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Abstract. The risk-informed decision-making of metro tunnel project is often faced with the problem of inadequate uti-
lization of available information. In order to address the epistemic uncertainty problem caused by insufficient utilization 
of information in decision-making, this paper proposes a risk decision support approach for metro tunnel construction 
based on Continuous Time Bayesian Network (CTBN) technique. CTBN can factor the state space of variables in tunnel 
projects and perform evidence-based reasoning, which enables the diverse information of expert opinions, project-specific 
parameters, historical data and engineering anomalies to be the evidence to support decision-making. A concise CTBN 
model development method based on Dynamic Fault Trees is presented to replace the cumbersome model learning pro-
cess. The proposed approach can utilize multi-source information as evidence to provide multi-form decision support both 
in the pre-construction stage and construction stage of the tunnel construction project, and the results can support the 
decisions on judging the acceptability of the risk, developing response strategies for risk factors and diagnosing the causes 
of the hazardous event. A case study on the water leakage risk of tunnel construction in China is presented to illustrate 
the feasibility of the approach. The case study shows that the approach can assist in making informed decisions, so as to 
improve the engineering safety.

Keywords: Continuous Time Bayesian Network, evidence, risk-informed decision-making, tunnel construction, knowl-
edge, multi-source information.

Introduction

Over the past decades, urban metro construction projects 
have been increasing rapidly in China. Tunnel project is 
a complicated process with multiple working procedures, 
which means that practical tunnel project will inevitably 
face numerous uncertainties in the tunnel construction 
project. Uncertainties that may affect the safety of tun-
nel projects can be considered of aleatory uncertainty and 
epistemic uncertainty (Zio, 2009). Aleatory uncertainty 
is the natural randomness due to inherent variability of 
the analyzed system itself, and epistemic uncertainty is 
the imprecision due to lack of knowledge and informa-
tion (Ferdous et al., 2013). As the existing of these uncer-
tainties, tunnel projects are tend to impose various risks 
on all parties involved and on those not directly involved 
in the projects (Hu & Huang, 2014). It is significant to 
make appropriate risk decisions on the risk management 
of tunnel construction projects. Previous researches on the 
uncertainty of risks mainly aimed to address single uncer-
tain characteristics, for example, Fuzzy Theory was used 

to address the imprecision or subjective fuzziness (Wang 
& Chen, 2017), Evidence Theory was used to address the 
conflict between different information sources (Zhang 
et al., 2017), Random Field Theory was used to address the 
inherent random characteristics of geology (Wang et al., 
2016), etc. However, previous works were limited because 
most of them only focused on addressing the uncertain-
ties caused by the scarcity of risk-related information, but 
rarely considered how to fully utilize the diversity of risk-
related information to reduce uncertainties, and this may 
bring problems to the interpretability of decision results. 
In practical engineering, rich available information sourc-
es including historical data, expert opinions, project-spe-
cific parameters, and engineering anomalies can be col-
lected in the pre-construction stage or construction stage 
of the tunnel construction project, and this information 
can be extracted as evidence to support risk-informed de-
cision-making. Therefore, an evidence-based risk decision 
support approach which can fully utilize the diversity of 
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information is developed to support the decision-making 
of tunnel construction project.

Continuous Time Bayesian Network (CTBN) model is 
a probabilistic graphical model which fuses Bayesian Net-
works with Markov Processes. CTBN can factor the state 
space of variables and perform evidence-based reasoning, 
which enables the utilization of risk-related information. 
In view of these advantages, the CTBN model is applied 
in the proposed risk decision support approach of tun-
nel construction project to address the epistemic uncer-
tainty. The risk-related information is obtained through 
expert interview, project investigation, and historical data 
statistics in the pre-construction stage of the tunnel proj-
ect and through safety patrol and construction monitor-
ing in the construction stage of the tunnel project. Stur-
laugson and Sheppard (2016) introduced various types of 
evidence of the CTBN model. The available information 
can be extracted as certain or uncertain evidence of the 
CTBN model to support the decision-making through 
explicit and tacit knowledge. Moreover, the traditional 
parameter learning and structure learning method of the 
CTBN model has high requirements for observation data 
(Nodelman et al., 2012), an approximate CTBN model de-
velopment method based on Dynamic Fault Trees (DFTs) 
is proposed. DFTs define multi-form logic gates to model 
the failure modes of complex systems and can provide a 
reliable logical framework for the causality of the hazard-
ous event and risk factors (Boudali et al., 2009), thus the 
DFT framework can be served as prior knowledge for 
CTBN structure learning. 

Once the CTBN model is developed, multi-form anal-
yses can be performed, aiming to provide safety guidance 
for the tunnel project in the pre-construction stage and 
construction stage. Specifically, the result of predictive 
analysis can help judge the acceptability of the hazard-
ous event in tunnel construction project before it occurs 
and find the weak positions that need attention, if it is 
unacceptable, corresponding response strategies for the 
risk factors can be formulated according to the result of 
importance analysis. Moreover, when the hazardous event 
occurs, diagnostic analysis can help identify the most 
likely causes, and the repair strategies can be formulated 
accordingly. Špačková (2012) has pointed out that new 
information can reduce epistemic uncertainty. The CTBN 
model is developed not only to provide decision support 
in the pre-construction stage of the tunnel project based 
on prior information, but also to update the decision with 
the new information obtained in the construction stage 
of the tunnel project. Finally, an actual metro tunnel proj-
ect in China is presented as a case study to demonstrate 
the feasibility of the developed risk decision support ap-
proach.

The remainder of the paper is organized as follows. 
In Section 1, a literature review of previous relevant re-
searches is provided. In Section 2, fundamental theories 
are introduced, the method of establishing CTBN model 
is elucidated, and the risk decision support approach with 
step-by-step procedures is established. In Section 3, the 

proposed approach is applied to the risk-informed deci-
sion-making of a metro tunnel construction in China for 
case study. Finally, some further discussions and conclu-
sions are presented.

1. Literature review

Multifarious risk analysis and assessment methods were 
invented and made prominent contributions to the risk 
management of complex projects. In previous studies, risk 
analysis and assessment methods such as Fault Tree Anal-
ysis, Event Tree Analysis, Analytic Hierarchy Process, and 
Exploratory Factor Analysis have been successfully ap-
plied in the tunnel projects (Hong et al., 2009; Qu et al., 
2011; Hyun et al., 2015; Liu et al., 2018). By implement 
these methods to the tunnel projects, probabilities and 
impacts of risks, causes and consequences of undesired 
events, classification of risk factors, etc. can be acquired. 
The results of these methods can provide basis for risk 
control and improve the safety of tunnel projects. How-
ever, most of the traditional risk assessment and analysis 
methods analyzed problems from a single perspective and 
were unlikely to comprehensively characterize the risks of 
tunnel projects. Therefore, some more advanced models 
were proposed to address the risk decision problems of 
tunnel project under complex environment (Cárdenas 
et al., 2012; Sousa & Einstein, 2012; Špačková et al., 2013a; 
Zhang et  al., 2013; Gitinavard, 2019). These approaches 
were presented to expound how the risk analysis models 
were used to support risk decision-making in tunnel proj-
ects, but few of them provided complete decision-making 
steps. 

In order to improve the risk cognition of tunnel proj-
ects, some studies developed risk prediction models, 
which had the abilities to predict the safety of the tunnel 
project, provide the risk criteria, and improve the design 
and construction parameters of the tunnel project (Cao 
et al., 2018; Li et al., 2019; Liu et al., 2019; Mohammadi 
& Azad, 2021). The risk prediction models provided ef-
fective ways to identify the explicit and tacit knowledge 
from the raw risk-related information of tunnel projects. 
Appropriate risk prediction models can serve as a bridge 
between the tunnel project information and the profes-
sional knowledge. Unfortunately, most of these models 
were highly abstract and seldom fully consider the com-
plex situation in practical engineering, thus, the results of 
these models can only provide basis for decision-making 
in practical engineering, but cannot be used directly for 
decision-making.

