of the datasets used (Barraza et al., 
2007; Chang & Ko, 2017; Hammad et al., 2016; Maronati 
& Petrovic, 2019; Shahtaheri et al., 2016). However, it is 
critical to ensure the availability of both the quantity and 
quality of cost-data for complex power plant projects. 
Expert judgment-based models, such as fuzzy set theory, 
fuzzy expert systems, and fuzzy-Bayesian belief networks 
require data to be elicited from domain experts, which 
are sometimes vague, imprecise, subjective, and contin-
gent on specific project characteristics (Idrus et al., 2011; 
Islam et al., 2021; Salah, 2015). These limitations conspire 
to make all these models generally impractical at the ini-
tiation and planning phase of such complex infrastructure 
projects as power plants.

In contrast, Classification and Regression Tree (CART) 
models are considered efficient for scaling large problems 
with smaller datasets due to their condition-based tree 
structures (Razi & Athappilly, 2005). This makes them 
suitable for the uniqueness of power plant projects and 
their smaller datasets. Therefore, this study develops CART 
models for predicting the PC and CC needed. These are 
demonstrated and validated by data from the Bangladesh 
power industry. The variables involved are either macro-
level project attributes or economic parameters available 
from accessible sources (i.e., relevant websites, published 
project reports, and collected project documents/infor-
mation from experts). Parameters related to the types of 
power plant project (i.e., natural gas, combined cycle, heavy 
fuel oil, etc.), project delivery systems, construction site loca-
tion, and national economic conditions (inflation rate, total 
GDP, GDP in construction, etc.) are used as inputs, as these 
are easier to determine and plan, which makes the analysis 

and models useful for both government and private enti-
ties. The unique contributions of this study are that: 

 – different CART models are combined to form an en-
semble to predict the most critical contingent cases: 
ensembles such as this have not been utilized in pre-
vious work;

 – the models use smaller datasets than hitherto for pre-
dicting the PC and CC needed for such complex and 
large infrastructures as power plants;

 – the ensemble is used to predict the most critical cases 
with the least and highest CC needed;

 – the critical factors and their values affecting PC and 
CC are identified. 

The remainder of this paper summarizes the litera-
ture concerning the cost performance of power plant 
projects worldwide, the models applied or developed for 
their predicted PCs and CCs, research methodology, the 
CART model and its demonstrated application to a set 
of Bangladesh power plant projects, and discussion of the 
outcomes obtained. Finally, conclusions are drawn, policy 
implications identified, and recommendations made for 
further research and application of the models. 

1. Literature review

1.1. Cost performance of power plant projects

Unexpected extra costs of building an energy infrastruc-
ture project can directly influence the price and guidelines 
of electricity in a viable market (Gilbert et al., 2017). Cost 
overruns for power plant projects have been, and continue 
to be, ubiquitous to the point of global crisis. For example, 
a study of international electrical infrastructure projects 
found their cost to be an average of 66% over budget re-
gardless of their type, location, and size (Sovacool et al., 
2014). Li and Wang (2018) evaluation of the cost over-
runs of public private partnership Chinese electricity pro-
jects determines the complexity of accessing credit from 
various sources, financing environmental risks, risks from 
frequent policy changes with a government change, and 
allocating risks between project parties. Eybpoosh et  al. 
(2011) present a risk network to understand the most 
critical risk opportunities and their impact on the cost 
overruns of Turkish power plants, and identify the reasons 
that represent the most critical risks causing the overruns 
linked to entrepreneurs, such as the lack of technical, fi-
nancial, and human resources.

Of other energy resources, nuclear power plant proj-
ects have the highest cost overruns in the world, followed 
by hydropower plants (Sovacool et al., 2014). For instance, 
60% of Uganda’s Hydropower Projects (HPPs) experienced 
around 20% cost overruns (Awojobi & Jenkins, 2016). Ac-
cording to Xia et al. (2017), corruption, tight schedules, 
government bureaucracy, government intervention, lack 
of competition in the supply phase, and defective design 
are the main risks involved. In contrast, wind power plants 
generally have only a slight cost overrun worldwide, al-
though they have particular problems (such as demand-
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ing a significant investment in the initial phases, site 
selection complexity, and environmental requirements), 
which make them very difficult to complete within their 
stipulated time (Sovacool et al., 2014). Another study that 
deals specifically with the external risks (e.g., ecological, 
economic, and socio-political) of a Turkish wind project 
found significant influences on costs to be changes in laws 
and regulations, protection of the natural area, environ-
mental problems (adequate wind flow, conservation of ar-
eas, avoidance of main bird migration routes, etc.), restric-
tions on land use and building permits, and the potential 
impact of long transmission lines on residents.

Previous studies of the cost performance of Bangla-
desh power plant projects found that they struggle to 
hold to budgeted cost, regardless of project type, size, 
and contracting system – the major risks contributing to 
cost overrun being the owner’s bureaucratic complexity, 
land acquisition delays, delays in project tendering and 
the owner’s decision-making, and lack of materials and 
equipment available in the local market (Islam & Nepal, 
2016; Islam et al., 2018, 2019).

1.2. PC and CC prediction models

The most frequently available models for predicting PC 
and CC are basic statistical/deterministic models (Ho-
seini et  al., 2020), probabilistic models (Touran, 2003; 
Uzzafer, 2013), MCS (Barraza et al., 2007; Chang & Ko, 
2017; Hammad et  al., 2016; Maronati & Petrovic, 2019; 
Shahtaheri et al., 2016), fuzzy set theory (Jung et al., 2016; 
Salah & Moselhi, 2015), fuzzy expert systems (Idrus et al., 
2011), fuzzy-Bayesian belief network (Islam et al., 2019), 
regression models (Thal et al., 2010), and artificial neural 
networks (ANN) (Diab et al., 2017; Lhee et al., 2012) and 
machine learning (Bilal & Oyedele, 2020; Chakraborty 
et al., 2020). A brief analysis of these models is presented 
below to highlight the importance of the CART model 
used in this study. 