In recent years, the uncertainty of risks that may affect 
engineering safety has gradually become a research hot 
spot. Lack of data, simplification of model, imprecision 
of knowledge, and conflict between different information 
sources may lead to the uncertainty of risks. Therefore, 
many theories for addressing these uncertainties were de-
veloped. Among them, Fuzzy Theory was used to charac-
terize the uncertainty caused by the lack of data and the 
imprecision of knowledge (Wang & Chen, 2017; Mousavi 
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& Gitinavard, 2019); Entropy-risk model was developed 
to quantify the parameter uncertainty and the model un-
certainty (Xia et al., 2017); D-S Evidence Theory was pre-
sented to address the conflict between different informa-
tion sources (Zhang et al., 2017); various forms of Bayes-
ian networks were proposed to reduce the uncertainty by 
data fusion or model updating (Wu et al., 2015; Xie et al., 
2021). It can be seen that in comparison with other theo-
ries, the advantage of Bayesian-based approaches in cop-
ing with uncertainties lies in its ability of model updating 
and information fusion.

Previous researches for addressing the uncertainty 
of risks in tunnel projects still existed some limitations, 
because the main concerns of them were addressing the 
uncertainty characteristics caused by the scarcity of infor-
mation but rarely considered how to fully utilize the diver-
sity of risk-related information. The CTBN model can fac-
tor the variables into three dimensions: initial state, state 
transition rate, and time, which enables the multi-source 
information obtained in the pre-construction stage and 
construction stage of the tunnel project to be the evidence 
of decision-making. Therefore, this paper innovatively uti-
lizes CTBN technique to address the uncertainty of risks 
in tunnel projects through maximizing the benefit of risk-
related information. How to extract the information as 
evidence to support decision-making is also expounded. 
Moreover, a discussion on how to increase the certainty 
degree of uncertain evidence is provided to further reduce 
the uncertainty. A comparison of several main properties 
between this paper and some relevant literatures is shown 
in Table 1 to specify the merits of this study.

2. Methodologies

2.1. Bayesian Networks

Bayesian Networks is a directed acyclic graph (DAG) 
composed of a set of variables and directed edges, and 
each variable with all of their parents is attached by a con-

ditional probability table (Jensen & Nielsen, 2007). A BN 
model can be defined as a binary: B = < G, Θ >. G = < V, 
E > represents a directed acyclic graph, V = (x1, x2, …, xn) 
represents a set of nodes, and E represents directed edges 
between pairs of nodes. The node xi in the node set V rep-
resents the ith random variable, the directed edge denotes 
the association relationship between variables, and P(xi) 
represents the marginal probability distribution of xi. The 
starting node of the directed edge is the parent node of the 
end node, and the parent node of the node xi is denoted as 
Pa(xi). Θ represents the conditional probability distribu-
tion (CPD) corresponding to each node. According to the 
conditional independence assumptions contained in BNs, 
the CPD of the node xi can be denoted as P(xi|Pa(xi)). 
P(V) represents the probability distribution over V, it is 
equivalent to P(x1, x2, …, xn), which means the joint prob-
ability distribution (JPD) over the node set (x1, x2, …, xn). 
Based on the chain rule, P(V) can be written as Eqn (1):

1 2
1

( ) ( , , , ) ( | ( ))
n

n i i
i

P V P x x x P x Pa x
=

= =∏ .  (1)

2.2. Continuous Time Bayesian Networks

Continuous Time Bayesian Networks can explicitly de-
scribe dynamic characteristics of structured state space 
by temporal evolution of local variables, which enable us-
ers to obtain the state probability distribution of specific 
nodes over time (Gatti et al., 2012). CTBNs are first in-
troduced by Nodelman et al. (2002) and a CTBN model 
can be defined as follows. X denotes a set of local variables 
X1, X2, …, XN, in which Xn has a finite domain of values 
Val(Xn)={x1(n), x2(n), …, xm(n)}. A CTBN N over X is 
composed of a binary: N = < B, G >. The first component 
is an initial distribution 0 PX , designated as B over X. The 
second component is a continuous transition model which 
is specified as: (1) A directed graph G whose nodes are X1, 
X2, …, XN, and Pa(Xn) denotes the parents of Xn; (2) A 
set of conditional intensity matrices (CIMs) ( )n

n

Pa X
XQ  as-

Table 1. Comparison of properties of some risk-informed decision support approaches for tunnel construction.

Authors

Approach’s property

Evidence 
type Response

strategy
Analysis type Experts’

weight Time factor Knowledge 
extraction

Uncertainty 
type

U∆ C∆ P* D* I* C* D* N* A* E* N*

Wu et al. (2015) √ √ √ √ √ √
Zhang et al. (2014a) √ √ √ √ √ √ √ √
Hyun et al. (2015) √ √ √ √
Sousa and Einstein (2012) √ √ √ √ √ √ √
Xia et al. (2017) √ √ √ √ √
Špačková et al. (2013a) √ √ √ √ √ √
Nývlt et al. (2011) √ √ √ √ √ √
Wang et al. (2014) √ √ √ √ √ √ √
This paper √ √ √ √ √ √ √ √ √ √

Notes: U∆ – Uncertain evidence; C∆ – Certain evidence; P* – Predictive analysis; D* – Diagnostic analysis; I* – Importance analysis; 
C* – Continuous time; D* – Discrete time; N* – Not considered; A* – Aleatory uncertainty; E* – Epistemic uncertainty. 
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sociated with each variable Xn∈ X for all of the possible 
instantiations of Pa(Xn). If Xn is given, one instantiation 
of its CIM ( )n

n

Pa X
XQ  can be presented as Eqn (2):
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x x nq  denotes the transition intensity from state 
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be interpreted as the instantaneous probability for leaving 
state ( )

( )
n

i

Pa X
x nq (Stella & Amer, 2012).

As a CTBN can be seen as a factored Markov Process, 
formally similar to a BN, the joint intensity matrix (JIM) 
can be defined as Eqn (3):

( )

1

n
n

N
Pa X
X

n=

=∏Q QN .  (3)

2.3. Formalism transformation  
from DFT into CTBN

Dynamic Fault Trees can provide a reliability modeling 
framework based on expert knowledge for the risk of 
tunnel construction. Some researchers have done previ-
ous works on the integration of DFTs/SFTs and CTBNs 
for reliability modeling (Cao, 2011; Perreault et al., 2015; 
Codetta-Raiteri & Portinale, 2017; Forrester et al., 2019). 
However, these researches do not include the transforma-
tion relationship of all logic gates in DFTs to the CTBN 
model and a complete formalism transformation process. 
Therefore, this study complements and perfects the previ-
ous works, and a detailed transformation method from a 
DFT structure with all logic gates to the corresponding 
CTBN formalism is elaborated.

First, some definitions need to be made. It is defined 
that state 0 denotes a working state and state 1 denotes a 
failure state. For a given variable Xn in the CTBN model 
whose parent node is denoted as Pa(Xn), the conditional 
failure rate of Xn is denoted as ( )n

n

Pa X
Xl , and the conditional 

repair rate is denoted as ( )n
n

Pa X
Xm . If the variable is consid-

ered non-reparable, the repair rate will be set to 0.
The CIM of Xn can be expressed as Eqn (4):

( ) ( )
( )

( ) ( )

            State      0               1

0  1

n n
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n nn
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Pa X X X

Pa X Pa XX
X X

 −l l
 =
 m −m
 
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The state distribution over Xn at time t, ( )
nX tP , can be 

calculated by Eqn (5):
( )0( ) exp[ ]n

n n n

Pa X
X X Xt t= ⋅P P Q .  (5)

The repair strategy is usually formulated after the haz-
ardous event is diagnosed in practical tunnel projects, 
therefore, the variables are considered non-reparable in 

the calculation of failure probability, and 0
nXP  is defined as:

0
State    0      1

[ 1 , 0  ]
nX =P .  (6)

With above definitions, the failure probability of Xn at 
time t can be calculated by Eqn (7):

( )( ) 1 exp[ ]n
n n

Pa X
X XF t t= − −l ⋅ .  (7)

The variable repair process is similar. If Xn is in a fail-
ure state and the initial time of repair process is denoted 
as s, 

n
s
XP  can be expressed as:

 State   0      1
 0 ,    1 

n
s

X =   P .  (8)

The repair probability for the transition of Xn back to 
a non-failing state at time t can be calculated by Eqn (9):

( )( ) 1 exp[ ( )]n
n n

Pa X
X XR t t s= − −m ⋅ − .  (9)

In a CTBN model, each node is assigned with a cor-
responding CIM and an initial distribution. The core for 
developing a CTBN model is to determine the CIMs rep-
resenting the relationships among nodes. Logic gates ex-
pressing failure modes in DFTs can provide prior knowl-
edge to the relationships among nodes. In the following 
part, six common logic gates are taken as examples to 
illustrate how DFTs can be converted into CTBN formal-
isms.