Hoseini et  al. (2020) use basic statistical analysis 
(goodness-of-fit test, mean, standard deviation, distribu-
tion pattern, etc.) for establishing a CC in practice based 
on historical data. The CC is assigned to the known-un-
known and unknown-unknown risks prior to the project 
execution phases. However, their approach to CC model-
ing depends on the cost data records in the preconstruc-
tion phases of similar previous projects. Touran (2003) 
presents a probabilistic cost model that considers the risks 
as cost variables, requires a comparatively small amount 
of data, and produces a moderately high prediction ac-
curacy  – a critical aspect of this model being assuming 
the variables to be independently and identically normally 
distributed. The model also provides a deterministic cost 
value of a risk, which is always questionable in the face 
of uncertainty and subjective judgment. Uzzafer (2013) 
also demonstrates a probabilistic CC model integrating 
risk assessment and management strategies in PC predic-
tion. The model advances the combined application of 
experts’ elicited and historical datasets for CC modeling. 

The challenges of applying this model are in assigning a 
cost value and probability to an individual risk, assuming 
no inter-relationships between risks, and considering the 
worst case of the risk only. 

MCS, an advanced probabilistic model, is a powerful 
tool for PC prediction and CC modeling in uncertain and 
complex project environments, and has been applied in 
predicting the PC or CC in many studies. Barraza et al. 
(2007), for instance, apply it to predicting the contingency 
of each activity of a project considering its probability dis-
tribution under different cases, and taking into account 
the risk management strategies for modeling each activ-
ity cost. Shahtaheri et al. (2017) integrate MCS with the 
risk assessment approach for CC prediction. However, the 
model requires sufficient reliable historical data to gen-
erate a probability density function for better prediction 
accuracy. Moreover, its basic assumption is that the cost 
variables are discrete, independent, and normally distrib-
uted – the independent assumption being unrealistic for 
such a complex project as a power plant. Hammad et al. 
(2016) use an MCS model to predict the CC for each ac-
tivity, denoting importance to its percentage contribution 
to total PC in predicting the CC of a whole project as the 
difference between total and the planned cost. This model 
significantly overcomes the limitation of a data-intensive 
MCS model as it can accommodate expert judgment-
based predictions in the absence of historical data from 
previous similar activities/projects. In a similar study, 
Maronati and Petrovic (2019) use MCS to simulate indi-
vidual cost variables (cost of work, price of materials, and 
equipment) separately and then combine them to model 
total PC by the distribution-free rank correlation between 
the cost variables. Mawlana and Hammad (2015) quantify 
the impact of uncertainty, correlation between the events, 
and simulate the project cost and contingency cost using 
join probability theory. Their model considers all possible 
scenarios of an event and simulates the combination of 
multiple events finding the best possible combination of 
PC and schedule. However, the limitation of the number 
of factors to consider in a joint probability is a point of 
argument to make the model a practical tool for project 
cost or contingency budgeting. 

Such other expert judgment-based methods as fuzzy 
set theory, fuzzy expert systems, and fuzzy-Bayesian net-
works are commonly used for modeling PC and CC in-
tegrated with risk and uncertainty assessment and man-
agement in a complex project environment. For instance, 
Salah and Moselhi (2015) developed a contingency deple-
tion curve for monitoring and controlling contingency 
funds over the project execution phases. In this model, an 
expert can express the CC using fuzzy numerical functions 
considering the level of risk/uncertainty, and the predicted 
CC is allocated to individual work packages for its better 
management. The fuzzy set theory-based model does not 
require any historical cost data and reduces the significant 
amount of time needed for CC computation by simula-
tion-based models. However, the use of expert judgments 
instead of economic parameters (inflation, GDP, etc.) is 
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subjective, biased, and vague, which can significantly re-
duce cost prediction accuracy. Jung et al. (2016) address 
this limitation of fuzzy set theory-based CC modeling by 
integrating and assessing the risks involved in PC over-
runs; however, their model does not account for any inter-
relationships between risks, and disregards their dynamic 
behavior in different project phases. Idrus et  al. (2011) 
present a fuzzy expert system, which uses the frequency 
and severity of risks directly as inputs for predicting CCs, 
and can accommodate the contractor’s experience and 
judgment in CC prediction: its limitations are in disre-
garding the interrelationships between risks, summing the 
magnitudes of all risks for computing CC, and ignoring 
risk management strategies in CC allocation. The activities 
or cost items of complex project infrastructure projects 
are also highly correlated, which cannot be handled by 
fuzzy set theory. Accordingly, Islam et al. (2021) present 
a fuzzy-Bayesian belief networks (fuzzy-BBNs) approach 
for risk-induced CC modeling, which can handle inter-
relationships between the risks, and risk dynamism. How-
ever, the developed fuzzy-based models depend on expert 
judgment-based datasets, which are subjective, imprecise, 
and vague, while the collection of subjective datasets at 
the early stage for project budgeting is also a complex task. 

The multiple linear regression model has commonly 
been applied for the PC and CC modeling of different 
construction projects. Thal et al. (2010), for example, ana-
lyze cost data available from similar previous projects for 
CC prediction immediately prior to the contract award, 
which is an advantage over the traditional fixed percent-
age-based CC allocation approach. However, the model 
does not address the potential risks and uncertainties in-
volved, and some qualitative variables that have substan-
tial cost effects are not considered because of lack of data. 
Diab et al. (2017) present an integrated approach that in-
cludes a relative importance index and stepwise regression 
model. The model calculates the expert judgment-based 
relative importance of identified risks for CC estimates. 
It establishes the interrelationship between risks and sub-
sequent costs to estimate the CC needed. The approach is 
deterministic and useful for allocating CC at the planning 
stage. The advantage of the model is that it identifies the 
major risks involved and considers CC prediction as sim-
ply a function of the relative importance of the risks. The 
model finally develops a first-order equation for estimat-
ing CCs, in which risks are considered as variables. The 
ANN model − an advanced form of regression analysis 
− is adopted by Lhee et  al. (2012). This can work with 
many input variables, including project characteristics, to 
predict a single PC or CC from the history of previous 
projects (contract value and actual value), predict CCs as 
accurately as possible, and assist project administrators in 
realistic CC prediction and project funding. The accuracy 
of the ANN model is controlled by an optimal number of 
hidden layers, which is fully controlled by the user, and 
depends on access to reliable historical data from similar 
previous projects: more data can provide better accura-
cy. Chakraborty et al. (2020) compare the performances 

of some machine learning (ML) models such as ANN, 
random forest, light gradient boosting, natural gradient 
boosting, extreme gradient boosting, and linear regres-
sion based on their estimation accuracy, uncertainty, and 
time requirement to perform the job. They also use a game 
theory interpreting a model’s performance. Accordingly, 
natural and light gradient boosting models are found ef-
ficient to model project costs. The mechanisms of machine 
learning models are usually unknown to many profession-
als as ML models are mostly having uncontrolled or unex-
plained black-box. Thus, Bilal and Oyedele (2020) propose 
a specific guideline for the applications of ML models in 
project cost estimation and demonstrate their model to 
estimate a project’s profit margin, which is critical to win-
ning a bid.