The correspondence between an AND gate and the 
CTBN representation is shown in Figure 1, and the CIMs 
of the nodes are listed in Tables 2–4. For node A and node 
B, the expected time of transitioning from state 0 to state 
1 are 1/lA and 1/lB, and the expected time of transition-
ing back from state 1 to state 0 are 1/mA and 1/mB (if the 
component is non-reparable, then the expected time of 
transitioning is 1/0 which means infinity). For node C, 
only when both of node A and node B are in state 1, the 
transitioning of node C from state 0 to state 1 will occur.

Table 2. CIM of node A

State 0 1
0 –lA lA

1 mA –mA

Table 3. CIM of node B

State 0 1
0 –lB lB

1 mB –mB

Table 4. CIM of node C

A(1), B(1)

State 0 1 A(0), B(0)
A(1), B(0)
A(0), B(1)

State 0 1

0 –∞ ∞ 0 0 0

1 0 0 1 ∞ –∞
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The correspondence between an OR gate and the 
CTBN representation is shown in Figure 2. The CIMs of 
node A and node B are the same as in Tables 2–3, and the 
CIM of node C is listed in Table 5. For node C in the OR 
gate, as long as any input node is in state 1, the transition-
ing of node C from state 0 to state 1 will occur at once.

How a PAND gate can be converted into the corre-
sponding CTBN representation is exhibited in Figure 3. 
For a PAND gate with two inputs, this paper defines the 
latter input node B has a working state and two failure 
states: state 0 indicates a working state, state 1 indicates 
that node A is in a failure state when node B fails and state 
1* indicates that node A is in a working state when node B 
fails. Only when node B is in state 1, the state transitioning 
of node C from state 0 to state 1 will occur. The CIM of 
node A is the same as in Table 2, and the CIMs of node B 
and node C are listed in Tables 6–7.

The mapping model from a SEQ gate into its corre-
sponding CTBN representation is demonstrated in Figure 4.  
The failure of node A is like a trigger to boot up the state 
transitions of node B (Codetta-Raiteri, 2005). For node 
C, only when node A and node B are both in state 1, the 
transitioning from state 0 to state 1 will occur. The CIM 
of node A is the same as in Table 2, and the CIMs of node 
B and node C are listed in Tables 8–9.

Figure 5 provides a mapping model from a FDEP gate 
into its CTBN representation. The transformation logic of 
the trigger event node T is just like that in static gates. As 
for the dependent events, when node T is in state 1, node 
A and B will be forced to transition to state 1 immediately. 
The CIMs of node T, node A and node B are shown in 
Tables 10–12.

As for SPARE gates, this paper cites a WSP gate as 
an instance for illustrating the transformation rules. The 
WSP gate and its corresponding CTBN representation 
are shown in Figure 6. Node P denotes the primary event 
which is initially in a working state. Node S denotes the 

Figure 1. AND gate and its corresponding CTBN 
representation

Figure 3. PAND gate and its corresponding CTBN 
representation

Figure 2. OR gate and its corresponding CTBN representation

Figure 4. SEQ gate and its corresponding CTBN representation

Figure 5. FDEP gate and its corresponding CTBN 
representation

Table 5. CIM of node C

A(1), B(0)
A(0), B(1)
A(1), B(1)

State 0 1
A(0), B(0)

State 0 1
0 –∞ ∞ 0 0 0
1 0 0 1 ∞ –∞

Table 6. CIM of node B

A(0)

State 0 1 1*

A(1)

State 0 1 1*
0 –lB 0 lB 0 –lB lB 0
1 0 0 0 1 mB –mB 0
1* mB 0 –mB 1* 0 0 0

Table 7. CIM of node C

B(1)
State 0 1

Other 
cases

State 0 1
0 –∞ ∞ 0 0 0
1 0 0 1 ∞ –∞

Table 8. CIM of node B

A(1)
State 0 1

A(0)
State 0 1

0 –lB lB 0 0 0
1 mB –mB 1 0 0

Table 9. CIM of node C

B(1)
State 0 1

B(0)
State 0 1

0 –∞ ∞ 0 0 0
1 0 0 1 ∞ –∞

Figure 6. WSP gate and its corresponding CTBN 
representation
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spare event which is initially in a dormant state with a 
dormant factor α, when node P fails while node S has not 
failed, node P will transition to a working state immedi-
ately. The transitioning of node C from state 0 to state 1 
will occur when both of the primary event and spare event 
are in a failure state. The CIMs of node P, node S and node 
C are shown in Tables 13–15 respectively. The transforma-
tion rules of CSP gate and HSP gate are similar, which will 
not be reiterated here.

is shown in Figure 7. The specific steps of risk-informed 
decision-making in the pre-construction stage and con-
struction stage of the tunnel project are elaborated respec-
tively. 

2.4.1. Risk-informed decision-making in the  
pre-construction stage of the tunnel project
The first step is risk–related information survey. Nielsen 
(2004) pointed out that the most common risk manage-
ment problem in project construction stage is insufficient 
risk identification. In order to achieve a well-supported 
risk identification, collecting preliminary risk-related 
information becomes a particularly important step as it 
helps in identifying the most common accidents, deter-
mining the causes of incidents and developing better safe-
ty systems and culture (Ayhan & Tokdemir, 2019). There 
are three sources of risk-related information needed in the 
pre-construction stage of the tunnel project, i.e., histori-
cal data, project-specific parameters and expert opinions. 
Historical data mainly encompasses tunnel accident re-
cords, standards, safety guidelines, related researches, and 
previous similar projects (Sherehiy & Karwowski, 2006). 
Project-specific parameters mainly include engineering 
characteristics, engineering hydrogeological conditions, 
construction techniques, circumjacent environment, qual-
ity of project participants, design parameters, and sched-
ule, etc. In practice, historical data on tunnel projects are 
often scarce or not conveniently accessible, thus interview 
with professionals becomes an alternative source to ob-
tain risk-related information (Cárdenas et al., 2012). Ex-
pert opinions mainly include the experts’ perception of 
the tunnel project risks. 

The second step is risk identification. This step is a 
kind of descriptive analysis which lays the basis for the 
risk analysis process, and sufficient risk identification 
ensures the effectiveness of the whole risk management 
(Tchankova, 2002). In this step, the explicit and tacit 
knowledge of tunnel project is identified from the raw 
risk-related information. The explicit knowledge of tun-
nel construction is rational knowledge, which is related to 
theoretical aspects, while the tacit knowledge is empirical 
knowledge, which is related to practical aspects (Hadiku-
sumo & Rowlinson, 2004). The risk-related knowledge 
can assist in identifying the possible hazardous events and 
the associated risk factors in tunnel construction, reveal-
ing their relationships, estimating their failure rate and 
other parameters needed. Specifically, Hazardous events, 
risk factors and risk mechanism that are prone to occur 
in tunnel construction can be identified from the histori-
cal data, and the historical data can also provide a basis 
for the expert estimation of failure rate. By comparing the 
project-specific parameters with the historical data, the 
possible hazardous event and its risk factors in the specific 
project can be derived, the construction duration can also 
be identified from the project-specific parameters. The 
function of the expert opinions is to supplement the risk 
factors and risk mechanism and estimate the parameters 
required to develop the CTBN model. Then the evidence 

Table 10. CIM of node T

State 0 1
0 –lT lT

1 mT –mT

Table 11. CIM of node A

T(1)
State 0 1

T(0)
State 0 1

0 –∞ ∞ 0 –lA lA

1 0 0 1 mA –mA

Table 12. CIM of node B

T(1)
State 0 1

T(0)
State 0 1

0 –∞ ∞ 0 –lB lB

1 0 0 1 mB –mB

Table 13. CIM of node P

State 0 1
0 –lP lP

1 mP –mP

Table 14. CIM of node S

P(1)
State 0 1

P(0)
State 0 1

0 –lS lS 0 –αlS αlS

1 mS –mS 1 αmS –αmS

Table 15. CIM of node C

P(1), S(1)

State 0 1
P(0), S(0)
P(1), S(0)
P(0), S(1)

State 0 1

0 –∞ ∞ 0 0 0

1 0 0 1 ∞ –∞

2.4. Development of an evidence-based  
risk decision support approach

In tunnel construction projects, decision makers mainly 
need to make decision on risks in the pre-construction 
stage and construction stage. The available information 
obtained in the pre-construction stage and construction 
stage of the tunnel project can be extracted as the evidence 
of the CTBN model to assist in making sensible risk deci-
sions. The flow chart of the entire implementation process 
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for developing the CTBN model can be extracted from the 
risk-related knowledge. In particular, hazardous events, 
risk factors and risk mechanism identified from the com-
bination of historical data, project-specific parameters and 
expert opinions are extracted as the evidence for devel-
oping the structure of the CTBN model; the failure rate 
of risk factors identified from the expert opinions is ex-
tracted as the evidence of state transition rate of nodes in 
the CTBN model; the state of risk factors and the hazard-
ous event identified from the project-specific parameters 
is extracted as the evidence of initial state of nodes in the 
CTBN model; the construction duration identified from 
the project-specific parameters is extracted as the evidence 
of time interval. The detailed evidence use and evidence-
based decision-making are shown in the following steps.

The third step is DFT structure construction, which 
aims to structure the identified hazardous event and its 
risk factors in the form of DFT. The procedures for es-
tablishing DFT structure mainly include: first, determin-
ing the analysis scope, objective and basic assumptions; 
second, defining the hazardous event as the top event and 
defining the risk factors as the intermediate events and ba-
sic events; third, exploring all possible causes of the event 
layer by layer from top to bottom until the basic events at 
the bottom level and expressing the relationships among 
events by logic gates; and finally, performing standard-
ization and simplification to finalize the generated DFT 
structure.

The fourth step is CTBN model development. In the 
fourth step, an evidence-based CTBN model is developed 
to support the decision-making. Firstly, two basic assump-
tions need to be clarified: The first assumption is that the 
tunnel construction process is approximately considered 

as a stationary process, the failure rate of all risk factors 
is constant and independent of time, the probability of 
occurrence of each risk factor can be considered to obey 
the negative exponential distribution; The second assump-
tion is that in the pre-construction stage, all risk factors 
and the hazardous event are in a non-occurrence state, 
the initial state of all nodes in the CTBN model can be 
defined as in state 0. And then, in order to establish a 
CTBN model, structure learning and parameter learning 
need to be conducted. Structure learning aims to form an 
appropriate directed graph with nodes and directed edg-
es, and assemble the corresponding CIM for each node. 
Instead of the traditional structure learning method, the 
proposed approach uses DFTs as evidence to develop the 
CTBN model. Events in DFTs correspond to nodes in 
CTBNs, and logic gates connecting events are represented 
by directed edges and CIMs attached to nodes in CTBNs. 
The transformation rules from the DFT structure into the 
CTBN formalism have been illustrated previously. Param-
eter learning aims to parameterize the generated CTBN 
structure, which need to determine the conditional tran-
sition intensity between states of each node. In the pre-
construction stage, the repair rate of each root node is set 
to 0. The remaining task is to estimate the failure rate of 
each root node.

Many tools have been developed for estimating the 
failure rate of tunnel construction, and the sources can 
be broadly classified into three types: reliability analysis, 
statistical method and expert judgement. The reliability 
analysis of tunnel construction is usually a complex task 
since the reliability of both the final tunnel and each of 
the interim states need to be analyzed, and it has a dis-
advantage that uncertainties resulting from human and 

Figure 7. Flow chart of the proposed dynamic risk decision support approach for metro tunnel construction
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organizational factors cannot be included in reliability 
analysis (Blockley, 1999). The statistical method based 
on data interprets the failure rate as a relative frequency 
(Aven, 2011). However, failures in tunnel projects are rare 
events that cannot be easily captured. The study shows a 
huge spread of failure rate estimation caused by different 
statistical samples, and suggests that statistical methods 
can only serve as a basis orientation for expert estimation 
(Špačková et al., 2013b). Thus, expert judgement is select-
ed for failure rate estimation in the proposed approach.

Expert judgment is a concise way to estimate failure 
rate when lack of sufficient data support (Choi et  al., 
2004). On the one hand, expert judgement can be applied 
to bridge the gap between hard technical evidence and 
mathematical rules, on the other hand, it can also make up 
for unknown characteristics of a technical system (Cooke 
& Goossens, 2004). However, expert judgement exists an 
apparent weakness since it is uncertain evidence, the cer-
tainty of it is subjectively influenced by expert individuals, 
which may lead to biases. The following two measures can 
be utilized to mitigate these biases:
(1) The accuracy of expert judgement depends to a large 

extent on the degree of risk perception. A compre-
hensive information survey and knowledge elicitation 
process can increase the judgement beliefs of expert, 
which has been clarified in the second step. The in-
crease of expert judgment belief is helpful to reduce 
subjective biases, and the factored state space in CTBN 
model can reduce the burden of expert judgement.

(2) The expert investigation is conducted via question-
naires distributed to expert individuals. Eskesen et al. 
(2004) classified the frequency interval and its corre-
sponding language description. Experts can use this as 
a reference and combine their knowledge to estimate 
the failure rate. Different expert individuals may in-
volve in different risk attitudes and different judgment 
abilities on different events. Hence, expert judgement 
credibility index is introduced to distinguish the reli-
ability of data from interviews with individuals (Zhang 
et al., 2014a). The expert judgement credibility index 
(denoted by w) is determined by the expert judgment 
ability (denoted by h) and the expert confidence index 
(denoted by θ). The expert judgment ability of each 
expert individual is determined by the expert’s edu-
cational level, length of employment and job position, 
and reflects the authority of expert. Table 16 lists the 
expert judgment ability level and the associated expert 
weight coefficient. The expert confidence index reflects 
the subjective confidence of each expert individual in 
his or her own judgements and can be measured in 
ten levels from 0.1 to 1.0. The expert judgement cred-
ibility index w can be calculated by Eqn (10):

     .w= h⋅θ   (10)

If the number of experts is m, by using the weighted 
average method, the estimated failure rate of the root node 
Xn can be calculated by Eqn (11):
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where 
nXl  denotes the weighted average of m experts’ es-

timates of failure rate; 
n

j
Xl  denotes the j-th expert’s esti-

mates of failure rate.

Table 16. Classification of expert judgment ability level and 
setting of corresponding weights (Zhang et al., 2014a).

Level Description of expert classification h

I 1. Domain experts in tunnel engineering with 
senior professional titles and over 20 years of 
working experience;

2. Professors within the research field of tunnel 
engineering. 

1.0

II 1. Domain experts in tunnel engineering with 
senior professional titles and 10-20 years of 
working experience; 

2. Associate professors within the research field 
of tunnel engineering.

0.8

III 1. Domain experts in tunnel engineering with 
intermediate professional titles;

2. Lecturers within the research field of tunnel 
engineering.

0.6

IV 1. Domain experts in tunnel engineering with 
primary professional titles;

2. Assistant professors within the research field 
of tunnel engineering.

0.4

Some other main possible expert judgement biases and 
measures of minimizing biases are listed by Hallowell and 
Gambatese (2009). The failure rate of nodes can be esti-
mated with relatively accuracy by applying these measures 
in accordance with specific conditions.

The fifth step is risk analysis based on CTBN model in-
ference. The inference with the CTBN model is performed 
with a powerful software package called CTBN-RLE in R-
version developed by Shelton’s team (Shelton et al., 2010). 
This software provides libraries and programs for the al-
gorithms developed for CTBNs, and the library supplies 
classes for storing and scanning multivariate trajectories. 
So, the initial distribution and conditional intensity matri-
ces of a CTBN can be represented. CTBN-RLE can imple-
ment exact inference and sampling approximate inference 
based on evidence, and among the multifarious forms of 
inferences, querying the marginal distribution of a variable 
at a particular time enables the users to obtain the failure 
probability of an event in a time interval. Cao (2011) has 
validated the correctness of the CTBN modeling tech-
nique. The following equations and descriptions will help 
the users determine the input parameters of the CTBN 
model for various forms of analysis.