The CART model, on the other hand, provides an al-
ternative means of overcoming the problem of the ANN 
model’s uncontrolled hidden layers as it generates logical 
and explainable relationships between the variables. It is 
also useful for finding important categorical parameters 
(Elmousalami, 2020a; Perner et al., 2001), provides high-
performance computational efficacy by splitting the pa-
rameters, and overcomes the limitation of dimensionality 
of the variables (Prasad et al., 2006). However, it performs 
poorly with nonlinear and time-series data (Curram & 
Mingers, 2017). The potential application of the CART 
model for predicting construction or CC in a complex 
infrastructure project environment is as yet unresearched 
(Elmousalami, 2020a). 

2. Research methodology

This study uses CART for predicting a power plant PC 
and CC using real-life project characteristics and national 
economic factors. Several cost prediction models are de-
veloped and the factors’ strengths for CC prediction are 
established through ensembles. The following subsections 
briefly describe the data collection process and character-
istics of the dataset, data organization and presentation 
for developing cost prediction models, and introduce the 
CART model with a comparative discussion of its advan-
tages over other similar methods.

2.1. Data collection 

Ten variables (Table 1) are considered for modeling the 
cost and contingencies of power plant projects in Bangla-
desh. The project-related variables are construction cost, 
contingency in construction cost, location of the power 
plant, owner organization of power plant, plant type based 
on the power generation mechanism, type of contract un-
der which the project is constructed, and the power gen-
eration capacity of the plant; and the economic indicators 
include total gross domestic product (GDP) of country, 
construction GDP, and inflation rate. Previous similar 
studies advise considering these factors for cost or CC 
modeling at the project’s development stages. For example, 
Hashemi et al. (2019) consider project power plant type, 
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project duration, project phase, etc., as input variables for 
conceptual cost estimation for power plant projects, while 
other studies (Elfahham, 2019; Islam et al., 2017; Lam & 
Siwingwa, 2017; Musarat et al., 2021) examine the infla-
tion rate in project budgeting. Lee et al. (2017) study such 
construction risks as project type, contract type, project 
location, inflation rate, interest rate, and gross national in-
come to predict the management reserve for international 
projects. 

The project-related data are collected from three 
sources: (1) visiting the websites of the Bangladesh Power 
Development Board (BPDB), Northwest Power Company 
Limited (NWPCL), and Ashuganj Power Company Limit-
ed (APCL); (2) study of project documents; and (3) expert 
judgment. The data relating to construction year, plant 
ownership (BPDB, NWPCL, APCL, etc.), location (ur-
ban, peri-urban, and rural), plant type (Combined Cycle 
Power Plant (CCPP), Heavy Fuel Oil (HFO), Coal, and 
Natural Gas), power generation capacity (Megawatt), type 
of contract (Engineering, Procurement, and Construction 
(EPC), Build-Own-Operate (BOO), and Turn-Key), and 
estimated budget for the projects are found from the cor-
responding organizations’ websites. However, estimated 
CC (%) and cost overrun (%) are obtained by studying 
the collected project documents and expert judgment. 

The experts were contacted following different ap-
proaches (i.e., by email, telephone call, or direct visit by 
appointment) to collect project documents and missing 
data. The email list and contact details of plant manag-
ers or project directors were collected from their affiliated 
organization’s website, member list of the Institute of En-
gineers Bangladesh (IEB), and directly visiting country-
wide project sites and their corporate offices. With these 
approaches, approximately 60 randomly selected projects 
were targeted, and 120 experts (two per project) were 
requested to provide project data based on their docu-
ments or judgments. Of these, 73 experts responded with 
complete information of 58 projects – a response rate of 

60.83%, which is deemed acceptable compared with pre-
vious studies (Ajay & Micah, 2014; Maas & Hox, 2005; 
Olaniran, 2015; Singh & Masuku, 2013). A report pub-
lished in 2020 shows that Bangladesh has 138 power plant 
projects with the highest 12,983 Megawatt (MW) power 
generation capacity (Haque, 2020). Thus, the collected 
projects represent 42% of the total constructed projects 
in Bangladesh, which justifies using statistical inference 
(Olaniran, 2015). In similar studies, Hashemi et al. (2019) 
use data for 39 projects, and Gunduz and Sahin (2015) 
use data for 54 projects. The practical challenges to the 
data collection were the unwillingness of the experts, fear 
of disclosing project information, and lack of quality data 
records. The data relating to the country’s economic indi-
cators, such as total GDP, construction GDP, and inflation 
rate, were collected from the International Monetary Fund 
[IMF]. The IMF is an international organization of 190 
countries monitoring and funding sustainable economic 
growth, working for poverty alleviation and financial sta-
bility worldwide (IMF, 2020). The data were cross-checked 
with the Bangladesh Bureau of Statistics [BBS] (2020).

2.2. Data organization and presentation

The collected data are organized against ten categorical 
variables as presented in the Appendix (Table A.1). Of the 
58 projects involved, the earliest project was constructed 
in 1993, while the latest started in 2020. The average PC is 
approximately USD 290 million, while the average power 
generation capacity is approximately 258 MW. Each of the 
ten categorical variables was further divided into binary 
variables. Table 2 provides the percentage distribution of 
the projects in terms of binary variables related to own-
ership, plant type, type of contract, and project location. 
For instance, 53% of the projects are in rural areas, 40% 
in peri-urban areas, and the remaining in urban areas. In 
addition, most projects, 43%, are owned by the BPDB, 
57% are CCPP, while 76% were awarded through EPC 
contracts.