In the pre-construction stage of the tunnel project, by 
inputting the built CTBN model into the CTBN-RLE soft-
ware and querying the marginal distribution of the nodes, 
predictive analysis and importance analysis can be imple-
mented to support the decision-making.
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Predictive analysis aims to judge the acceptability of 
the hazardous event and find the weak positions by pre-
dicting the occurrence probability of it and its critical sub-
events. According to basic assumption, the initial state of 
each node in the CTBN model is set to 0, the time inter-
val is set to T, the CIMs of the root nodes are filled in 
based on the failure rates estimated by expert judgement, 
and the CIMs of the intermediate nodes and leaf node are 
filled in with the transformation rule of the logic gates. 
The leaf node is denoted as XHE. Then the probability of 
XHE transitioning to state 1 within the time interval T can 
be queried by CTBN modeling method. The probability of 
XHE transitioning to state 1 indicates the occurrence prob-
ability of the hazardous event. In the same way, the occur-
rence probability of a specific sub-event can be calculated. 
The calculation results are called the prior probabilities of 
the hazardous event and its sub-events.

Importance analysis aims to sequence the importance 
of each risk factor to the hazardous event and judge the 
acceptability of the impact of each risk factor on the tun-
nel performance. If the impact of the risk factor on the 
hazardous event is unacceptable, it will threaten the safety 
of the tunnel project and handling of it may prolong the 
construction duration and increase the cost. In compari-
son with the CTBN model developed for predictive analy-
sis, the hypothetical scenario that setting the initial state 
of the node Xn to state 1 is served as evidence to calculate 
the conditional probability P(XHE(T) = 1 | Xn(T) = 1), and 
the hypothetical scenario that setting the failure rate of 
Xn (denoted as lXn) to 0 is served as evidence to calcu-
late the conditional probability P(XHE(T)  = 1 | Xn(T)  = 
0). Importance analysis is conducive to improve the reli-
ability of the system effectively, optimize design methods 
for system, or find out the causes of system failure. The 
importance analysis in the proposed approach is carried 
out in three layers:
(1) In the first layer, effort need to be made to distinguish 

whether a risk factor is in a critical state in the system. 
If the occurrence of a risk factor Xn directly leads to 
the occurrence of the hazardous event XHE, Xn is con-
sidered to be in a critical state, which can be expressed 
as Eqn (12):

     ( ( ) 1| ( ) 1) 1HE nP X T X T= = = .  (12)

Conversely, if the occurrence of Xn cannot directly 
lead to the occurrence of XHE, Xn is considered to be 
in a non-critical state which can be expressed as:

( ( ) 1) ( ( ) 1| ( ) 1) 1HE HE nP X T P X T X T= < = = < .  (13)

Obviously, risk factors in a critical state need to 
be paid top priority attention in tunnel construction, 
whereas risk factors in a non-critical state will enter 
into the next layer.

(2) In the second layer, the importance of risk factors 
is judged from the sensitivity perspective and Birn-
baum’s Measure is utilized to analyze the Probability 
Importance of risk factors (Andrews & Beeson, 2003). 

The Probability Importance is defined as the probabil-
ity change degree of the hazardous event when only 
a risk factor Xn is set to failure state. The Probability 
Importance index of Xn, denoted as IP(Xn(T)), can be 
calculated by Eqn (14):
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P X T
I X T P X T

P X T
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= = =
∂

1| ( ) 1) ( ( ) 1| ( ) 0),n HE nX T P X T X T= − = =   (14)

where P(XHE(T) = 1| Xn(T) = 1) denotes the condi-
tional probability that XHE transitions to state 1 when 
Xn is initially in state 1; P(XHE(T)  = 1 | Xn(T)  = 0) 
denotes the conditional probability that XHE transi-
tions to state 1 when Xn is known to be in state 0. The 
higher Probability Importance index of Xn is, the more 
sensitive Xn is.

(3) The Probability Importance cannot reflect the diffi-
culty of reducing the probability of risk factors. Thus, 
the non-critical risk factors are input into the third 
layer and the Criticality Importance is calculated. The 
Criticality Importance is defined as the change de-
gree of probability change rate of the hazardous event 
caused by the change of probability change rate of a 
risk factor Xn (Beeson & Andrews, 2003). The Critical-
ity Importance index of Xn, denoted as IC(Xn(T)), can 
be calculated by Eqn (15):
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where P(Xn(T) = 1) denotes the probability of Xn tran-
sitioning to state 1. The Criticality Importance can 
measure the importance of risk factors from both the 
sensitivity perspective and the probability perspective. 
In this manner, a less reliable risk factor with a higher 
Criticality Importance index is more critical and needs 
more attention (Espiritu et al., 2007).
The compound influences of multiple risk factors on 

the safety of the hazardous event can be evaluated in the 
same way.

The final step of decision-making in the pre-con-
struction stage of the metro tunnel project is to make an 
evidence-based risk decision based on the analysis re-
sults of the previous step. The decision-making is mainly 
composed of risk assessment and risk response. Decision 
makers need to perform risk assessment on whether the 
safety of the hazardous event is acceptable. This procedure 
is implemented through comparing the occurrence prob-
ability of the hazardous event with the risk acceptance cri-
terion. If there is no clear risk acceptance criterion for the 
hazardous event, decision makers need to combine their 
risk perceptions with the possible consequences and safety 
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objectives to develop the risk acceptable range. If the as-
sessment result is within an acceptable range, the existing 
scheme is considered capable of meeting the requirement, 
and the attitude is to retain or ignore the risk; whereas if 
the assessment result is non-acceptable, the construction 
process monitoring and safety patrol need to be strength-
ened and an appropriate risk response strategy need to 
be adopted. Common risk responses to unacceptable risks 
mainly include risk avoidance, risk transfer and risk miti-
gation. Risk avoidance is to bypass risks by changing the 
project plan, risk transfer is the transfer of risk to a third 
party, and risk mitigation aims to reduce risk exposure by 
reducing the probability or impact of the hazardous event 
to an acceptable range. Moreover, the results of impor-
tance analysis can assist decision makers in determining 
the monitoring priority of risk factors and optimizing the 
risk warning in tunnel construction.

2.4.2. Risk-informed decision-making in the 
construction stage of the tunnel project

Practical tunnel projects often involve numerous uncer-
tainties. The uncertainty associated with imperfect pre-
diction and estimation is caused by the simplification 
of models and lack of prior information and knowledge 
(Ang & Tang, 2007). The uncertainty can be decreased by 
acquiring new information from tunnel construction site 
as certain evidence. Owing to the existence of the uncer-
tainty, it is necessary to update the decision-making when 
new evidence supporting the decision is obtained in the 
construction stage.

Once the tunnel construction begins, new information 
can be collected from the monitoring data and on-site 
safety patrol observations. The main objects of monitor-
ing and observation are composed of geology conditions, 
tunnel project itself and circumjacent environment. By 
comparing this information with the predicted tunnel 
construction performance, anomalies of risk factors can 
be identified. The certain evidence of nodes in CTBN 
model can be extracted from the identified anomalies. 

If a risk factor Xn is observed to be in a failure state 
at the time point s, then the predictive analysis can be 
updated and the inputs of the CTBN model is updated as 
follows: The initial time is updated to s, the initial state of 
Xn is updated to state 1, the time interval is updated to 
[s, T], and other parameters of the CTBN model remain 
unchanged from the inputs in the pre-construction stage. 
Then the updated occurrence probability of the hazardous 
event can be expressed by Eqn (16):

( ( , ) 1) 1,nP X s T = =

( ( , ) 1) ( ( , )HE HEP X s T P X s T= = =

1| ( , ) 1) ( ( , ) 1),n nX s T P X s T= ⋅ =   (16)

where P(XHE(s, T) = 1| Xn(s, T) = 1) denotes the condi-
tional probability that XHE transitions to state 1 within the 
time interval [s, T] when Xn is initially in state 1; Finally, 
with the updated prediction result of the occurrence prob-

ability of the hazardous event, the decision-making can 
be updated.

Once the occurrence of the hazardous event is found 
in the tunnel construction process, the decision-making 
will focus on the diagnosis of accident causes and the 
development of repair strategies. The information of the 
occurrence of the hazardous event and its sub-events can 
be obtained from the accident detection, and this informa-
tion is extracted as certain evidence to update the node 
state and time interval of the CTBN model for diagnostic 
analysis.