Table 1. List of variables used for modeling

Variable Description
Cost Construction cost of project (USD million)
Cont. Estimated CC (% of cost)
GDP Total Bangladesh GDP for the year of construction of the project (USD million)
Const. GDP Bangladesh construction sector GDP for the year of construction of project (USD million)
IR Inflation rate for Bangladesh for the year of construction of the project (%)
Location Location of construction, divided into three categories: Urban, Rural, and Peri-Urban
Owner An organization that is the owner of the project, divided into three categories: Government, Independent Power 

Producer (IPP), and Semi-autonomous
Plant Type of power plant, divided into four categories: Combined Cycle Power Plant (CCPP), Coal, Heavy Fuel Oil 

(HFO), and Natural Gas
Contract Type of construction contract award system divided into three categories: Engineering, Procurement, 

Construction (EPC), Build-Own-Operate (BOO), and Turnkey
Power Power generation capacity of the project (MW)
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Table 2. Distribution of projects in terms of ownership,  
plant type, and contract type

Project variables Binary variables Proportion
Project ownership 
organizations

BPDP 43%
Semi-autonomous 
organization

33%

IPP 24%
Plant type CCPP 57%

HFO 21%
Natural gas 16%
Coal 6%

Contract type EPC 76%
BOO 12%
Turnkey 12%

Locations Rural 53%
Peri-urban 40%
Urban 7%

The inflation rate, total GDP, and construction GDP of 
Bangladesh are available until 2019. The forecasted values 
for inflation rate and total GDP are also reported up to 
2024 by the IMF (2020). Figure 1 shows the trend of these 
values, there being similar trends for total GDP and con-
struction GDP with rapid growth in recent years, while 
the inflation rate fluctuates wildly unto 2012.

The average estimated CC is 7.2%, with a standard de-
viation of 2.6%, and the minimum and maximum CC esti-
mates are 1% and 10%, respectively. For large construction 
projects, the estimated proportion of CC depends on the 
construction cost of the project (Thal et al., 2010).

2.3. CART models

CART is an unsupervised artificial intelligence technique. 
It has adaptive interpretation skills and can successfully 
handle complex non-linearities between predictor and 
response variables and multi-collinearity problems of the 
data better than regression models (Gong et  al., 2018). 
Unlike other artificial intelligence and machine learn-
ing tools, CART makes no such assumptions as the data 

should be random, independent, have linear or nonlinear 
relationships, etc. This is one of the significant advantages 
of using CART to develop a cost prediction model. In ad-
dition, the CART analysis provides a model that can be 
interpreted through logical statements to understand the 
effect of different variables on the target variable, which is 
rarely possible with other data mining tools (Shaaban & 
Pande, 2016). 

Two CART models are developed in this study: firstly, 
for predicting the CC, and then for predicting the PC. 
These models have gained popularity during the past five 
decades (Loh, 2014) since their inception as a non-para-
metric modeling technique, especially for handling eco-
logical data (Moisen, 2008; Steinberg, 2009). These models 
utilize historical data to construct decision trees by calcu-
lating the optimal distribution/separation of output data 
with respect to ranges of input variables (Timofeev, 2004). 
An appropriate set (division) of variables is found at each 
node of the decision tree, which minimizes the error. 

The process is continued until no significant improve-
ment can be achieved with the further division of a node, 
which then becomes a terminal node for the tree (Strobl 
et al., 2009). These models work by partitioning the pre-
dictor space into rectangles, which is based on rules used 
to identify regions with the most homogeneous responses 
to predictors. Then, a constant is fitted to each region 
(Figures 2 and 5), with trees fitting the mean response for 
observations in that region. The errors are assumed to be 
normally distributed (Elith et al., 2008). The model devel-
opment follows the following process:

(1)  Each independent variable in the dataset is taken 
as a node and a split is found that causes maxi-
mum variance in the dependent variable – a pro-
cedure often termed a “recursive binary split”.

(2) The split is used to generate child nodes for that 
node, the above step being repeated for the inde-
pendent variables in the dataset. 

(3) When a node does not show any split of values where 
variance is possible, it becomes a terminal node. 

(4) The above steps are repeated for all the child nodes 
with the precondition of the parent nodes.

Figure 1. a – Bangladesh’s GDP trend, and b – Bangladesh inflation rate trend
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3. Model development and results

3.1. Cost prediction using the CART model

All the information for each of the 58 projects is tabu-
lated in the Appendix (Table A.1). The datasets are divided 
into 37 training projects and 21 testing projects, following 
Hashemi et  al. (2019), where they use 60% of the data 
for training and the remainder for cross-validation and 
testing the prediction accuracy of the trained model. The 
projects in each dataset are selected based on their vari-
ety. The training and testing datasets have projects from 
all possible combinations of project location, ownership 
organization, and plant and contract types. The data are 
classified according to the project location, owner organi-
zation, plant type, and contract type. Then, projects having 
the same response for all the above variables are organ-
ized. Afterward, approximately 66% of the projects are as-
signed to the training dataset, and the remaining for the 
test dataset. For example, the training dataset has 66% of 
the CCPP projects built in an urban area, owned by a gov-
ernment organization, and awarded by the EPC contract. 
The remaining 34% is assigned to the test dataset.

Figure 2 shows the developed CART model for CC 
prediction. PC is the most important variable, which af-
fects the tree at several levels, including the top node. Proj-
ect type, location, GDP, power generation, and inflation 
rate are the other variables that affect the model. Node 18 
has the least CC (1%), which is a coal power plant costing 
over USD 275 million with an inflation rate of over 6.6%. 
Nodes 13 and 16 have the highest CC. For Node 13, the 
PC is over USD 275 million with an inflation rate of 6.6% 
or less and a GDP of over USD 302,945 million. For Node 
16, the PC is between USD 275 and 465 million, with an 
inflation rate of again 6.6% or less, a GDP of USD 302,945 
million or less, and the power generation capacity of 280 
MW. Projects with PC between USD 134 and 194 million 
also have high CC estimates (see Node 5) irrespective of 
any other factor, while projects in urban areas have lower 
CC estimates than in other locations (see Nodes 6 and 7).

Figures 3 and 4 are the scatterplots for the estimated 
CC value and model error (observed minus predicted) 
for the training and validation datasets, respectively. The 

Average Absolute Error (AAE) for the model is 0.7% and 
1.7% for the training and testing datasets, respectively. 