Diagnostic analysis aims to find out the most likely 
causes when the hazardous event occurs. It requires ob-
taining the posterior probability of risk factors that may 
lead to the hazardous event. Assume that the hazardous 
event is found to have occurred at the time point s, then 
the posterior probability of the risk factor Xn transitioning 
to state 1 within the time interval [0, s], which is denoted 
as P(Xn(s)= 1| XHE(s) = 1), can be calculated by Eqn (17):
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where P(Xn(s)  = 1) denotes the prior probability of Xn 
within the time interval [0, s]; P(XHE(s) = 1) denotes the 
prior probability of XHE within the time interval [0, s]. The 
larger the posterior probability of Xn, the more likely Xn is 
the direct cause of XHE. Furthermore, if an intermediate 
node in the CTBN model is confirmed to be in a failure 
state, the posterior probability of the risk factors of the 
corresponding sub-events can also be calculated to narrow 
the scope of fault diagnosis.

Via diagnostic analysis all suspected risk factors can be 
identified, and by combining the possible risk factors in 
the order of posterior probability with the information ob-
tained from the accident detection, experts can ultimately 
determine the cause of the hazardous event. On this basis, 
experts can estimate the repair probability of the risk fac-
tors that lead to the occurrence of the hazardous event 
and develop an optimal repair strategy, which will not be 
detailed here.

3. Case study

The shield method for tunnel construction has the ad-
vantages of safety and efficiency, and is widely applied in 
urban metro tunnel construction in China. In areas rich 
in groundwater, most tunnel lines are excavated below 
groundwater. Owing to the complicacy of circumjacent 
environment and construction process, the phenomenon 
of tunnel water leakage in different degrees is prone to be 
found. In consideration of the universality and pernicious-
ness of tunnel water leakage, it is of great significance to 
make decision on the leakage risk during tunnel construc-
tion. A metro tunnel project in southwest of China is se-
lected as a case to illustrate how the proposed decision sup-
port approach is applied to the risk of tunnel water leakage. 
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3.1. Project profile

The selected tunnel project locates in an old urban area 
and is adjacent to dense surface buildings. An earth pres-
sure balance shield machine with a cutter head diameter 
of 6.43 m is used for soil excavation. Reinforced concrete 
segments with an external diameter of 6.2 m, an internal 
diameter of 5.5 m and a width of 1.2 m are adopted for 
tunnel lining. Each lining ring is composed of 6 pieces 
of segments, and the staggered joint assembly pattern is 
adopted in the project.

The profile of the hydrogeology conditions along the 
tunnel axis is shown in Figure 8, and the permeability co-
efficient of each soil layer is shown in Table 17. The total 
length of the tunnel is 1066 m, the buried depth of the 
tunnel is 15.60–25.40 m, and the soil layers where the 
tunnel passes through are mainly the silty clay layer, silt 
layer and silty sand layer. The groundwater level is 2.2–5 m 
below the ground surface. The aquifers have the character-
istics of high water content, strong water permeability, hy-
draulically connected and confined. These characteristics 
may have great impact on the construction safety. Thus, 
the waterproofing works should be well done during the 
tunnel construction process. The engineering investiga-
tion report shows the silty sand layer is the aquifer that the 
tunnel mainly passes through. The mileage DK0+835.40-
DK1+564.80 has a relatively high risk of tunnel water 
leakage, so it is selected as the research object.

Table 17. Permeability coefficient of soil layers

Soil layer Permeability coefficient k (m∙d−1)
Plain filling soil 0.01~3.50
Silty clay 0.001
Silt 1.50
Silty sand 1.50
Round gravel soil 15.00
Organic soil 0.05

3.2. Development of the decision support model

Although more and more attention has been paid to the 
metro waterproofing works, the current situation is still 
not optimistic. A risk screening team is involved in the 
identification of the water leakage risk of the project. 
First, risk-related information is collected to identify the 
risk mechanism of the tunnel water leakage. Zhang et al. 
(2014b) evaluated the water leakage risk of the river-
crossing tunnel from the aspects of geology, design, con-
struction and management by empirical method. Xie et al. 
(2021) calculated the leakage probability of longitudinal 
joint of the segments by Monte Carlo method. Wu et al. 
(2014) introduced the leaking behaviour of the tunnel 
under Huangpu River and discussed the factors influenc-
ing tunnel water tightness. According to the statistics of 
on-site inspection of shield tunnels in Shanghai, 87% of 
tunnel leakage occurs through the segmental joints, 8% 
occurs through the grouting holes, 3% occurs through 
the grouting holes and 2% occurs through other locations 
(Zhang et al., 2015). Such studies can effectively increase 
the cognition of tunnel leakage risk and help to extract 
the explicit knowledge and tacit knowledge from the risk-
related information.

Through preliminary analysis of the information of 
previous studies, accident records and expert opinions, 
four water leakage locations can be identified: (1) shield 
tail sealing; (2) segment joint; (3) segment surface; (4) bolt 
and grouting holes. The shield tail sealing device relies on 
the combined action of wire brush and grease to prevent 
grouting slurry and water from entering the tunnel. Since 
the grouting material has a certain degree of impermeabil-
ity after solidification, the grouting layer behind the seg-
ment lining can effectively reduce the possibility of tunnel 
water leakage and becomes the first defense line of the 
tunnel waterproofing system. As the segments are made 
of high-strength reinforced concrete with impermeability 
grade of P12, and self-adhesive rubber sheet is installed 
at the corners of each segment, the self-waterproofing 
performance of segment can be considered warrantable.  

Figure 8. Longitudinal profile of the tunnel hydrogeology condition
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Segment joints are commonly labeled as the weakest 
points against infiltration of groundwater (Wu et  al., 
2014), hence two defense lines are adopted for waterproof-
ing of segment joints in this project. The first defense line 
is the ethylene propylene diene monomer (EPDM) rubber 
elastic gasket set in the gasket groove, which can achieve 
the waterproofing function when under compressed state. 
The second defense line is to set caulking groove inside 
the segment joint and use polysulfide sealant as caulk-
ing material. The bolt and grouting holes are sealed by 
water swelling rubber washers to achieve the waterproof-
ing effect. The bolt holes are plugged with M15 polymer 
cement mortar and the grouting holes are plugged with 

screw plug. Some typical waterproofing measures adopted 
in the project are depicted in Figure 9.

The risk-related knowledge of the hazardous event, risk 
mechanism and risk factors identified from the previous 
step is extracted as evidence of events and logic gates in the 
DFT structure. Specifically, the hazardous event is repre-
sented by top event, its sub-events and risk factors are rep-
resented by intermediate events and basic events, and the 
relationships among these events are represented by logic 
gates. The water leakage of tunnel is defined as the top event 
of DFT, and a DFT structure with 15 intermediate events 
and 32 basic events is established and shown in Figure 10, 
and the descriptions of the events are depicted in Table 18.  

Figure 10. DFT structure diagram for water leakage of tunnel

Figure 9. Typical waterproofing measures adopted in the selected tunnel project
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And then the equivalent CTBN framework can be devel-
oped in accordance with the transformation rules. The 
CTBN representation of tunnel water leakage is shown in 
Figure 11, and all nodes of the CTBN model are assigned 
with the corresponding CIMs.

The failure rate of root nodes in the CTBN model is es-
timated by experts as evidence. Questionnaires are distrib-
uted to 24 tunnel experts, and 20 of which are returned. 
Among the 20 questionnaires, 2 are from experts at level 
I, 4 are from experts at level II, 8 are from experts at level 
III, and 6 are from experts at level IV. In order to stan-
dardize the risk analysis method, the unit of failure rate is 
defined as one day, the minimum failure rate is set to be 
1.0E−5 per day, and two significant digits are retained for 
all statistical results. The planned construction duration 
of the selected region is roughly estimated by experts as 
130 days. The failure rate of each root node is estimated 
by experts on the basis of the prior information and their 
expertise, and the failure rate estimations from 20 experts 
are weighted by expert judgement credibility index. The 
final results of the failure rate estimations are shown in 
Table 19.

3.3. Risk analysis and decision-making  
in the pre-construction stage

Predictive analysis and importance analysis are performed 
in the pre-construction stage of the tunnel project to assist 
decision makers in judging the acceptability of tunnel wa-
ter leakage risk and taking corresponding risk responses.

As the inputs of the CTBN model for predictive analy-
sis, the failure rates estimated by experts are the sources 
of the root nodes’ CIMs, and the CIMs of intermediate 
nodes and leaf node can be inferred according to the 
transformation rules, and according to the basic assump-
tion for predictive analysis, the initial state of all nodes is 
set to state 0. The initial state of the nodes and the CIMs 
attached to the nodes are filled into the CTBN-RLE, and 
the failure probability of the nodes in the planned con-
struction duration can be queried with the built-in default 
inference algorithm. In order to make the CTBN model 
computable, a large number, i.e., 1E10, is used to substitute 
all ∞ in CIMs. Within the outputs of the CTBN model, 
the state distribution of the leaf node and several critical 
intermediate nodes when the time is 130 days are queried.  

Event 
number Description

Top event:
T Water leakage of tunnel

Intermediate events:
A1 Shield tail sealing failure
A2 Tunnel waterproofing system failure
B1 Sealing wire brush damaged
B2 Poor sealing effect of grease
B3 Shield tail gap not fully sealed
B4 Lining external waterproofing failure
B5 Lining waterproofing failure
C1 Segment self-waterproofing failure
C2 Joint waterproofing failure
C3 Hole waterproofing failure
D1 Elastic sealing gasket waterproofing failure
D2 Caulking waterproofing failure
E1 Too low contact pressure between sealing gaskets
F1 Too much joint splaying or staggering
F2 Sealing gasket displacement or falling off

Basic events:
X1 Ingress of foreign matters such as mortar or 

concrete fragment in sealing wire brush
X2 Excessive wear of sealing wire brush
X3 Rewinding of wire bristles caused by shield machine 

backward
X4 Insufficient grease injection
X5 Too low pressure of grease injection
X6 Poor quality of grease
X7 Uneven external surface of segments

Event 
number Description

X8 Incoordination between shield machine posture and 
tunnel axis

X9 Insufficient grouting volume
X10 Poor quality of grouting
X11 Too much thrust of jack on segments
X12 Excessive width of segment cracks or through 

segment cracks
X13 Poor impermeability of concrete
X14 Missing installation of sealing washer
X15 Poor sealing effect of washer
X16 Bolt not tightened or washer not pressed
X17 Poor quality of hole plugging
X18 Dirt in the hole not cleaned
X19 Edge or corner of segment damaged
X20 Poor quality of elastic sealing gasket
X21 Elastic sealing gasket damaged or broken
X22 Excessive deformation of caulking groove or 

caulking groove damaged
X23 Dirt or ponding in the calking groove not cleaned
X24 Poor quality of caulking materials
X25 Caulking filling not dense
X26 Dirt in the gasket groove not cleaned
X27 Installation error of segments
X28 Fabrication error of segments
X29 Excessive deformation or relative displacement of 

segments
X30 Improper installation of sealing gasket
X31 Poor pasting between sealing gasket and groove
X32 Size mismatch between sealing gasket and groove

Table 18. Descriptions of the events in DFT model
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It turns out that the occurrence probability of tunnel wa-
ter leakage is 9.11% within the construction duration. The 
prior probabilities of the leaf node and some selected in-
termediate nodes are shown in Figure 12. 

The importance analysis based on hypothetical sce-
narios is performed as follows: Through changing the ini-
tial state and the CIMs of the root nodes input into the 
CTBN model, the conditional probabilities P(XHE(T)  =  
1 | Xn(T) = 1) and P(XHE(T) = 1 | Xn(T) = 0) of each root 
node can be calculated, and then three levels of importance 
analysis can be implemented. In the first layer, X1 to X8 
are distinguished in a critical state according to Eqn (12),  
and the other 24 non-critical risk factors are input into 
the next layer. In the second layer, the Probability Impor-
tance of X9 to X32 is calculated by using Eqn (14) and the 
result is shown in Figure 13. Then, X9 to X32 are input into 

Table 19. Failure rate estimations of root nodes

Root node Failure rate l (d−1) Root node Failure rate l (d−1) Root node Failure rate l (d−1)
X1 2.1E−5 X12 1.9E−5 X23 7.3E−4
X2 1.8E−5 X13 1.1E−5 X24 1.1E−5
X3 1.2E−5 X14 1.3E−5 X25 9.2E−5
X4 1.5E−5 X15 1.0E−5 X26 7.2E−5
X5 1.5E−5 X16 5.4E−5 X27 6.2E−4
X6 1.0E−5 X17 3.6E−5 X28 1.3E−5
X7 2.4E−5 X18 4.3E−5 X29 3.2E−3
X8 2.8E−5 X19 6.8E−5 X30 1.2E−5
X9 5.2E−4 X20 4.1E−5 X31 1.6E−5
X10 6.0E−3 X21 2.4E−5 X32 1.0E−5
X11 2.1E−5 X22 1.4E−3

Figure 11. Equivalent CTBN model for water leakage of tunnel

Figure 12. Prior probabilities of leaf node and critical 
intermediate nodes (probability grade in red indicates very 

likely, probability grade in orange indicates likely, probability 
grade in light blue indicates possible, probability grade  

in light green indicates unlikely)
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the third layer to compare their Criticality Importance re-
spectively by using Eqn (15), and the result is shown in 
Figure 14.

In this project, decision makers define the following 
acceptance criterion: the probability grade of very likely 
and likely is non-acceptable, indicating that additional 
risk responses should be taken; whereas the probability 
of possible and unlikely is acceptable, suggesting that the 
existing waterproofing measures can satisfy the safety ob-
jective. By comparing the risk criterion with the predic-
tive analysis result, the decision makers conclude that the 
tunnel water leakage risk is within an acceptable range. 
Furthermore, it is found that the probability of water 
leakage is higher at the segment joints and grouting and 
bolt holes among the four water leakage locations, hence 
more attention should be paid to these weak positions.  
Among the several main waterproofing measures, both 
the sealing gasket waterproofing and caulking waterproof-
ing tend to show relatively high probability of failure, 
however, the co-work of them can effectively reduce the 
probability of joint leakage. Therefore, it is necessary to set 
two defense lines at the joint in this project. Due to the 
complicacy of the external environment around the tun-

nel, it is difficult to guarantee the waterproofing effect of 
grouting outside the segment lining, and consequently the 
grouting layer can only function as a preliminary defense 
line of the tunnel waterproofing system.

The contribution of risk factors to the tunnel water 
leakage risk can be measured by the results of importance 
analysis. Risk factors X1 to X8 related to the shield tail seal-
ing should be strictly eliminated since they can directly 
lead to the occurrence of water leakage risk. The failure 
rates of X1 to X8 are limited to very low values, which are 
considered to meet the requirements. Risk factors X11 to 
X18 related to the segment surface as well as the grout-
ing and bolt holes are the most sensitive non-critical risk 
factors, and reducing the probability of these risk factors 
can significantly decrease the probability of water leakage 
risk. The result of the third layer indicates that guaran-
teeing the grouting effect and amount and improving the 
construction quality of segment joints and holes are two 
priority ways to mitigate the risk of tunnel water leakage. 
In general, the waterproofing measures taken in the tunnel 
project is consistent with the risk design principle and can 
be considered reasonable.

Figure 13. Sequencing results of Probability Importance of nodes X9 to X32

Figure 14. Sequencing results of Criticality Importance of nodes X9 to X32
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3.4. Risk monitoring and decision updating  
in the construction stage

New information from the tunnel construction process 
can reduce the epistemic uncertainty of tunnel water 
leakage risk, therefore, the anomalies identified from this 
information are used as certain evidence to support up-
dating the node state. Amongst all the monitoring meas-
urement items, lining deformation, groundwater level and 
grouting effect are the items with high correlation to the 
water leakage. Whilst amongst all the safety patrol items, 
location and mode of water leakage, condition of segment 
surface cracks, quality of segment installation, personnel 
operation, sealing of segment joints, and sealing of grout-
ing and bolt holes are the items with emphases. Several 
typical observations from the safety patrol on construction 
site are shown in Figure 15. During a safety patrol when 
the tunnel construction was up to 30 days, the problem of 
unqualified calking waterproofing was found, which can 
be regarded as the occurrence of node D2. If this problem 
is not addressed properly, the CTBN model can be updat-
ed as follows: In comparison with the inputs of the CTBN 
model for predictive analysis in the pre-construction 
stage, the initial state of the node D2 is updated to state 
1, and according to the remaining construction duration, 
the time interval is updated to 100 days, other inputs of 
the CTBN model remain the same as the predictive analy-
sis in the pre-construction stage. The updated outputs of 
the CTBN model can be queried and the comparison of 
the prior probabilities and the updated probabilities of 
the nodes is shown in Figure 16. It can be seen that the 
updated occurrence probability of tunnel water leakage 
is 17.87%, which falls into the probability grade of likely. 
The updated predictive results indicate that the decision 
should be updated to non-acceptable and countermeas-
ures need to be implemented. Thus, some improvement 
suggestions on caulking construction quality were put 
forward to the on-site workers and the supervision was 
strengthened.