Construction cost is the most important parameter for 
this CART model for CC prediction (later referred to as 
CART 1), which is consistent with the literature for large 
construction projects (Thal et al., 2010). The construction 
cost depends on factors related to the project attributes and 
the national economy, including those used from Table 2. 
Therefore, another CART model (Figure 5) is developed 
to predict the project’s construction cost (later referred to 
as CART 2). This model shows that power generation ca-

Figure 2. CART for CC modeling of the power plant projects

Figure 3. Scatterplot of the CART CC training  
dataset predictions

Figure 4. Scatterplot for the CART CC testing  
dataset predictions
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pacity has a multilevel effect on construction cost, which 
seems to increase with capacity. Other important param-
eters are GDP and the inflation rate, which affect the cost 
of projects having a power generation capacity of over 
188 MW. The GDP indepfendently has a multilevel effect 
on the cost, with higher GDP associated with a higher 
construction cost. This finding ensures that when the na-
tional economic conditions are better, larger investments 
are made in the power generation sector, and projects are 
carried out with higher capacity (and consequently higher 
cost). At a higher GDP (more than USD 196,165 million), 
indicating a period of high economic growth, the inflation 
rate seems to be inversely proportional to cost, while it is 
directly proportional when GDP is between USD 196,165 
and 126,560 million. The type of project owner organiza-
tion and location affects the cost of projects with a power 
generation capacity between 70 and 188 MW. 

Figure 5 shows that the highest cost is at Node 17, 
with a power generation of over 188 MW, GDP ranging 

between USD 126,560 and 195,165 million, and the in-
flation rate over 9.5%. The minimum cost is at Node 9, 
with power generation between 70 and 125 MW, and the 
projects in urban or rural areas. Projects owned by Inde-
pendent Power Producers (IPPs) have a lower cost than 
other organizations regardless of any other factors (shown 
in Nodes 10 and 11). 

The PCs are predicted for training and testing datas-
ets based on CART 2 (Figure 5). The scatterplots for both 
training and testing datasets are shown in Figures 6 and 7, 
respectively: their average absolute errors (AAE) are USD 
19 and 184 million, respectively. 

3.2. Ensembles

The CART models show that the prediction of CC depends 
upon the construction cost – one of the independent pa-
rameters in the model for estimating CC, which is, in turn, 
dependent on other common factors. The relationship be-

Figure 5. CART model for predicting construction costs

Figure 6. Scatterplot for CART PC development  
dataset predictions

Figure 7. Scatterplot for CART PC test  
dataset predictions
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tween the CC and PC of projects is expected and obvi-
ous. The advantage of the CART model is the elaboration 
of this relationship, which is nonlinear, with a decision 
tree structure that can determine the rules for increas-
ing or decreasing the CC. The rules developed from both 
CART models (Figures 2 and 5) are combined to obtain 
to the nodes with the highest and lowest CC in Figure 2.  
These combinations are referred to as ensembles in this 
study – created for the least and highest CC paths from 
both models, as shown in Figures 8 and 9. Although simi-
lar ensembles can be created for all the terminal nodes of 
CART 1, they are omitted here to avoid further complexity 
for readers and decision-makers.

The least CC is found at Node 18 in CART 1 (Figure 2) 
for coal power plants with PCs over USD 275 million. This 
cost can be attained at Nodes 19, 17, and 21 in CART 2 
(Figure 8). Node 20 is not included in this CART as it has 
an IR of 6.6% or less, which is against the condition of 
Node 18 in CART 1. For all possible nodes from CART 
2 with a cost of more than USD 275 million, the power 
generation capacity is over 188 MW. If GDP is more than 

USD 196,165 million, then any inflation rate above 6.6 
gives the least CC. However, the highest CC is at Node 
17 in CART 2.

As shown in Figure 9, the highest CC path can be 
achieved at Nodes 13 and 16 in CART 1. Node 13 has 
a cost of over USD 275 million and a GDP of over USD 
302,945 million. These values can be achieved at Node 20 
of CART 2. In which case, the generation capacity of the 
power plant should be over 188 MW, and inflation should 
be limited to 6.0% or less. In the case of Node 13 in CART 
1, Nodes 19, 20, and 21 from CART 2 can provide the re-
quired output cost. Node 17 is not used in this case since 
its inflation rate is over 9.5%. If the GDP is between USD 
126,560 and 196,165 million, with an inflation rate of 6.6% 
or less, then a 250 to 280 MW project will give the highest 
CC. In addition, if the GDP is between USD 196,165 and 
302,945 million with an inflation rate of less than 6.6%, 
then any project with power generation capacity between 
188 to 280 MW will give the highest CC. 

The trends between the least and highest CC paths, 
which are shown in Figures 8 and 9 indicate that projects 
costing more than USD 275 million and planned for gen-
erating more than 188 MW can result in the highest or 
least CC. This mainly depends on national economic con-
ditions, provided the projects are not coal-based power 
plants. The latter has the least CC, which may be because 
coal power plants have been used more commonly; hence, 
they have fewer associated risks. On the other hand, a low-
er inflation rate (less than 6.6%) will probably have higher 
CC estimates. This could be attributed to the lower risk of 
significant changes in the prices of materials and equip-
ment resulting from lower inflation rates. 

4. Discussion of the findings

The article develops new CART models and demonstrates 
their applications to such complex infrastructure projects 
as power plants, where cost variables are highly interre-
lated. It starts addressing some limitations of the generally 
available models for predicting the PC and CC of power 
plant projects in the introduction and the literature review 
sections. Existing models have limited applications as they 
demand a comprehensive risk assessment, which involves 
making a significant effort to elicit and compute experts’ 
judgments for estimating and budgeting at the early stages 
of a project. For instance, Islam’s et al. (2021) use of fuzzy-
BBN models for Bangladesh power plant projects requires 
expert judgment to address uncertainty and risk assess-
ment, which is not only impractical and time-consuming 
at the project development stage, but also is subjective, 
vague, and imprecise, which makes the value of the mod-
els’ outcomes or performances questionable. The appli-
cation of ANN-based models (Gunduz & Sahin, 2015; 
Hashemi et al., 2019), on the other hand, is restricted by 
the limited project-specific cost data available and uncon-
trolled hidden layers in the ANN “black box”. Further-
more, previous studies do not always consider the project’s 
macro-level attributes (project type, size, location, power 

Figure 8. Least CC path ensemble

Figure 9. Highest CC path ensemble
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generation capacity, etc.) and such national economic pa-
rameters as GDP and the inflation rate. These macro-level 
project attributes and national economic parameters are 
significant considerations for risk analysis-based realistic 
cost estimation and contingency modelling in infrastruc-
ture projects at their early stages, i.e., the planning and 
design phases (Bhargava et al., 2017; Bordat et al., 2004; 
Gazder et al., 2020; Musarat et al., 2021). In contrast, the 
CART models developed in the present study utilize ob-
jective data, which include project attributes and national 
economic parameters as suggested in previous studies 
(Bhargava et al., 2017; Gazder et al., 2020; Musarat et al., 
2021). The strength of the model is in its application of 
objective data sets that are comparatively easy to obtain, 
as these are readily available on the internet and other ac-
cessible sources, and thus can be easily applied for future 
project budgeting. 