Theoretically, many anomalies can be treated as the 
evidence for risk updating. However, in practical engi-
neering, the state of some risk factors cannot be directly 
observed, which need to be speculated by experts through 

indirect information, and some subtle anomalies in the 
construction process are often not received enough atten-
tion so that they are not fed back to experts. These reasons 
make it difficult to extract the evidence for updating the 
CTBN model.

3.5. Accident diagnosis and response

In the analysis section of the tunnel project, the water 
leakage problem was witnessed 46 days after the con-
struction started and was not solved promptly. Through 
the field inspection, it is found that the leakage occurred at 
the segment joint, as shown in Figure 17. In this case, the 
diagnostic analysis should be performed to assist experts 
to speculate the causes of the hazardous event. Accord-
ing to the information regarding the location of the water 
leakage and the failure mode of waterproofing measures, 
the field experts infer that grouting waterproofing, seal-
ing gasket waterproofing and caulking waterproofing enter 
into a failure state, and thus only the risk factors related 
to these waterproofing measures are considered for sim-
plicity. 

Based on Eqn (16), certain evidences B4(46)  = 1, 
D1(46) = 1 and D2(46) = 1 are used to calculate the poste-
rior probabilities of risk factors in these three sub-events 

Figure 15. Some observations from the on-site safety patrol: a – Joint sealing; b – Personnel operation specification;  
c – Segment intactness

Figure 16. Comparison of prior probabilities and updated 
probabilities of nodes

a) b) c)
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respectively. The results are shown in Figure 18. It can be 
seen that the most probable reason of grouting waterproof-
ing failure is poor grouting quality (with a 93.09% chance), 
the most probable reason of sealing gasket waterproofing 
failure is excessive deformation or relative displacement 
of segments (with a 80.05% chance), and the most prob-
able reason of caulking waterproofing failure is excessive 
deformation of caulking groove or caulking groove dam-
aged (with a 63.90% chance). The results can provide sup-
port for the diagnosis of accident site. After comparing the 
calculated results with the actual on-site diagnosis, experts 
in the field can finally confirm the causes of the occur-
rence of the hazardous event and formulate the follow-
ing repair strategy: drilling a hole at the joint where the 
leakage occurs, inserting a slender plastic pipe to drain off 
the leakage water, and inserting another pipe and grout-
ing outward through it. When it is confirmed that there 
is no more water leakage, cut off the grouting pipe and 
caulk the joint again. This repair strategy actually aims at 
the repair of risk factor X10, which maintains as the main 

cause of the water leakage. Since the expected repair time 
is far less than one day, it can be almost ascertained from 
Eqn (9) that the fault can be repaired (the analysis details 
are omitted). The actual result demonstrates that the ap-
plication of repair strategy proposed for the water leakage 
is effective. The treatment measures adopted in the proj-
ect successfully prevent the groundwater from continuing 
to leak into the tunnel and avoid the occurrence of more 
serious accidents.

In addition, by comparing the results of the diagnostic 
analysis in Figure 18 with the results of the critical impor-
tance analysis in Figure 14, it can be seen that X10, X22 
and X29 are not only the key factors of accident preven-
tion, but also the most likely causes after the occurrence 
of the hazardous event. Therefore, whether it is prevention 
in the pre-accident stage or diagnosis in the post-accident 
stage, X10, X22, and X29 are the factors that need priority 
attention.

Conclusions

The risk-informed decision of metro tunnel project in 
complicated environment inevitably faces uncertainty 
problems. In order to fill the research gap that previous re-
searches only focused on the epistemic uncertainty charac-
teristics caused by the scarcity of risk-related information 
but ignored the fully utilization of the diversity of risk-
related information, this paper presents an evidence-based 
risk decision support approach for tunnel construction 
project. This study aims to reduce the epistemic uncertain-
ty of risks by providing the evidence for decision-making. 
The CTBN model can perform evidence-based reasoning, 
thus a CTBN-based risk decision support framework is 
developed for the tunnel project. The proposed approach 
enables multi-dimensional information to be used as evi-
dence to support decision-making through the state space 
decomposition of risks in tunnel construction project with 

Figure 18. Diagnostic analysis results of tunnel water leakage:  
a – P(Xn(46) | B4(46) = 1); b – P(Xn(46) | D1(46) = 1); c – P(Xn(46) | D2(46) = 1)

Figure 17. Observed leakage at the segment joint
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the CTBN model. Moreover, how to identify risk-related 
information as implicit or tacit knowledge and how to ex-
tract this knowledge as certain and uncertain evidence to 
support decision-making are demonstrated. Specifically, in 
the pre-construction stage of the tunnel project, the infor-
mation of expert opinions, project-specific parameters and 
historical data are fused into CTBN model as evidence to 
perform predictive analysis and importance analysis, and 
the results can assist the decision on judging the accept-
ability of the hazardous event and formulating response 
strategies for risk factors; in the construction stage of the 
tunnel project, certain evidence extracted from engineer-
ing anomalies can update the predictive analysis, and the 
diagnostic analysis can be performed with the certain evi-
dence extracted from the accident detection information 
to help find out the causes of the hazardous event. It can 
be found that with the progress of the tunnel project, new 
evidence integrated into the CTBN model can reduce the 
epistemic uncertainty of decision-making. The case study 
on tunnel water leakage risk illustrates the applicability of 
the proposed approach in risk-informed decision-making. 
Further, by using the same steps, the proposed decision 
support approach is also applicable to other types of risks 
in tunnel projects, so it has wide application prospect.

In terms of management, this paper presents a novel 
approach which gives a deep insight into the risk decision-
making field. The integration of multi-source evidence and 
improving the certainty of uncertain evidence are the key 
to reduce the biases of risk decision-making. The proposed 
approach improves the utilization efficiency of risk-related 
information and promotes the circulation of information 
among project participants. In conclusion, the proposed 
decision support approach improves the safety of tunnel-
ling project and is conducive to risk management. 

Several main conclusions are drawn as follows:
(1) CTBN model is an efficient framework to integrate 

multi-source information as evidence and can 
perform evidence-based reasoning, the results of 
which can increase the risk cognition and provide 
informed decision support for tunnel projects.

(2) A concise CTBN model establishment method 
based on DFT technique is presented to replace 
the traditional model learning process with high 
data requirement.

(3) The application of the approach in tunnel water 
leakage risk reveals that the weak position of wa-
terproofing is segment joint, risk factors related to 
human errors are the main causes of tunnel leakage.

There still exist some limitations in the proposed risk 
decision support approach that may hinder its wide ap-
plication. This study assumes that all risk factors obey ex-
ponential distribution, and the failure rate is independent 
of time, which is only applicable to the case that the risk 
factors of the hazardous event are stable. The proposed 
approach can only reduce the uncertainty of part of the 

parameters in the decision support model, while the pa-
rameter of failure rate based on expert judgement cannot 
be updated. The future work will focus on further improv-
ing the certainty of uncertainty evidence based on the in-
formation obtained from tunnel construction process and 
addressing the decision support when tunnel construction 
risk changes greatly.

Notations

Abbreviations
DFT – Dynamic fault tree; 

CTBN – Continuous Time Bayesian Network;
FTA – Fault Tree Analysis;
BN – Bayesian Network;

DAG – Directed acyclic graph;
CPD – Conditional probability distribution;
JPD – Joint probability distribution;

CIM – Conditional intensity matrix;
JIM – Joint intensity matrix;

EPDM – Ethylene propylene diene monomer.
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