The study demonstrates the application of the model 
to predict the cost and contingency of different types and 
sizes of power plant projects under the varying economic 
situations (i.e., GDP and inflation rate) of a country like 
Bangladesh. In terms of accuracy, the developed CART 
model for CC prediction provides an outcome at least 
comparable to previously developed models. The CC pre-
diction error (i.e., AAE) for the training dataset is 0.7%, 
and 1.7% for the test dataset, which are considered reason-
able (Idrus et al., 2011; Islam et al., 2021; Sonmez et al., 
2007) compared to similar previous studies (Gunduz & 
Sahin, 2015; Hashemi et al., 2019). For example, Gunduz 
and Sahin (2015) apply ANN and multiple regression cost 
estimation models to early-stage investment decision-
making for 54 Turkish hydroelectric power plant projects 
involving 13 very project-specific variables (but without 
national economic parameters) – this produced a mean 
absolute percentage error (MAPE) of  –7% to  +5% for 
ANN and 10% for multiple regression model. Similarly, 
Hashemi et al.’s (2019) integrated Genetic Algorithm and 
ANN-based cost prediction model for 39 Iranian power 
plant projects involves variables of project type (i.e., gas 
turbine, CCPP, hydroelectric, combined gas turbine and 
steam, etc.) and duration, construction phases, site geol-
ogy, substation construction, cooling system type, and fuel 
type (oil, gas, or both). This produced a predicted cost 
mean square error (MSE) of approximately 6%. 

However, Islam’s et  al. (2021) work is the most rel-
evant to the present study, with major risks and project 
type (CCPP, HFO, Coal, Natural Gas) and size (MW) as 
variables, and has a prediction error ranging from  –4% 
to 20% – the lowest predicted CC being 8.28% for CCPP 
350-400 MW projects, and the lowest prediction error 
of –4.84% for HFO 100 MW projects. While this is dif-
ferent to the present study’s finding that coal-based plants 
should be assigned the lowest percentage of CC, it can be 
basically attributed to our additional inclusion of national 
economic parameters (i.e., national GDP, construction 
GDP, and inflation rate). 

Another similar study of Bangladeshi power plant 
projects by Gazder et al. (2020) conducts a parametric cost 

analysis and develops a cost prediction model to show that 
PC varies significantly with plant type and size, and var-
ies moderately with national GDP and construction GDP, 
with CCPP projects incurring the highest PC compared 
to other projects. Other studied also found that PC con-
siderably varies with a project’s macro-level attributes and 
country’s general economy (Bhargava et al., 2017; Bordat 
et  al., 2004; Hashemi et  al., 2019). Moreover, the pres-
ent study finds that power generation capacity or project 
size (MW) has a multilevel effect on the PC prediction, 
and construction GDP is highly correlated with PC: for 
instance, a higher construction GDP means a higher PC 
and vice versa. 

The present study also identifies project ownership 
(public-funded, private, or public private partnerships) 
and site location as having a significant impact on PC 
for low power generation capacity projects (i.e., 70 to 188 
MW) – an aspect not analyzed in any previous studies. 

5. Implications of the CART  
models in future projects

Conceptual PC estimation and CC prediction models with 
project and national-specific parameters are important, as 
less than 2% of project information is available at the early 
stage of a project (Elmousalami, 2020b; Hegazy & Ayed, 
1998). Accordingly, readily available macro-level project 
attributes and the country’s macroeconomic parameters 
are capitalized as cost variables to develop CART models 
for predicting PC and CC. The developed CART models 
can be implemented for actual power plant project budg-
eting and financing as the models are developed solely 
with the data collected from the Bangladesh power plant 
industry and the country’s economic parameters. In the 
project development stage in Bangladesh, a Development 
Project Profile (DPP) is prepared following the country’s 
power sector development plan. Many micro-level cost 
variables such as the quantity and quality of plant machin-
ery, geological properties, land acquisition and develop-
ment, and amount of raw materials required for the plant’s 
infrastructure development are unknown at the time of 
DPP preparation. Instead, the DPP mostly depends on 
type, size, proposed location, contract type, etc., along 
with the government’s infrastructure development policy 
and economic parameters (Islam et  al., 2018). Thus, for 
preliminary budgeting or DPP preparation, when risk and 
cost data are not available and eliciting subjective judge-
ment is time consuming and costly, the developed CART 
models will be efficient for the estimators or DPP prepara-
tion team to estimate a realistic budget for a future power 
plant project. Thus, the developed CART models are po-
tentially efficient and handy tools for the Bangladesh Pow-
er Development Board and other organizations involved 
in preparing DPPs. Moreover, the study identifies some 
critical relationships between the project types, sizes, loca-
tion, inflation rate etc., with project cost and contingency 
budgeting. These findings will directly guide the BPDB 
authority and associated Bangladeshi ministries (i.e., The 
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Ministry of Power and Energy and Ministry of Finance 
and Planning) involved at the policy and planning level 
to justify and approve future projects with their budgets 
and locations (Bhargava et al., 2017; Bordat et al., 2004). 

However, it is necessary for cost estimators to under-
stand how to build and interpret the CART models and 
ensembles. Firstly, they need to locate the project-specific 
information and country’s economic parameters needed. 
For example, suppose a project is to be constructed in a 
rural area, with a coal fuel source, planned power genera-
tion capacity of 400 MW, an EPC contract, a 2024 con-
struction year, projected GDP of USD 470 billion, and 
a 5.9% inflation rate according to the BBS (2020). This 
condition satisfies Node 13 in Figure 2. Thus, for this spe-
cific project, the overall predicted budget is USD 427 mil-
lion and CC is a maximum 10% over the budget (Figure 
5, Node 20). The developed ensembles further assist in 
predicting a CC percentage range (i.e., highest and low-
est CCs) for a project (Figures 8 and 9) as it depends on 
the PC having a nonlinear relationship with inflation rate, 
GDP, power generation capacity, and power sources. For 
example, coal-based power plant projects have a history 
of having the lowest CC (Figure 8), but the inflation rate 
should be greater than 6%, which does not satisfy the 
criteria of the above example project as the 2024 infla-
tion rate will be less than 6%. Thus, these findings assist 
decision-makers in choosing a CC percentage based on 
their educated guess and predicted cost to find the to-
tal budget. Afterward, the policymaker can approve the 
budget, order a budget revision, or reject the project for 
financing according to the country’s energy development 
plan and economic status. Thus, these ensembles (Figures 
8 and 9) practically assist informed decision-making for 
PC and CC allocation of power plant projects in Bangla-
desh, which is a critical task for such complex and uncer-
tain projects as power plants in their early stages. 

Secondly, developing CART models for PC and CC 
predictions for future projects in Bangladesh or other 
economically similar countries can be adopted with the 
same or additional variables for its broader application. 
For this purpose, the estimator/project development team 
will gather such previous project data as project location, 
type, size, contract type, actual cost, and estimated CC, 
and national economic factors such as total GDP, con-
struction GDP, and the inflation rate. Then, they will input 
these data to develop the model as presented in this study 
to obtain the predicted PC and CC for their specific type 
and size of the project. 

Conclusions and recommendations

Power plant projects are invariably complex and uncer-
tain. Hence, having sufficiently accurate PC and CC pre-
dictions is critical in their early stages when little project 
information is available. While few studies attempt to 
develop models for predicting power plant PC and CC, 
their models mainly depend on very project-specific cost 
datasets and expert judgment-based subjective datasets. 

However, access to detailed project-specific cost data is 
challenging due to the lack of quality data records and 
information-sharing policies of the project’s organization. 
Moreover, subjective cost data is imprecise, vague, and 
biased on the competence of experts (experience, educa-
tion, understanding of the subject matter, etc.). On the 
other hand, such project-specific historical information as 
project type, size, contract type, location, owner organi-
zation, estimated cost, and final cost, together with such 
national economic parameters as GDP and inflation rate, 
are readily available in open sources (webpages, published 
reports, print media, etc.). This study considers these vari-
ables for developing PC and CC models, which are par-
tially ignored in previous studies. Accordingly, the CART 
models are developed here for predicting the PC and CC 
of power plant projects. Different CART models are then 
combined to form an ensemble to predict the most critical 
cases for contingencies in obtaining the lowest and high-
est amounts for CC allocation. CART-based ensembles 
have not been developed by any previous studies of the 
CC prediction of power plant projects. Another advan-
tage of the CART and ensemble is that they can handle 
a smaller dataset for predicting the PC and CC of such 
complex and large infrastructures as power plants. Access 
to PC and CC data associated with project attributes and 
national economic conditions is much easier for the plan-
ning and budgeting departments of BPDB, NWPCL, and 
APCL. Moreover, the CART models’ errors in predicting 
PC and CC for the Bangladesh power plant projects (i.e., 
AAE of 0.7% and 1.7% for the training and testing data-
sets, respectively) are less than those for other methods 
reported in the literature.

The study findings provide additional knowledge to 
the professionals and policymakers associated with the 
Bangladesh power plant industry. For example, the CART 
model shows that construction cost is the most impor-
tant parameter in estimating CC, coal power plants with 
higher costs (more than USD 275 million) have the least 
CC estimate, and higher costs are associated with projects 
with more than 188 MW power generation capacity. The 
inflation rate and GDP have significant multilevel effects 
on both CART models despite variations in GDP – an in-
flation rate of less than 6.6% is associated with higher CC 
estimates, which could be attributed to more confidence 
in material and equipment prices. Projects in urban areas 
have a lower CC value, although the decision to construct 
power generation projects in urban areas is a policymak-
ing issue as this may conflict with the living environment 
of residential zones. Finally, IPP projects have the lowest 
cost of all types of ownership. All these findings are sig-
nificant for developing DPP for future projects and help 
guide policymakers in choosing the most suitable loca-
tions, project types, and sizes along with national econom-
ic conditions associated with huge capital investments in 
this critical sector. 

The scope of this study was limited to the Bangladesh 
power industry, and limited data (58 out of 138 projects) 
was collected to validate the developed models. However, 
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CART assumes some rules to classify/split the variables 
based on their characteristics and inherent relationships 
with the dependent variables. This means that the devel-
oped model will produce inflated errors if the formation 
of rules to split independent variables is not close to the 
inherent relationships between independent and depen-
dent variables because of the characteristics of the data 
sets. Thus, government entities such as BPDB’s team need 
to replicate the models with larger datasets for a compre-
hensive justification and robustness as they own the proj-
ects’ cost history and other project attributes before the 
practical application of the models. Other models, such 
as ANN or MCS, could be applied for PC and CC predic-
tions and validated for this dataset, with their outcomes 
compared with the CART models’ results in finding more 
accurate models. Although the CART models are very ef-
ficient in highlighting the optimal splitting of variables 
and their importance, they are not useful for sensitivity 
analysis because of their strict rule structure. Alternatively, 
the models mentioned above (ANN, MCS, etc.) can be 
utilized for sensitivity analysis, finding the critical vari-
ables involved in predicting a project’s cost and contingen-
cy. The models used in this study, can be further utilized 
to develop ensembles for all terminal nodes, in addition 
nodes with highest and lowest CC. Additionally, further 
study can be conducted to develop and validate the CART 
models for PC and CC predictions for other infrastructure 
projects with limited cost data, such as bridges, airports, 
and power transmission and distribution projects. Fur-
thermore, the CART modes in this study currently make 
some simplifying assumptions relating to the effect of 
construction methods, organizational culture, and project 
management structure on project cost and contingency 
predictions. Thus, future studies can consider these issues 
in further detail.
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APPENDIX

Table A.1. Data collected from 58 Bangladeshi power plant projects

Project 
ID

Variables

Location Inflation 
rate

Project 
ownership

Plant 
type

Power 
(MW)

Contract 
type

Contin-
gency (%)

Total GDP 
(USD 

million)

Construction 
GDP (USD 

million)

Project 
cost (USD 
million)

1 Rural 2.5 Public CCPP 90 EPC 8 54590 1814.222 89.86

2 Rural 7 Public CCPP 100 EPC 8 184010 4718.573 95

3 Urban 7 Public CCPP 150 EPC 8 184010 4718.573 175

4 Peri-
urban

7.5 Public CCPP 150 EPC 10 161300 4609.806 187.5

5 Peri-
urban

11.5 IPP CCPP 150 EPC 10 131080 3966.103 152.06

6 Rural 11.5 Semi-
autonomous

CCPP 150 EPC 10 131080 3966.103 157.5

7 Rural 6.2 Public CCPP 225 EPC 1 141710 4266.197 250

8 Peri-
urban

9.4 Public CCPP 225 EPC 5 122040 3723.714 200

9 Rural 7 Semi-
autonomous

CCPP 225 EPC 10 184010 4718.573 299.42

10 Peri-
urban

7.5 Semi-
autonomous

CCPP 225 EPC 5 161300 4609.806 200

11 Rural 11.5 Public CCPP 225 EPC 5 131080 3966.103 450

12 Rural 6.2 Public CCPP 225 EPC 10 141710 4266.197 312.11

13 Rural 7.5 Public CCPP 330 EPC 10 161300 4609.806 365.5

14 Peri-
urban

6.2 Semi-
autonomous

CCPP 335 EPC 8 208320 5124.335 350

15 Peri-
urban

7 Semi-
autonomous

CCPP 335 EPC 5.59 184010 4718.573 313.62

16 Rural 11.5 IPP CCPP 350 EPC 8 131080 3966.103 390

17 Peri-
urban

5.7 Semi-
autonomous

CCPP 350 EPC 8 235620 5563.015 430

18 Peri-
urban

7 Semi-
autonomous

CCPP 350 EPC 3 184010 4718.573 380.15

19 Rural 7.5 Public CCPP 365 EPC 5 161300 4609.806 322

20 Peri-
urban

6.2 Semi-
autonomous

CCPP 400 EPC 8 208320 5124.335 375

21 Rural 5.7 Public CCPP 400 EPC 8 235620 5563.015 325.65

22 Peri-
urban

5.7 Semi-
autonomous

CCPP 400 EPC 5 235620 5563.015 500

23 Peri-
urban

6.2 Public CCPP 400 Turnkey 8 208320 5124.335 400

24 Rural 7.5 Public CCPP 400 EPC 8 161300 4609.806 430.5

25 Peri-
urban

7.5 Public CCPP 400 EPC 3 161300 4609.806 350

26 Rural 9.4 Public CCPP 410 EPC 8 122040 3723.714 487.65

27 Peri-
urban

5.7 Semi-
autonomous

CCPP 412 EPC 8 235620 5563.015 508

28 Rural 11.5 Semi-
autonomous

CCPP 412 EPC 1 131080 3966.103 328

29 Rural 9.1 Semi-
autonomous

CCPP 412 EPC 10 85600 3144.745 355.2



Journal of Civil Engineering and Management, 2022, 28(8): 680–695 695

Project 
ID

Variables

Location Inflation 
rate

Project 
ownership

Plant 
type

Power 
(MW)

Contract 
type

Contin-
gency (%)

Total GDP 
(USD 

million)

Construction 
GDP (USD 

million)

Project 
cost (USD 
million)

30 Rural 6.2 Semi-
autonomous

CCPP 420 EPC 10 141710 4266.197 430

31 Peri-
urban

5.7 Semi-
autonomous

CCPP 450 EPC 10 235620 5563.015 400

32 Rural 3.7 Semi-
autonomous

CCPP 450 EPC 10 57500 2140.92 289

33 Rural 5.5 Semi-
autonomous

CCPP 718 EPC 10 317470 7291.907 833

34 Rural 7.5 Semi-
autonomous

Coal 275 EPC 1 161300 4609.806 337.5

35 Peri-
urban

5.5 Public Coal 400 EPC 10 317470 7291.907 430

36 Rural 5.7 Public Coal 660 EPC 3 235620 5563.015 450

37 Rural 5.6 Public Coal 600 EPC 7.2 288420 6651.478 2250

38 Rural 6.2 IPP HFO 50 BOO 8 141710 4266.197 97.5

39 Rural 11.5 IPP HFO 50 Turnkey 8 131080 3966.103 49.9

40 Urban 11.5 IPP HFO 50 BOO 5 131080 3966.103 43.75

41 Peri-
urban

7 Public HFO 100 EPC 8 184010 4718.573 125

42 Rural 7 IPP HFO 100 BOO 8 184010 4718.573 100

43 Peri-
urban

7.5 IPP HFO 100 EPC 8 161300 4609.806 125

44 Peri-
urban

7 IPP HFO 100 EPC 3 184010 4718.573 104.16

45 Rural 11.5 IPP HFO 100 Turnkey 8 131080 3966.103 93

46 Peri-
urban

11.5 IPP HFO 100 EPC 8 131080 3966.103 97.5

47 Peri-
urban

11.5 IPP HFO 100 Turnkey 8 131080 3966.103 110

48 Peri-
urban

5.6 Semi-
autonomous

HFO 100 EPC 3 288420 6651.478 95

49 Peri-
urban

7.5 Public HFO 100 Turnkey 10 161300 4609.806 142.7

50 Peri-
urban

11.5 Public Natural 
gas

50 EPC 8 131080 3966.103 65

51 Rural 7.5 IPP Natural 
gas

25 BOO 8 161300 4609.806 35

52 Peri-
urban

6.2 Semi-
autonomous

Natural 
gas

50 BOO 8 141710 4266.197 75

53 Rural 7 Public Natural 
gas

60 EPC 8 184010 4718.573 90

54 Rural 3.7 IPP Natural 
gas

80 BOO 8 57500 2140.92 40

55 Rural 7.5 IPP Natural 
gas

100 BOO 8 161300 4609.806 150

56 Urban 2.5 Public Natural 
gas

150 EPC 3 54590 1814.222 210.4

57 Rural 3 Public Natural 
gas

420 Turnkey 8 38230 993.6735 189

58 Rural 10.1 Public Natural 
gas

400 Turnkey 8 45920 1189.671 167

End of  Table A1


